70
Classical and genetic approaches to vertebrate development using amphibians Gerald Thomsen State University of New York–Stony Brook [email protected]

Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Classical and genetic approaches to vertebrate development using amphibians

Gerald Thomsen

State University of New York–Stony Brook

[email protected]

Page 2: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Amphibian Model

Xenopus laevis

Page 3: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 4: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 5: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

QuickTime™ and aPhoto - JPEG decompressor

are needed to see this picture.

Page 6: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Studying Development with Amphibian Embryos

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 7: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Fate maps• Explants - specification• Transplants - induction• Physical/chemical perturbation

1. Classical Approaches

Page 8: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Vogt’s method of amphibian fate mapping

Page 9: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Making a fate map of Xenopus

Fluorescent dextran labeling of

Page 10: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Building the frog 32 cell stage fate map:

C1

C4

Dale and Slack 1984

Page 11: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Fate map of the Xenopus blastula

Page 12: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Specification test– Autonomous execution of a developmental

program.– Test cell’s or tissue’s potential for

autonomous differentiation when removed from the embryo.

– Gives clues about the nature of cell fate determination: determinants or induction?

Classical approaches:

Page 13: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Specification test on Xenopus blastulaepidermis

Page 14: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Animal pole:

An-1 RNA helicaseAn-2 Mitochondrial ATPase subunitAn-3 Zinc finger protein

Smurf1 Ubiquitin ligase = neurectodermEctodermin Ubiquitin ligase = neurectoderm

Vegetal pole

Vg1 TGFß member = mesendodermXlsrts Structural RNA anchors Vg1Wnt-11 Wnt growth factor – dorsal axis, PCPVegT T-box txn factor = mesendoderm

Specification tests led to screens that identified localized RNAs - some are cell fate determinants

.

• dozens isolated, mostly by differential cDNA screening• localization mechanisms somewhat understood.

Page 15: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

– Do cells respond to their neighbors or are they committed to their own progranms?

– Induction is where interactions between cells affects fate.

– First evidence that vertebrates use induction to develop was demonstrated with amphibians (newts)

Tissue transplantation to test cell commitment

Page 16: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 17: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 18: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Pieter Nieuwkoop showed that mesoderm is induced

Page 19: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Grafts with lineage tracing

Page 20: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 21: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Animal cap assay to screen for inducers

= test substancee.g. growth factor

Page 22: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Animal cap assay to screen for inducers

= test substancee.g. growth factor

* A popular variation is to inject a candidate mRNAinto the animal pole and test its effects on the isolated cap

*

Page 23: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 24: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Mesenchyme & blood induction by BMP-4Untreated Treated with BMP

Mesenchyme, blood

Page 25: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

untreated + Vg1

nodals and activin act similarl

Page 26: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Nodals 1,2,5Vg1

Dorsal nuclear ß-catenin(cortical rotation &/or wnt11)

Mesoderm & endoderm induction signals in late blastula

Page 27: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 28: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Pool of random cDNA clones, grid of ESTs, wells etc• Synthesize mRNA from pooled clones• Inject and score pool activity (e.g axis induction)• split pool and retest fractions• reiterate sib selection• Identify active clone

Expression cloning

Page 29: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Chordin gene expression in Spemann Organizer

notochord

initial gastrulation(stage 10)

early gastrulation(stage 10.5)

end of gastrulation(stage 13)

Sasai et al, Cell. 1996

head mesoderm

Page 30: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Noggin gene expression in SpemannOrganizer and notochord

Smith & Harland (1996)

Stage 10 Stage 10

Stage 13Stage 13

Page 31: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Some key developmental genes isolated by expression cloning in Xenopus

• Noggin• Chordin• Sizzled• Cerberus• Dickkopf• Kremen

Page 32: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Organizer specific genes in X. tropicalis

Kokha et al,

Page 33: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Other ways to find candidates….

•Differential screen– subtractive selection– gene chip assay - e.g. VegT induced genes.

– in silico = NCBI Differential Display (DD)• Protein interaction partners - Y2H, proteomics

• Systems biology Networks• MFCG (my favorite cool gene…)

Page 34: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 35: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 36: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 37: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 38: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Gain of function tests– Overexpress gene of interest in embryo and

observe effects.

Does my favorite gene have a developmental function?

Page 39: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Induction of an ectopic dorsal axis by a constitutively active Type I activin receptor (ALK4)

Page 40: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Ventralization by dorsal BMP-4 overexpression

control

treated

Page 41: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

BMP-4 and wnt8 expressed in ventral marginal zone mesoderm

S.O.

Page 42: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Brivanlou & Thomsen 1996

BMP-4 downregulated in neural plate

midgastrulation st 11

Neural plate

St 12

Page 43: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Loss of function tests

– Dominant-negative proteins– Antisense oligonucleotide targeting of mRNAs to

block protein expression.

• RNAse-H mediated destruction via DNA oligo• Translation inhibition with Morpholino oligo• Splicing inhibition with Morpholino

– Gene mutations?

Page 44: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

DNA oligo-mediated mRNA destruction by endogenous oocyte RNAseH

Slack 2000

Page 45: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

ß-catenin depleted embryos

Rescue with injected ß-catenin mRNA

RNAseH-mediated depletion of materna ß-cateninmRNA by antisense DNA oligos

Page 46: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

MO knockdown of maternal ß-cateninblocks spemann organizer formation

Page 47: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

MO knockdown of two X. laevis chd alleles

Page 48: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Region-specific D-V patterning gene expression

Page 49: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 50: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Cell biological observations and perturbations

• cell shape and cytoarchitecture• cytoskeleton and nuclear structure / assembly• adhesion• movement• cell and tissue polarity

Page 51: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 52: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

A - P axis elongation

Page 53: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 54: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 55: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 56: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• promoter analysis - mutate and inject into nucleus

• transgenics- stable, heritable, link tissue-specific promoters to reporters (GFP, RFP, etc)…basis of screens?

• Transcription factor assays/purification with egg/embryo extracts- “get in the cold room”…or modern proteomics

• inducible systems– Stage specific promoters– Heat shock promoter– Protein chimeras - fused regulatory domains (e.g.

GR)

Gene regulation

Page 57: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

• Cell cycle regulators…e.g MPF = cyclin + cdk• Transcription factors• Replication factors• Translation systems• Protein degradation / ubiquitin-proteasome• Chromatin assembly

Also …purification of regulatory proteins- & use of egg and embryo in vitro extracts

Page 58: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

1. Classical Approaches - “cut and paste”

2. Induction and cell differentiation assays

3. Functional screens for developmental regulators

4. Analysis of candidates by gain and loss of function

5. Cell biology and morphogenesis

6. Gene regulation

7. Genetics - Xenopus tropicalis and the future…

Page 59: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Enter Xenopus tropicalis

X.l X.t.

Page 60: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 61: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase
Page 62: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

transgenic X. tropicalis

Page 63: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Cardiac actin- RFPPax6-GFPLens gamma crystalline- RFP + Pax6-GFP = yellow eye

Page 64: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Natural recessive mutations of X. tropicaliscurly

bubblehead

Page 65: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Mutants recovered from a gynogentic haploid screen

Page 66: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

rough diamond

Page 67: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

balloon head

Page 68: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

First mutant: Morgan 1910 Harland, Grainger 2005

Fly Xenopus

Genome: ~ 2001 2005

Page 69: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

The starlet sea anemone,

Nematostellavectensis

(Anthozoa)

egg masses

Lab of Mark Q. Martindale

Page 70: Classical and genetic approaches to vertebrate development ... · Animal pole: An-1 RNA helicase An-2 Mitochondrial ATPase subunit An-3 Zinc finger protein Smurf1 Ubiquitin ligase

Deuterostomia

“Bilateria”“Radiata”

Metazoa

Pr otostomia

Choanoflagellata

Cnidaria-*

PoriferaCtenophora-*

Acoelomorpha-*

BryozoaArticulataPhoronida-*Inarticulata

Spiralia