415
Louisiana State University LSU Digital Commons LSU Historical Dissertations and eses Graduate School 1988 Classical and Statistical ermodynamics of Solid- Liquid Equilibria. John Edward Coon Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_disstheses is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and eses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Recommended Citation Coon, John Edward, "Classical and Statistical ermodynamics of Solid-Liquid Equilibria." (1988). LSU Historical Dissertations and eses. 4629. hps://digitalcommons.lsu.edu/gradschool_disstheses/4629

Classical and Statistical Thermodynamics of Solid-Liquid

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Classical and Statistical Thermodynamics of Solid-Liquid

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1988

Classical and Statistical Thermodynamics of Solid-Liquid Equilibria.John Edward CoonLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationCoon, John Edward, "Classical and Statistical Thermodynamics of Solid-Liquid Equilibria." (1988). LSU Historical Dissertations andTheses. 4629.https://digitalcommons.lsu.edu/gradschool_disstheses/4629

Page 2: Classical and Statistical Thermodynamics of Solid-Liquid

INFORMATION TO USERS

The most advanced technology has been used to photo­graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright m aterial had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic p rin t for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

University M icrofilms International A Bell & Howell Information C om p an y

3 0 0 North Z e eb R oad, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA 3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Page 3: Classical and Statistical Thermodynamics of Solid-Liquid

Order N um ber 8917808

Classical and statistical therm odynam ics o f solid-liquid equilibria

Coon, J ohn Edward , Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1988

U-M-I300 N. Zeeb Rd.Ann Arbor, MI 48106

Page 4: Classical and Statistical Thermodynamics of Solid-Liquid

C l a s s i c a l an d S t a t i s t i c a l T he rm o d y n a m ic s o f S o l i d - L i q u i d E q u i l i b r i a

A D i s s e r t a t i o n

Submi t ted t o t he Graduate Facu l t y of the Loui s i ana S t a t e U n i v e r s i t y and

A g r i c u l t u r a l and Mechanical Col l ege in p a r t i a l f u l f i l l m e n t o f t he r e qu i r e me n t s f o r the degree of

Doctor o f Phi losophy i n

The Department o f Chemical Engi neer ing

byJohn E. Coon

B.S. Clarkson Co l l ege of Technology, Potsdam NY, 1977 M.S. Clarkson Co l l ege of Technology, Potsdam NY, 1979

December 1988

Page 5: Classical and Statistical Thermodynamics of Solid-Liquid

ACKNOWLEDGEMENTS

There a r e many people who d e s e r ve my t ha nks a t t h i s t i me . I would

l i k e t o begin by t ha nk i ng t he She l l Foundat ion f o r t he f e l l o w s h i p t h a t

s uppo r t ed a p o r t i o n o f my so journ a t LSU. Thanks a l s o t o t h e DOE-PETC

f o r t h e r e s e a r c h g r a n t (# DE-FG22-84PC70784-AOOO) t h a t p a i d f o r much of

my s a l a r y and f o r my r e s e a r c h c o s t s , and t o t h e NSF f o r t h e g r a n t (# CPE

83-14224) t h a t he lped me to pu rchase my exper i men t a l equipment f o r t h e

VLE work. My s i n c e r e s t a p p r e c i a t i o n t o t he Loui s i ana Eng i nee r ing Founda­

t i o n f o r awarding me t h e i r 1983 s c h o l a r s h i p . I thank t he Chemical Engi­

nee r i ng Depar tment , t he System Network Computer Cent e r (SNCC), and the

Corne l l Na t i ona l Supercomputer F a c i l i t y (CNSF) f o r t h e i r generous a l l o t ­

ments o f comput ing t i me .

The fo l l owi ng people de s e rve my d ee p e s t t hanks f o r t h e i r guidance and

t h e i r f r i e n d s h i p . I t hank Dr. McLaughlin f o r h i s gu idance o f t h i s r e ­

s e a r c h , h i s suppor t o f my e f f o r t s no m a t t e r how f a r a f i e l d I s t r a y e d ,

and f o r t o l e r a t i n g my i d i o s y n c r a s i e s f o r t h e p a s t f i v e p lus y e a r s . I

would l i k e t o t hank a l l o f t he members o f my commit tee f o r t a k i n g t h e

t i me t o r ead t h i s d i s s e r t a t i o n and f o r t h e i r recommendat ions t o improve

i t . Many t ha nks t o Mr. Paul Rodr iguez f o r h i s f r i e n d s h i p and f o r h i s e f ­

f o r t s t o f i x my many mi s t ak e s and keep my a p p a r a t u s r unn i ng . I t hank

Chr i s Wi l l i ams and Wahyudi Sediawan f o r t h e i r f r i e n d s h i p and f o r t h e

many hours o f e n l i g h t e n i n g c o n v e r s a t i o n s t h e y o f f e r e d abou t v a r i o u s a s ­

p e c t s o f t h e work. My tha nks t o Dr. Gupta f o r h i s t e a c h i n g and guidance

in a l l a s p e c t s of s t a t i s t i c a l mechanics . I t hank a l l o f my s t u d e n t work­

e r s f o r ' t h e i r d i l i g e n t e f f o r t s and f o r t o l e r a t i n g me as a bos s . My s i n -

Page 6: Classical and Statistical Thermodynamics of Solid-Liquid

c e r e s t a p p r e c i a t i o n t o t h e e n t i r e o f f i c e s t a f f who t o l e r a t e d me in good

s p i r i t s even when I w a s n ' t . To my p a r e n t s , I can only say thanks f o r not

g i v i ng up on me e n t i r e l y and I promise t o g e t a r ea l j o b soon ??????

L a s t l y , I want t o t hank I l e a n a Perez Monrouzeau (Coon) f o r h e l p i ng me,

w i t h he r l ove , t o remain sane du r in g t h e p a s t few months. To everyone

e l s e I have no t named bu t should have, THANK YOU,

Page 7: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE OF CONTENTS

S e c t i o n Page

Acknowledgments i i

Table of Conten t s iv

L i s t of Tab l es v i i

L i s t of F igu res x i i

A b s t r a c t xvi i

PART A: CLASSICAL THERMODYNAMICS OF COAL LIQUIDMODEL COMPOUNDS 1

1. I n t r o d u c t i o n 2

2. L i t e r a t u r e Survey 12

a. S o l i d - L i q u i d S o l u b i l i t y S t ud i e s 12b. Vapor -Liquid E q u i l i b r i a 18

3. Exper imental Appara tus and Procedures 23

a. S o l i d - L i q u i d S o l u b i l i t y S t ud i e s 23b. Vapor -Liquid E q u i l i b r i a S t ud i e s 27

1. Components of t he S t i l l 282. M o d i f i c a t i o n s t o t he S t i l l 323. Opera t i on of t h e S t i l l 33

4. S o l u b i l i t i e s of P o l y n u c l e a r Aromat ic Hydrocarbons in Mixtures of OrganicS o l v e n t s 37

a . Paper pub l i sh e d in J ou r na l of Chemicaland Engi nee r ing Data by Coon, Trothand McLaughlin 38

b. D i s cus s i on of t he Re s u l t s P r es e n t e d int h e Paper 71

5. S o l u b i l i t i e s o f H e t e r o c y c l i c P o l n u c l e a r Aromat i cs in Common Organic S o l ven t s 73

a. Paper p ub l i sh e d in Jou r na l of S o l u t i onChemis t ry by Coon, Sediawan, Auwaer terand McLaughlin 74

- i v -

Page 8: Classical and Statistical Thermodynamics of Solid-Liquid

b. F ur th e r Di s cus s i on of t h e Res u l t sP r es e n t e d in t he Paper . 127

6. A Comparison of S o l i d - L i q u i d S o l u b i l i t y S t u d i e s and V a p or - l i q u i d E q u i l i b r i a as a Source f o r A c t i v i t y C o e f f i c i e n t Data inSystems of Coal Liquids 146

a. Paper pub l i she d in F lu id Phase E q u i l i b r i aby Coon, Auwaer ter and McLaughlin 147

b. Di scus s i on of Add i t i ona l Re s u l t s not P r e s e n t e d in t h e Paper . 211

1. Baxendale e t a l . VLE Data 2172. Re s u l t s o f t h e Comparison 2183. E f f e c t of t he Choice o f S o l u t i o n Model 225

7. An I n v e s t i g a t i o n of t h e Exper imental Accuracy o f Our S o l i d - L i n u i d S o l u b i l i t y Exper iment s Using t h e Sucrose-Water System as a S t anda rdf o r Comparison 233

a. D i scus s i on of t he system 233b. A n a l y s i s of t he System Using Our Methods 234c. Conclus ions 242d. Comparison wi t h Theory 242

PART B: STATISTICAL MECHANICS OF SOLID-LIQUIDEQUILIBRIA 248

8. I n t r o d u c t i o n 249

9. S t a t i s t i c a l Mechanical Background 253

a. Monte Car lo Method 253b. Molecular Dynamics Method 254c. P e r t u r b a t i o n Theo r i e s 256

10. Molecu l a r Dynamics S i mu l a t i ons of Mixtures of Diatomic Molecules in t he NVT Ensemble 261

a. Paper pu b l i sh e d in Molecular Phys i cs byGupta and Coon 262

b. D i s cus s i on of t h e Re s u l t s P r e s e n t e d int h e Paper 294

11. Molecula r Dynamics S imu l a t i on s o f Mixtures of Diatomic Molecules in t he NPT Ensemble 296

a. Paper p ub l i sh e d in Chemical Phys i cs byCoon, Gupta and McLaughlin 297

v -

Page 9: Classical and Statistical Thermodynamics of Solid-Liquid

b. Di scuss i on of t he Re s u l t s P r e sen t ed int he Paper 328

12. I n v e s t i g a t i o n o f M e l t i n g / F r ee z i n g PhenomenaUsing Molecular Dynamics S i mul a t i on 330

a . The Work o f Nose1 arid Yonazawa 330b. Ex t ens ions o f t he work of Nose1 and

Yonazawa 332c. E f f e c t o f Crys t a l Defec t s on t he Mel t ing

Temperature 338

13. Future D i r e c t i o n s f o r A p p l i c a t i o n of S t a t i s t i c a l Mechanics to Systems Conta in ing Complex Molecules 343

APPENDICES

1. S t r u c t u r e s o f t he Compounds S t ud i ed 345

2. P u r i t i e s o f t he Chemicals Used 347

3. Vapor P r e s su r e Data f o r t he So l ven t s 349

4. Benzene-Toluene VLE Tes t System 354

5. Add i t i ona l VLE Res u l t s 359

5. The C a l c u l a t i o n of Flash P o i n t s f o r PureComponents and Mult icomponent Mixtures 372

7. S o l u t i on Model Equat ions 384

Vi ta 388

P u b l i c a t i o n s , P r e s e n t a t i o n s and Repor t s 389

- v i -

Page 10: Classical and Statistical Thermodynamics of Solid-Liquid

LIST OF TABLES

Table

4-1.

4-2.

4-3.

4-4.

4-5.

4-6.

4-7.

4-8.

4-9.

5-1.

5-2.

5-3.

Page

Comparison of t he exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s of napht ha l ene in f i v e b i na ry s o l ven t mi x tures . 50

Comparison of t he exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s of acenaphthene in f i ve b i na ry so lven t mi x tures . 52

Comparison of t he exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s of phenanthrene in f i ve b i na ry so lven t mi x t u res . 54

Comparison of t he exper imental and p r ed i c t e da c t i v i t y c o e f f i c i e n t s of f l u o r en e in f i v eb i na ry so lven t mi x tures . 56

S o l u b i l i t y parameters and molar volumes of thes o l i d s and l i q u i d s a t t he mel t i ng p o in t s ofthe s o l i d s . 58

Binary i n t e r a c t i o n parameters needed inextended r e g u l a r s o l u t i on t he o ry . 59

Wi l son ' s and UNIQUAC b ina ry i n t e r a c t i o nparameters ob t a ined by r e g r e s s i o n o f theb ina ry s o l u b i l i t y d a t a . 60

S o l v e n t - so l v e n t c ros s par amete r s ob t a inedfrom l i t e r a t u r e VLE d a t a f o r Wi l s on ' s eqn,and UNIQUAC. 61

Comparison of t he exper imental and p r e d i c t e d a c t i v i t y c o e f f i c i e n t s f o r t he f ou r s o l i d s in an equimolar mixture of benzene, cyclohexane, th i ophene , and p y r i d i ne . 63

Thermodynamic p r o p e r t i e s f o r t he s o l u t e snecessary f o r a n a l y s i s o f t he d a t a t o f i ndt he a c t i v i t y c o e f f i c i e n t s . 82

Comparison of t h e exper imenta l and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r t he seven s o l i d s in benzene. 86

Comparison of t he exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r t he seven s o l i d s in cyclohexane. 89

- v i i -

Page 11: Classical and Statistical Thermodynamics of Solid-Liquid

5-4. Comparison o f the exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r the seven s o l i d s in t h iophene . 92

5-5. Comparison of the exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r the seven s o l i d s in p y r i d i n e . 95

5-6. Binary i n t e r a c t i o n parameters ob t a i ned by da t a r e g r e s s i o n f o r the extended r e g u l a r s o l u t i on t heory . 98

5-7. a) Wi l son ' s and UNIQUAC bina ry i n t e r a c t i o n parameters obt a ined by r eg r es s i o n of the b ina ry s o l u b i l i t y d a t a . 99

b) Wi l son ' s and UNIQUAC b i na ry c r os s parametersobta ined from l i t e r a t u r e VLE d a t a . 102

5-8. S o l u b i l i t y parameters and l i q u i d molar volumes of the s o l i d s and l i q u i d s a t t he mel t i ng po i n t s of the s o l i d s . 104

5-9. C o r r e l a t i o n va lues used f o r e s t i ma t i o n of the c r i t i c a l c o n s t an t s wi th t he c o r r e l a t i o n s ofRoman e t a l . (1983) and va l ues ob t a i ned . 107

5-10. UNIQUAC pure component parameter s , 108

5-11. Comparison of the exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r biphenyl in the f i v e b i na ry s o l ven t mi x t u r e s . I l l

5-12. Comparison of t he exper imental and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r d ibenzofuran in the f i v e b i na ry s o l ven t mi x tures . 113

5-13. Comparison of t he exper imenta l and p r ed i c t e d a c t i v i t y c o e f f i c i e n t s f o r d ibenzoth iophene in the f i v e b ina ry s o l ven t mi x tur es . 115

5-14. Dipole moments f o r t he heteroatom s o l u t e s andthe s o l v e n t s . 142

6-1 . Thermodynamic p r o p e r t i e s f o r the s o l u t e s necessa ry f o r a n a l y s i s of t he d a t a t o f i n dt he a c t i v i t y c o e f f i c i e n t s . 157

6-2. a) VLE d a t a f o r t he t e t r a l i n - b i p h e n y l systema t 423.15, 433.15, and 453.15 K. 162

b) VLE da t a f o r the t e t r a l i n - f l u o r e n e systema t 423.15, 433.15, and 453.15 K. 162

- v i i i

Page 12: Classical and Statistical Thermodynamics of Solid-Liquid

c) VLE da t a f o r t he t e t r a l i n - d i b e n z o f u r a nsystem a t 423.15. 433.15, and 453.15 K. 163

d) VLE da t a fo r t he t e t r a l i n - d i b e n z o t h i o p h e n esystem a t 423.15, 433.15, and 453.15 K. 163

6-3. a) Comparison of l i t e r a t u r e and f i t t e d va lues f o r vapor p r es s u r e f o r the l e s s v o l a t i l e components. 166

b) A n t o i n e ' s c o n s t a n t s f o r t he f i t t e d vaporp r es s u r e va l ues . 166

6-4. Res u l t s of t he thermodynamic c o n s i s t e n c y t e s t of Fredens lund us ing a 3 -parameter Legendre polynomial f o r excess Gibbs f r e e energy. 167

6-5. UNIQUAC b ina ry i n t e r a c t i o n parameter s ob t a ined by r e g re s s i o n of the VLE d a t a using the method of maximum l i k e l i h o o d . 169

6-6. Wi l son ' s b i na ry i n t e r a c t i o n parameter s ob t a ined by r e g re s s i o n of the VLE d a t a us ing the method of maximum l i k e l i h o o d . 170

6-7. NRTL b i na ry i n t e r a c t i o n parameter s ob t a inedby r eg r es s i o n of the VLE d a t a us ing the method of maximum l i k e l i h o o d . 171

6-8. Van Laar b i na ry i n t e r a c t i o n parameter s ob t a ined by r e g re s s i o n of the VLE d a t a us ing the method of maximum l i k e l i h o o d . 172

6-9. Root mean square d e v i a t i o n s (RMSD's) f o r each system using the maximum l i k e l i h o od method. 173

6-10. Comparison of exper imenta l and p r ed i c t e da c t i v i t y c o e f f i c i e n t s f o r the twelve s o l u t e s in t e t r a l i n . 178

6-11. Comparison of exper imenta l and p r ed i c t e da c t i v i t y c o e f f i c i e n t s f o r t he twelve s o l u t e s in d e c a l i n . 182

6-12. Comparison of exper imental and p r e d i c t e da c t i v i t y c o e f f i c i e n t s f o r f i v e of t he s o l u t e s 187in a 50&-50% mixture of t e t r a l i n and d e c a l i n .

6-13. S o l u b i l i t y parameter s arid l i q u i d molar volumes f o r t he s o l i d s and l i q u i d s a t t he mel t i ng p o in t s of the s o l i d s . 190

- ix -

Page 13: Classical and Statistical Thermodynamics of Solid-Liquid

6-14. Values of the b i na ry i n t e r a c t i o n parametersobta ined by r e g r e s s i o n of the s o l u b i l i t y dat a in d e c a l i n . 194

6-15. Values of the b i na ry i n t e r a c t i o n parametersob t a i ned by r e g r es s i o n of t he s o l u b i l i t y dat a in t e t r a l i n . 195

6-16. Values of t he b ina ry i n t e r a c t i o n c ros sparameters obt a ined from l i t e r a t u r e VLE d a t a . 196

6-17. Values of t he UNIQUAC pure componentparameter s . 198

6-18. VLE da t a f o r the d e c a l i n - t e t r a l i n systema t 423.15, 433.15, and 443.15 K. 212

6-19 VLE d a t a f o r the d e ca l i n - b i pheny l systema t 423.15, 433.15, and 453.15 K. 213

6-20 Binary i n t e r a c t i o n parameters ob t a ined byr e g r e s s i o n of t he da t a of Baxendale e t a l . (1951) . 219

10-1. Molecular dynamics s imul a t i on r e s u l t s andp e r t u r b a t i o n t heory c a l c u l a t i o n s f o r monatomicand d i a tomi c molecules . 272

10-2. Molecular dynamics s imul a t i on r e s u l t s andp e r t u r b a t i o n theory p r e d i c t i o n s f o r pure f l u i d sand equimolar mi x tures . 274

10-3. Excess p r o p e r t i e s f o r equimolar a rgon-n i t rogenand argon-oxygen mixtures . 275

10-4. Molecular dynamics s imul a t i on r e s u l t s f o r purel i q u i d s us ing a WCA-type r e f e r e n c e p o t e n t i a l . 276

10-5. Comparisons of the c o n f i g u r a t i o na l i n t e r n a l energy form MD s i mul a t i ons and an approximate equa t i on . 278

11-1. Values of the p a i r p o t e n t i a l parameters used f o r t he 2 - c e n t e r s i t e - s i t e Lennard-Jones model p o t e n t i a l . 304

11-2. Run c o n d i t i o n s f o r the pure f l u i d t e s t runs . 310

11-3. Res u l t s f o r t he pure d ia tomic f l u i d t e s t runs . 312

11-4. Ze r o - p r e s s u r e volume and i n t e r n a l energy andexcess p r o p e r t i e s f o r equimolar mixtures ob t a i ned by NVT and NPT molecula r dynamics and p e r t u r b a t i o n t h e o r i e s . 314

- x -

Page 14: Classical and Statistical Thermodynamics of Solid-Liquid

A3—1. Our vapor p r e s s u r e d a t a f o r t he s o l v e n t s . 350

A3-2. Regressed A n t o i n e ' s c o n s t a n t s f o r t he s o l v e n t s . 352

A4-1. VLE d a t a f o r t he be nz e ne - t o l ue ne t e s t system. 355

A5-1. Thermodynamic c o n s i s t e n c y t e s t s f o r t he o t h e rVLE sys tems . 361

A5-2. Root mean square d e v i a t i o n s f o r t h e o t h e r sys tems . 3b2

A5-3 S e n s i t i v i t y o f t he Te t r a l i n - Di b e n z o t h i o p he n eVLE r e s u l t s t o changes in t he s t a nda r d d e v i a t i o n s . 363

A5-4. Biphenyl -Benzene VLE r e s u l t s o f Caxendale e t a l . 364

A5-5. Res i dua l s f o r t he VLE r e s u l t s of Baxendale e t a l . 365

A5-6. UNIQUAC pa ramet e r s f o r t he o t h e r systems. 366

A5-7. Wi l s o n ' s pa r amet e r s f o r t he o t h e r systems. 367

A5-8. NRTL pa ramet e r s f o r t he o t h e r systems. 368

A5-9. Van Laar pa r amet e r s f o r t he o t h e r systems. 369

A6-1. Comparison of c a l c u l a t e d and exper i ment a l f l a s hp o i n t s f o r pure s u b s t a n c e s . 377

A6-2. Comparison of c a l c u l a t e d and exper i ment a l f l a s hp o i n t s f o r m i x t u r e s . 378

- x i

Page 15: Classical and Statistical Thermodynamics of Solid-Liquid

LIST OF FIGURES

F i g u r e

3-1 . Schemat ic of t he S o l i d - L i q u i d S o l u b i l i t y Appara tus

3 -2 . Schemat ic of t he Vapor-Liquid Equ i l i b r i um Apparatus

5-1 . S t r u c t u r e s f o r t he S o l u t e s Used in t he Paper in Chapter 5.

5-2 . S o l u b i l i t y ve r sus reduced t e mp e r a t u r e (Tm/T) f o r t he f i r s t he t eroa tom f ami l y in benzene

5-3. So l u t e a c t i v i t y c o e f f i c i e n t s o f t he f i r s t he t e roa tom fami ly in benzene, c a l c u l a t e d us ing UNIQUAC.

5-4 . S o l u b i l i t y versus reduced t e mpe r a t u r e (Tm/T) f o r the second he t eroa tom fami ly in benzene

5-5 . So l u t e a c t i v i t y c o e f f i c i e n t s of t he f i r s t he t eroa tom fami ly in cyclohexane c a l c u l a t e d using UNIQUAC.

5-6 . So l u t e a c t i v i t y c o e f f i c i e n t s of the f i r s t he t eroa tom fami ly in t h i ophene c a l c u l a t e d us ing UNIQUAC,

5-7 . So l u t e a c t i v i t y c o e f f i c i e n t s of the f i r s t he t eroa tom fami ly in t e t r a l i n c a l c u l a t e d us ing UNIQUAC.

5-8 . So lu t e a c t i v i t y c o e f f i c i e n t s of t he f i r s t he t e roa tom fami ly in d e c a l i n c a l c u l a t e d us ing UNIQUAC.

5-9 . So l u t e a c t i v i t y c o e f f i c i e n t s of t he f i r s t he t eroa tom fami ly in p y r i d i n e c a l c u l a t e d us ing UNIQUAC.

5-10. So l u t e a c t i v i t y c o e f f i c i e n t s of t he second he t e roa tom fami ly in benzene, c a l c u l a t e d us ing UNIQUAC.

5-11. So lu t e a c t i v i t y c o e f f i c i e n t s of t he second he t e roa tom fami ly in cyc lohexane c a l c u l a t e d us ing UNIQUAC.

Page

26

29

85

119

120

128

130

131

132

133

134

135

136

- x i i -

Page 16: Classical and Statistical Thermodynamics of Solid-Liquid

5-12. So l u t e a c t i v i t y c o e f f i c i e n t s of the second heteroatom fami ly in th iophene c a l c u l a t e d us ing UNIQUAC.

5-13. So lu t e a c t i v i t y c o e f f i c i e n t s of the second heteroatom fami ly in p y r i d i ne c a l c u l a t e d using UNIQUAC.

5-14. So lu t e a c t i v i t y c o e f f i c i e n t s of t he second heteroatom fami ly in t e t r a l i n c a l c u l a t e d using UNIQUAC.

5-15. So l u t e a c t i v i t y c o e f f i c i e n t s of t he second heteroatom fami ly in d e c a l i n c a l c u l a t e d using UNIQUAC.

6-1. P res sure versus x l , y l f o r t he T e t r a l i n - Dibenzofuran system a t 423.15 K.

6-2. Exper imental a c t i v i t y c o e f f i c i e n t s f o r the Te t r a l i n - Di be nz o f u r a n system a t 423.15 K.

6-3. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r the Te t r a l i n - Di benzo t h i ophene system.

6-4. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r the T e t r a l i n - F l u o r e n e system.

6-5. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r the Te t r a l i n - B i p h e n y l system.

6-6. Ca l c u l a t ed a c t i v i t y c o e f f i c i e n t s f o r the T e t r a l i n - Di be n z o f u r an system.

6-7. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r t he Decal in-Biphenyl system.

6-8. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s from VLE fo r the T e t r a l i n - D e c a l i n system.

6-8B. Exper imental a c t i v i t y c o e f f i c i e n t s from VLE f o r t he T e t r a l i n - D e c a l i n system a t 423.15 K.

6-9 . Ca l c u l a t ed a c t i v i t y c o e f f i c i e n t s f o r t he Biphenyl-Benzene system, wi th our SLE d a t a .

6-10. Exper imental a c t i v i t y c o e f f i c i e n t s f o r t he Biphenyl-Benzene system.

a. P r e d i c t i o n s from Baxendale VLE.b. P r e d i c t i o n s from our SLE.

137

138

139

140

165

176

201

202

203

204

214

215

216

221

222223

- x i i i -

Page 17: Classical and Statistical Thermodynamics of Solid-Liquid

6-11. Ca l c u l a t ed a c t i v i t y c o e f f i c i e n t s f o r theBiphenyl-Benzene system, wi th a l l SLE da t a . 225

6-12. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r the samesystem, wi th va r ious va lues f o r mel t i ng p o in t . 227

6-13. Ca l cu l a t ed a c t i v i t y c o e f f i c i e n t s f o r t he samesystem using extended r e g u l a r s o l u t i o n . 231

7-1. Comparison of our va l ues f o r t he s o l u b i l i t y ofsuc r os e - wa t e r to t he l i t e r a t u r e va l ues . 235

7-2. Temperature d i f f e r e n c e s between our work andthe va r i ous l i t e r a t u r e va l ues . 237

7-3 . Percent age d i f f e r e n c e s between our work andthe va r ious l i t e r a t u r e va l ues . 238

7-4. A c t i v i t y c o e f f i c i e n t s f o r the suc r ose - wa t e r system from our work and from the work of Kel ly (1958) and Char les (1960) . 240

7-5. P r ed i c t ed a c t i v i t y c o e f f i c i e n t s f o r thes uc rose -wa t e r system from our work and fromthe work of Kel ly (1958) and Char les (1960) . 243

7-6. P r e d i c t ed molar volume of sucrose as a sub-cooled l i q u i d by e x t r a p o l a t i o n of the s lope of the s o l u t i o n volume ver sus composi t ion in the s uc r os e - wa t e r system. 245

8-1. Re l a t i on s h i p between t he o ry , s i mul a t i on and exper i ment s . 251

10-1. Angle-averaged p a i r d i s t r i b u t i o n f un c t i on s fo r t he argon-oxygen mixture from molecula r dynamics s imul a t i on .

a) argon-argon 287b) argon-oxygen 288c) oxygen-oxygen 289

10-2. S i t e - s i t e p a i r d i s t r i b u t i o n f u n c t i on s f o r t he argon-oxygen mixture from molecula r dynamics s i mul a t i on .

a) argon-oxygen 290b) oxygen-oxygen 291

10-3. S i t e - s i t e p a i r d i s t r i b u t i o n f u n c t i on s f o r the a r gon - n i t roge n mixture from molecula r dynamics s i mu l a t i on .

a) a r gon - n i t roge n 292b) n i t r o g e n - n i t r o g e n 293

- x iv -

Page 18: Classical and Statistical Thermodynamics of Solid-Liquid

11-1. Averaoe p r e s s u r e ve r s us t ime in t he NPT ensemblewi th f* = 2 . 848 , P" = 0 . 772 , 1* = 0.3292 andM* = 0 .0001. Dashed l i n e i n d i c a t e s t he end of t he e q u i l i b r a t i o n pe r i od .

11-2. Average p r e s s u r e ve r s us t ime in t he NPT ensemblewi th T* = 2 . 848 , P* = 0 . 772 , 1* = 0.3292 andM* = 0 .0005. Dashed l i n e i n d i c a t e s t h e end of t he e q u i l i b r a t i o n pe r i od .

11-3. S i t e - s i t e p a i r d i s t r i b u t i o n f u n c t i o n s f o r anequi mola r mi x ture of n i t r o g e n and oxygen a t T =84 K and P = 0. Symbols a r e NVT r e s u l t s and l i n e s a r e NPT r e s u l t s .

11-4. C e n t e r - c e n t e r p a i r d i s t r i b u t i o n f u n c t i o n s . f o r equ i mola r mi x ture of n i t r o g e n and oxygen a t T =84 K and P = 0. Lines a r e NPT r e s u l t s wi th t he f u l l d i a t omi c Lennard-Jones p o t e n t i a l . C i r c l e s a r e NVT r e s u l t s us ing only t he WCA r e p u l s i v e p o r t i o n of t he p o t e n t i a l and t he t r i a n g l e s a r e p e r t u r b a t i o n t he o r y r e s u l t s .

12-1. Repeat of t he argon runs o f S. Nose1 us ing NPT mol ecu l a r dynamics code.

12-2. Repeat of S. Nose1 run wi t h a d i f f e r e n t va luef o r M* and wi th susequen t r eme l t i ng of t he s o l i d .

12-3. 108 p a r t i c l e r u n s , wi th two d i f f e r e n t v a l ues f o r M*. For compar ison t o f i g u r e s 12-1 and 12-2.

12-4. 256 p a r t i c l e r uns , wi th a va l ue of M* o f 0.005.For compar i son t o f i g u r e s 12-1 and 12-2.

12-5. 500 p a r t i c l e r u n s , w i t h a va l ue of M* o f 0 .002.For compar i son t o f i g u r e s 12-1 and 12-2.

12-6. E f f e c t of changing t he number of s i t e vacancy d e f e c t s on t h e me l t i ng runs f o r 108 p a r t i c l e s .

12-7, Same i n f o r m a t i o n as f i g u r e 12-6, e x c e p t i t i s now p l o t t e d ve r s us normal ized volume.

A3-1. Comparison of our v a l u e s t o l i t e r a t u r e va l ues f o r t h e vapor p r e s s u r e of cyc l ohexane .

A4-1. Comparison of our v a l u e s f o r t he VLE of t he b en z e n e - t o l u e n e system t o t hos e o f Wil iman (1983) .

A4-2. Exper imental a c t i v i t y c o e f f i c i e n t s f o r t he be n z e ne - to l u e ne system. Data o f Wiliman (1983) .

- xv -

320-322

323-325

326

327

331

334

335

336

337

339

341

353

356

357

Page 19: Classical and Statistical Thermodynamics of Solid-Liquid

A4-3. Exper imental a c t i v i t y c o e f f i c i e n t s f o r t he be nz e ne - t o l ue ne system. Data of Coon e t a l . (1988) .

A5-1. Conf idence e l l i p s e s f o r t he r e g re s s e d NRTL paramete r s f o r t h e t e t r a l i n - d i be nzofu ran system.

A5-2. Conf idence e l l i p s e s f o r t he r e g r e s s e dUNIQUAC paramete r s f o r the t e t r a l i n - b i p h e n y l system.

358

370

371

x v i

Page 20: Classical and Statistical Thermodynamics of Solid-Liquid

ABSTRACT

The r e s e a r c h d i s c u s s e d in t h i s d i s s e r t a t i o n has been d i v i ded i n t o two

p a r t s t h a t a r e only m a r g i n a l l y r e l a t e d to each o t h e r . The f i r s t p o r t i o n

d e a l s wi t h t h e c l a s s i c a l thermodynamics o f compounds t h a t a r e t y p i c a l l y

used as model compounds f o r coal l i q u i d s . The bulk of t he work has been

an expe r i men t a l s tudy o f t h e s o l i d - l i q u i d s o l u b i l i t i e s (SLE) f o r a l a r g e

number of t h e s e compounds in v a r i o u s s o l v e n t s and a s m a l l e r study o f t h e

v a p o r - l i q u i d e q u i l i b r i a (VLE) o f some of t h e s e systems. The second meth­

od i s t he t r a d i t i o n a l exper i ment a l method f o r o b t a i n i n g t he a c t i v i t y co­

e f f i c i e n t s which r e p r e s e n t t he l i q u i d phase n o n i d e a l i t i e s in a system.

The f i r s t method i s an a l t e r n a t i v e method f o r o b t a i n i n g t he same i n f o r ­

mat ion which, though o l d e r than t he VLE method, has been l a r g e l y o v e r ­

looked by chemical e n g i n e e r s . In t h i s p o r t i o n of t h e d i s s e r t a t i o n , i t

w i l l be shown t h a t s o l i d - l i q u i d s o l u b i l i t y d a t a a r e a v i a b l e source f o r

i n f o r ma t i o n on l i q u i d phase n o n i d e a l i t i e s in t h e se t ype s of sys t ems ,

which have been somewhat i gnored in t he l i t e r a t u r e because of the d i f f i ­

c u l t y a s s o c i a t e d wi t h VLE e x pe r i m e n t a t i o n on them.

The second p o r t i o n o f t h e d i s s e r t a t i o n i s a d i s c u s s i o n of work done

t o i n v e s t i g a t e t he a p p l i c a b i l i t y o f s t a t i s t i c a l mechanics t o t he p r e d i c ­

t i o n o f l i q u i d phase n o n i d e a l i t i e s in complex systems l i k e t h e s e . Be­

cause t he p r e s e n t s t a t e - o f - t h e - a r t has no t y e t p r og r es s e d to the l eve l

needed, t h e work p r e s e n t e d i s concerned mos t l y wi t h a d d i t i o n s to t h a t

a r t ( improvements in t h e t o o l s a v a i l a b l e ) . The d i r e c t i o n s f o r f u t u r e

r e s e a r c h in t h i s a r e a needed t o app l y t h e s e s t a t i s t i c a l mechanical meth­

ods t o t he t y p e o f system s t u d i e d in p a r t A a r e d i s c u s s e d .

■ - x v i i -

Page 21: Classical and Statistical Thermodynamics of Solid-Liquid

PART A: CLASSICAL THERMODYNAMICS OF COAL LIQUID

MODEL COMPOUNDS

- 1 -

Page 22: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 1

INTRODUCTION

During the l a t t e r po r t i on of t h i s cen t u ry , o i l has become the domi­

nant weapon in the economic wars between c o u n t r i e s . A c on s t a n t supply of

o i l i s v i t a l to the economic w e l l - be i ng of i n d u s t r i a l na t i o n s of the

world. In a r ece n t work o f f i c t i o n (Clancy ( 1986 ) ) , a sudden s h o r t f a l l

in o i l supp l i e s by one o f t he superpowers l e ads to World War I I I . While

t h a t i s a f i c t i o n a l and ext reme response t o an o i l s ho r t age , i t nonethe­

l e s s does give an i n d i c a t i o n of t he importance a s s o c i a t e d wi th an abun­

dance of t h i s r e l a t i v e l y inexpens ive energy source . Another i n d i c a t o r of

the importance of t h i s energy source i s the response o f t he Uni ted

S t a t e s to the e s c a l a t i o n o f t he t a n k e r war in t he Per s i an Gul f , r i s k i n g

American men and sh ips t o p r o t e c t t he flow of t h i s commodity to t he i n ­

d u s t r i a l i z e d na t i o n s of t he world. A number of t imes t h i s c e n t u r y , shor ­

t a g e s of pet roleum have l ed t o r e s ea r ch and development of some

a l t e r n a t e energy sources . Coal l i q u e f a c t i o n i s one of t he t e c hno l og i e s

t h a t has been developed t o enable the i n d u s t r i a l i z e d n a t i o ns of t he

world to surv ive and p rospe r dur ing pe r i ods of s h o r t o i l supply and a l so

in the f u t u r e when the w o r l d ' s pet roleum r e s e r v e s have been dep l e t e d .

Coal l i q u e f a c t i o n invo l ves the r e a c t i o n o f coal wi th a hydrogen

donor , c racking t he l a r g e c a r b o n - r i c h molecules found in coal i n t o smal­

l e r molecules t h a t , when p r e s e n t as mi x t u res , a r e l i q u i d s a t ambient

t e mpera t u r e s . The hydrogen donor used in the Exxon process f o r coal l i ­

q u e f ac t i on i s t e t r a l i n . In a d d i t i o n t o supplying hydrogen f o r t he r e ­

a c t i o n , the t e t r a l i n a c t s as a s o l ven t which helps t o keep the r eac t i on

- 2 -

Page 23: Classical and Statistical Thermodynamics of Solid-Liquid

produc t s in the l i q u i d phase, hence the name, t he Exxon Donor Solvent

(EDS) p r oc e s s . Since the s o l v e n t must be s epa r a t ed from the r e s t of the

p roduc t s downstream of t he r e a c t o r s t o be r ecyc l ed , i t i s impor tant t o

use as l i t t l e of i t as i s f e a s i b l e . The amount needed i s determined by

t he s o l u b i l i t i e s of t he va r i ous produc t s in the s o l v e n t . Thi s r e p r es e n t s

only one use f o r the kind of da t a produced in t h i s work, which i s de­

s c r ib e d below.

Today the world i s enjoying the b e n e f i t s of an over supply of p e t r o l e ­

um. Because of t h i s over supply , i n t e r e s t in a l t e r n a t e energy sources

such as coal l i q u e f a c t i o n has waned. In s p i t e of the l ack of i n t e r e s t in

such p roces s e s a t t h i s t ime, i t i s obvious t h a t t h i s oversupply wi l l not

l a s t f o r e v e r and i t wi l l very probably be fol lowed by a n o t he r pe r iod of

o i l s ho r t a ge s .

The t o p i c of t h i s d i s s e r t a t i o n i s t he c l a s s i c a l and s t a t i s t i c a l t h e r ­

modynamics of model coal l i q u i d compounds. While much o f t he des ign work

and p roces s eng i nee r i ng t h a t went i n t o the l a s t wave of i n t e r e s t in t h i s

t echnology w i l l probably be o b s o l e t e by t he t ime t he next wave r o l l s

around, the thermodynamic r e s u l t s p r e s en t e d in t h i s work w i l l be a v a i l ­

ab l e and j u s t as v a l i d as they a r e now.

The r e s e a r c h t h a t i s the s u b j e c t of t h i s d i s s e r t a t i o n i s a

broad-based i n v e s t i g a t i o n in t o t he thermodynamics o f coal l i q u i d model

compounds. This genera l a r ea i s being pursued s i mul t ane ous l y along se­

vera l l i n e s . The l a r g e s t share o f t he e f f o r t t o d a t e has been spent on

an exper imental i n v e s t i g a t i o n i n t o t he v a p o r - l i q u i d e q u i l i b r i a and s o l ­

Page 24: Classical and Statistical Thermodynamics of Solid-Liquid

i d - l i q u i d s o l u b i l i t i e s of systems c o n t a i n i ng model coal l i q u i d com­

pounds. These r e s u l t s have been used to det ermine the s o l u t i on

p r o p e r t i e s and n o n i d e a l i t i e s in the l i q u i d phase f o r t h e s e types of sys ­

tems. At the same t ime, a s t e a d i l y i nc r e a s i ng e f f o r t i s being made t o

unders t and the behavi or of complex systems l i k e t h e se a t a more funda­

mental , molecula r l e v e l . The i n i t i a l work in t h i s a r ea , which i s d i s ­

cussed in t h i s d i s s e r t a t i o n , invo l ves the use of s t a t i s t i c a l mechanics

t o i n v e s t i g a t e the s o l u t i o n behavior of l i q u i d mixtures con t a i n i ng sim­

p le r , molecules . I t a l so i nc ludes our i n i t i a l i n v e s t i g a t i o n s i n t o the

s o l i d - l i q u i d phase t r a n s i t i o n s in t he se s imple systems. Simul taneously ,

work i s being done by o th e r i n v e s t i g a t o r s in t he r e s ea r ch group to model

t h e se more complex molecules , enab l ing t he s o l u t i on work and the phase

t r a n s i t i o n work to be extended to systems more c l o s e l y resembl ing coal

l i q u i d s . Future e f f o r t s wi l l extend t h e se programs t o s imul t aneous simu­

l a t i o n of s o l i d and l i q u i d phases f o r mi xtures of t he se complex mole­

c u l e s . These r e s u l t s w i l l then be used t o t e s t simple t h e o r i e s f o r the

behav i or o f the s o l i d phase, which have not been i n v e s t i g a t e d in the

p a s t .

The work p r esen ted here has been d iv i ded i n t o two d i s t i n c t l y d i f f e r ­

e n t a r ea s . The f i r s t p a r t of t he work d e a l t wi th t he measurement of l i q ­

uid phase n o n i d e a l i t i e s in mixtures of model coal l i q u i d compounds. The

second p a r t o f t he work involved development of some o f t he s t a t i s t i c a l

mechanical t o o l s t h a t were necessary s t eps toward t he more fundamental

approach f o r the p r e d i c t i o n of coal l i q u i d phase behav i or using molecu­

l a r p r o p e r t i e s on a microscopic s ca l e t h a t was d i s cu s s e d above. The

t o o l s developed were only the f i r s t s t eps neces sa ry t o accomplish the

Page 25: Classical and Statistical Thermodynamics of Solid-Liquid

u l t i ma t e goal s o f the r e s ea r ch e f f o r t , but I b e l i eve they are a s i g n i f ­

i c a n t c o n t r i b u t i o n to the ove r a l l t a s k .

This d i s s e r t a t i o n i s a compendium of t he papers t h a t have been pub­

l i s h e d based on t he r e s e a r c h . There a r e f i v e papers ( c h a p t e r s 4, 5, 6,

10 and 11) i nc luded . The ma t e r i a l covered by each of the papers p r e ­

sented in ch a p t e r s 4, 5, 6, 10 and 11 i s b r i e f l y i n t roduced below. In an

e f f o r t t o complement the papers and t o t i e a l l t he va r i ous a s pe c t s t o ­

ge t he r f o r t he r e a d e r , o t h e r c h a p t e r s have been inc luded where they we^e

deemed a p p r o p r i a t e .

Chapter 2 i s a b r i e f survey of t he l i t e r a t u r e f o r both s o l i d - l i q u i d

s o l u b i l i t y and v a p o r - l i q u i d e q u i l i b r i a . Since t he se a r e both huge a r ea s

and the p e r t i n e n t l i t e r a t u r e would f i l l t h i s d i s s e r t a t i o n , only r ec e n t

work t h a t p e r t a i n s to s i m i l a r t ypes of systems wi l l be ment ioned. For

VLE, t he d i s cu s s i o n wi l l c e n t e r more on what i s miss ing from t he l i t e r a ­

t u r e than on what i s a v a i l a b l e .

Chapter 3 i s a d e t a i l e d d i s c u s s i o n of our exper imental p rocedures , as

t h e se a r e not t horoughl y covered in t he p u b l i c a t i o n s . I t i nc l udes sche­

mat ics of t he appa r a t u s f o r both t he s o l i d - l i q u i d s o l u b i l i t y work, and

the v a p o r - l i q u i d e q u i l i b r i a work. I t a l s o d i s c u s s e s some of the advan­

t a g e s (and d i s a dva n t age s ) of our methods compared to t hose of o t h e r r e ­

s ea r ch e r s in t he f i e l d .

Chapter 7 i s a d e t a i l e d (and somewhat c r i t i c a l ) d i s cu s s i o n o f the ex­

per imenta l accuracy obta ined by both o u r s e l v e s and o t h e r s p ub l i sh i ng in

Page 26: Classical and Statistical Thermodynamics of Solid-Liquid

t he f i e l d . The ma te r i a l d i s c us s e d might be obvious t o r eade r s wi th ex­

pe r i e nc e in exper imental thermodynamics but i t could be s u r p r i s i n g to

people acqua in t ed wi th only t he t h e o r e t i c a l s ide of the a r e a .

Chapter 8 i s an i n t r o d u c t i o n t o t he second p a r t of t he d i s s e r t a t i o n ,

which i s t h e o r e t i c a l in na t u r e and f a l l s under the genera l ca t egory of

t he s t a t i s t i c a l mechanics of f l u i d s and s o l i d s . I t exp l a i n s the work

per formed, and a l s o ex p l a i n s how t h a t work f i t s i n t o the ov e r a l l goal of

a s t a t i s t i c a l mechanical t heory f o r the s o l i d - l i q u i d phase behavior of

systems i nvol v ing coal l i q u i d - l i k e compounds. The r e a l i z a t i o n of such a

t he o ry using s t a t i s t i c a l mechanics i s s t i l l wel l i n t o t he f u t u r e but

t h e r e a re a number of p o s s i b l e d i r e c t i o n s f o r r e s ea r ch t h a t have been

i d e n t i f i e d . These a r e b r i e f l y d i s cus s ed a l s o , even though they a r e ongo­

ing r e s e a r ch by o th e r s in our group and are t h e r e f o r e beyond t he scope

of t h i s d i s s e r t a t i o n .

Chapter 9 i s a b r i e f survey of t he p e r t i n e n t l i t e r a t u r e . I t b r i e f l y

cover s some of t he bas i c s of s t a t i s t i c a l mechanics and a l so d i s c u s s e s

how computer s i mul a t i ons and p e r t u r b a t i o n t h e o r i e s have helped t o a i d

p r og r e s s in t he f i e l d . I t i s p r esen ted as background f o r t hose unfami l ­

i a r wi th the f i e l d .

Chapter 12 i s a d i s c u s s i o n of our e f f o r t s t o apply t he molecula r dy­

namics s i mul a t i on codes t h a t we developed (and d i s c u s s in ch a p t e r s 10

and 11) t o t he i n v e s t i g a t i o n o f phase t r a n s i t i o n s f o r a 1 - c e n t e r Len-

na rd- Jones f l u i d . I t d i s c u s s e s , as d i d c h ap t e r 8, some p o s s i b l e ex t en­

Page 27: Classical and Statistical Thermodynamics of Solid-Liquid

s ions of t he work t h a t w i l l be needed t o begin t o apply t h i s work to

p r a c t i c a l problems of phase e q u i l i b r i a .

A number of t o p i c s were s t u d i e d dur ing t he cour se o f t he r e s ea r ch

t h a t do not f i t i n t o t h e o v e r a l l scheme o f t he d i s s e r t a t i o n . These t o p ­

i c s have been r e l e g a t e d t o t he back of t he d i s s e r t a t i o n where they ap­

pea r as a ppend i ces . They a r e i nc luded mainly due t o our hope t h a t they

could be us e fu l t o some f u t u r e r e s e a r c h e r .

The r e s t of t h i s c h a p t e r i s a b r i e f i n t r o d u c t i o n to t he f i r s t p a r t of

t he d i s s e r t a t i o n . The t h r e e paper s t h a t c o n s t i t u t e t he pub l i she d r ecord

f o r t h i s work a l l deal wi th t he s o l i d - l i q u i d s o l u b i l i t y o f model coal

l i q u i d compounds in a number o f common organ i c s o l v e n t s .

The f i r s t paper (Coon e t a l . (1987) ) i s p r e s e n t e d as c h a p t e r 4 and

c o n t a i n s t he s o l u b i l i t y r e s u l t s f o r f i v e s o l u t e s ( n a p h t h a l e n e , b i phe ny l ,

a c e n a p h t h en e , f l u o r e n e , and phena t hr ene ) in v a r i o u s b i na ry mi x tu r es of

benzene, cyc l ohexane , t h i o p h en e , and p y r i d i n e . I t a l s o g ives t he r e s u l t s

f o r t h e s e f i v e s o l u t e s in a q u a t e r na r y mi x ture o f a l l f ou r of t he s o l ­

v e n t s . Th i s work i s a c o n t i n u a t i o n of t he work of McLaughlin and Zainal

(1959, 1960, I 960) , Choi and McLaughlin (1983, 1983) , and Choi e t a l .

( 1985) . I t uses b i n a r y i n t e r a c t i o n pa rameter s o b t a i n e d from a n a l y s i s of

t h e d a t a p r e s e n t e d in t he works c i t e d t o p r e d i c t t h e s o l i d - l i q u i d s o l u ­

b i l i t i e s o f t h e f i v e s o l u t e s in b in a r y and q u a t e r n a r y mi x tures of t he

s o l v e n t s l i s t e d above. The a b i l i t y o f fou r wel l -known s o l u t i o n models t o

p r e d i c t t h e mul t icomponent s o l u b i l i t y d a t a , us ing only b i na ry i n t e r ­

a c t i o n pa r ame t e r s , i s d i s c u s s e d .

Page 28: Classical and Statistical Thermodynamics of Solid-Liquid

The second paper (Coon e t a l . (1988)) i s p r e sen t e d as chapter 5 and

p r e s e n t s s o l u b i l i t y r e s u l t s f o r seven d i f f e r e n t s o l u t e s in the same four

s o l v e n t s . The s o l u t e s s t u d i e d in t h i s paper a r e d ibenzofuran , a i benzo-

t h i ophene , c a r b a z o l e , an t h r a cene , xanthene, t h i oxan t hene , and a c r i d i n e .

The f i r s t t h r e e l i s t e d are the oxygen, s u l f u r and n i t r ogen heteroatom

analogs t o f l uo r ene and t he l a s t t h r e e a r e the same ana logs fo r a n t h r a -

cene. The purpose of the work was t o i n v e s t i g a t e the e f f e c t on s o l u b i l i ­

t y (and t h e r e f o r e on the l i q u i d phase n o n i d e a l i t i e s ) of heteroatom

s u b s t i t u t i o n w i t h i n a fami ly of model compounds. The exper imental s o l u ­

b i l i t y da t a was used to ob t a i n t he b i na ry i n t e r a c t i o n parameters needed

in t he s o l u t i on models. The paper a l s o inc luded the s o l u b i l i t y r e s u l t s

of t h r e e s o l u t e s ( b i pheny l , d ibenzofu ran , and d ibenzoth iophene) in b i n a ­

ry mixtures of t he f ou r s o l v e n t s . These r e s u l t s were used to t e s t t he

a b i l i t y of t he s o l u t i o n models to p r e d i c t the r e s u l t s f o r mul t icomponent

mi x t u r e s , u t i l i z i n g t he parameters ob t a i ned from t he b ina ry d a t a . The

r e s u l t s a re d i s cu s s e d in t he paper . The paper p r e sen t e d in c ha p t e r 5

was accepted f o r p u b l i c a t i o n in t he Journa l of So l u t i on Chemist ry in a

somewhat condensed form. Some of t he t a b l e s in the o r i g i n a l manuscr ip t

were d e l e t e d from the paper and are a v a i l a b l e t o t he r eade r s as supple ­

mental m a t e r i a l . To mainta in c o n t i n u i t y wi th ch a p t e r s 4 and 6, c ha p t e r 5

i s t he o r i g i n a l ma nusc r i p t , not t he abr idged ve r s ion accep ted f o r p u b l i ­

c a t i o n . Since we in t ended to p r e s e n t t he supplemental i nformat ion in the

d i s s e r t a t i o n in any c a s e , i nc l ud i ng i t in the manuscr i p t , as opposed to

adding i t as appendi ces , appeared to be t he s imp l e s t s o l u t i o n .

The l a s t paper ( p r e s e n t e d in c h ap t e r 6) on t h i s s ub j e c t i s a compar­

i son of s o l i d - l i q u i d s o l u b i l i t y (SLE) and v a p o r - l i q u i d e q u i l i b r i a (VLE)

Page 29: Classical and Statistical Thermodynamics of Solid-Liquid

r e s u l t s f o r ob t a i n i ng the binary i n t e r a c t i o n parameters needed in s o l ­

ut ion models t o p r e d i c t the phase behav i or in t h e s e types of systems. As

might be obvious from the papers above, we b e l i e v e t h a t s o l i d - l i q u i d

e q u i l i b r i a , of which s o l i d - l i q u i d s o l u b i l i t i e s a r e a s ubse t , a r e a novel

a l t e r n a t i v e approach to t he accumulat ion o f t h e s e types of d a t a , which

a r e necessary f o r the proper des ign o f coal l i q u e f a c t i o n p l a n t s . In

c ha p t e r 6, VIE r e s u l t s have been p r e sen t e d f o r f ou r systems (biphenyl -

t e t r a l i n , d ibenzofuran - t e t r a l i n , d ibenzoth iophene - t e t r a l i n , and

f luo r ene - t e t r a l i n ) . The VLE d a t a of each system have been determined

along t h r e e i so the rms . These VLE d a t a have been used to det ermine the

b i na ry i n t e r a c t i o n parameters f o r t h e se systems. The s o l i d - l i q u i d s o l u ­

b i l i t y da t a have been obta ined f o r a l l twelve of t he s o l u t e s d i s c u s s e d

in c hap t e r s 4 and 5 in t e t r a l i n , and in an i somer ic mixture of c i s - and

t r a n s - d e c a l i n . The s o l u b i l i t i e s of the f i v e s o l u t e s from ch a p t e r 4 were

a l so determined in a b i na ry mixture of t he two. As u s ua l , t he r e s u l t s in

t he b ina ry mixture were used t o t e s t t he p r e d i c t i v e c a p a b i l i t i e s of t he

s o l u t i on models us ing the b ina ry i n t e r a c t i o n parameters obt a ined from

the b ina ry r e s u l t s . The parameters ob t a i ned from the VLE measurements

on the four systems a r e compared to t he va l ues ob t a i ned from SLE meas­

urements in t he paper and our c onc l us i ons concern ing t he u s e f u l n e s s of

t he two methods f o r t h e se systems are p r es e n t e d . The paper d i s c u s s e d in

c ha p t e r 6 has been accepted f o r p u b l i c a t i o n in F lu id Phase E q u i l i b r i a .

I t has been i nc luded in i t s e n t i r e t y as the s i mp l es t method o f p r e s e n t ­

ing a l l t he necessa ry d a t a and t a b l e s .

There a r e many d e t a i l s of the r e s e a r ch t h a t a r e not adequa te l y cov­

ered in t he p u b l i c a t i o n s , due to t he l ength c o n s t r a i n t s involved. Be-

Page 30: Classical and Statistical Thermodynamics of Solid-Liquid

10) i

cause of t h i s , each of t he c h a p t e r s c o n t a i n i n g a paper a l s o c o n t a i n s a

fo l l ow-up s e c t i o n t h a t f u r t h e r d i s c u s s e s t he ma t e r i a l i nc l u d e d , hope f u l ­

ly answer ing some o f t he q u e s t i o n s t he r e a d e r might have.

Page 31: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 1

Clancy, T . , Red Storm R i s i n g , Berkeley Books, (1986) .

Choi , P.B. and McLaughlin, E. , I & EC Fund. , (1983) , 22, 46.

Choi, P.B. and McLaughlin, E. , AIChE J . , (1983) , 29(1) , 150.

Choi, P .B. , Wi l l i ams , C . P . , Buehr ing, K.G. and McLaughlin, E. , J . Chem. Eng. Data, (1985) , 30, 403.

McLaughlin, E. and Z a i na l , H.A. , J . Chem. Soc . , (1959) , 863.

McLaughlin, E. and Z a i na l , H.A. , J . Chem. Soc . , (1960) , 2485.

McLaughlin, E. and Z a i na l , H.A. , J . Chem. Soc . , (1960) , 3854.

- 11 -

Page 32: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 2

LITERATURE SURVEY

a. SOLID-LIQUID SOLUBILITY STUDIES

S o l u b i l i t y s t u d i e s of s o l i d s in l i q u i d s have been performed f o r many

y e a r s . Many of t h e adyances in s o l u t i o n c hemi s t r y have r e s u l t e d from

t h i s type o f exper i ment . Hi ldebrand , Sca t cha r d and co-workers ( H i l d e b ­

rand (1927, 1929) , Hi ldebrand and J enks (1920, 1921) , Hi ldebrand and

Wood (1933) , Hi ldebrand and Wachter ( 1949) , Sca t cha r d (1931) ) used s o l u ­

b i l i t y d a t a t o deve lop t h e i r t he o ry of r e g u l a r s o l u t i o n s . They even

c a l l e d t h e i r pure component par amete r s in t h e i r t h e o r y " s o l u b i l i t y pa­

r ame t e r s " , While many of t he systems s t u d i e d in t he e a r l y y e a r s were

aqueous s o l u t i o n s o f v a r i o u s i n o r ga n i c s in w a t e r , t he under ly i ng con­

c e p t s a r e t h e same. A good deal of exper i ment a l work was performed on

t h e s o l u b i l i t i e s of s o l i d o r ga n i c s in l i q u i d o r g a n i c s du r i ng t h i s t ime

pe r i od (1900 - 1940) . Most o f t he s o l u b i l i t y d a t a o b t a i n e d dur ing t h i s

pe r i od a r e very wel l t a b u l a t e d by Timmerman ( 1959) . For t h a t r ea s on ,

only work done p r i o r t o t h a t t ime t h a t invo l ved s o l u t e s s i m i l a r t o t h e

ones d e a l t wi th in our work w i l l be d i s c u s s e d .

At abou t t he end of t h a t t ime p e r i o d , i n t e r e s t in s o l u b i l i t y s t u d i e s

began to wane as t h e main use f o r thermodynamic d a t a became t he r e f i n i n g

o f c rude pe t ro l eum i n t o g a s o l i n e , e t c . . The s o l u t i o n t h e o r i e s t h a t had

been developed based on s o l u b i l i t y d a t a were s u c c e s s f u l l y a p p l i ed t o t he

v a p o r - l i q u i d e q u i l i b r i u m a s s o c i a t e d wi th t he r e f i n i n g o f o i l . The heavy

ends o f t h e crude were lumped t o g e t h e r as res iduum and e s s e n t i a l l y i g ­

- 12 -

Page 33: Classical and Statistical Thermodynamics of Solid-Liquid

13

nored. V a po r - l i q u i d e q u i l i b r i u m r e p l a c e d s o l u b i l i t y s t u d i e s as a source

f o r i n fo rmat i on on l i q u i d phase n o n i d e a l i t i e s . Databases of VLE da t a

were developed (Gmehling e t a l . ( 1980) , Hala e t a l . (1967) , H i r a t a e t

a l . (1975) and Wi ch t e r l e e t a l . (1973) ) and t h e se c o l l e c t i o n s became the

main sources of thermodynamic d a t a . Examinat ion of t h e s e d a t ab as e s wi l l

show t h a t a lmos t no d a t a a r e a v a i l a b l e on t he VLE f o r systems c on t a i n i n g

p o l y n u c l e a r a roma t i c hydrocarbons o r t h e i r he t eroa tom a na l ogs . With the

s low d e p l e t i o n of crude o i l r e s e r v e s around t he wor ld , t he t r e n d has

been (and w i l l con t i nue t o be) towards h e a v i e r and h e a v i e r c r ud e s . Crude

o i l w i l l , a t some t ime in t he f u t u r e , begin t o d i s a p p e a r and i t w i l l be

r e p l a c e d by l i q u i d f u e l s ob t a i ne d from the l i q u e f a c t i o n o f c o a l . These

l i q u i d s c o n t a i n a much h i ghe r pe r c e n t a ge o f a r oma t i c s and p o l y n u c l e a r

a r oma t i c s than crude o i l s do and they a l s o c on t a i n much h i ghe r amounts

of oxygen, s u l f u r , and n i t r o g e n as he t e roa toms in t he r i ng s t r u c t u r e s .

S ince few d a t a a r e a v a i l a b l e on t he phase behav i o r o f t h e s e t ypes of

compounds, t h i s i n f o r ma t i on w i l l have t o be o b t a i n e d . The purpose of

t h i s work i s t o compare VLE as a source f o r t h i s i n fo r ma t i on t o t he much

o l d e r , and I b e l i e v e much s im p l e r , method of s o l i d - l i q u i d s o l u b i l i t y ex­

pe r i me n t s , e s p e c i a l l y f o r n o n v o l a t i l e m a t e r i a l s . The r emainder o f t h i s

s e c t i o n i s a b r i e f review of t he work t h a t has been done in t h i s a r ea in

t he p a s t 40 y e a r s .

A f t e r t he golden y e a r s f o r s o l u b i l i t y exper i ment s in t he e a r l y p a r t

of t h i s c e n t u r y , t he i n t e r e s t in t h i s method de c r e a se d d r a m a t i c a l l y .

Only a smal l number o f phys i ca l chemis t s worked in t h i s a r e a and t h e i r

work was mos t ly aimed a t de t e r mi n i ng t h e ne c e s s a r y amount o f s o l ven t

needed to d i s s o l v e t he s ubs t ances in which they were i n t e r e s t e d . I n t e r ­

Page 34: Classical and Statistical Thermodynamics of Solid-Liquid

14

e s t in using s o l i d - l i q u i d e q u i l i b r i a as a p r e d i c t i v e tool has only r e ­

c e n t l y begun t o r e s u r f a c e .

In 1934, Warner e t a l . (1934) measured the s o l u b i l i t y of biphenyl in

benzene, carbon d i s u l f i d e , carbon t e t r a c h l o r i d e , and n -hep t ane . They a t ­

tempted to c o r r e l a t e t h e a c t i v i t y c o e f f i c i e n t s us ing Guggenheim's

s t r i c t l y r e g u l a r s o l u t i o n t he ory and S c a t c h a r d - H i I d e b r a n d ' s r e g u l a r s o l ­

u t i on t h e o r y . The i r p r e d i c t i o n s were q u a n t i t a t i v e l y q u i t e poor . In

1941, Campbell (1941) measured the s o l u b i l i t y of naph t ha l ene in benzene.

He a t t r i b u t e d the d e v i a t i o n s o f t he d a t a from t he i d e a l s o l u b i l i t y curve

as exper imenta l e r r o r and cl a imed t h a t t he system was i d e a l . Gordon and

S c o t t (1952) measured t h e s o l u b i l i t y of phenant hrene in mi x t u r e s o f cy-

c lohexane and methyl i od i de . They c o r r e l a t e d t h e i r r e s u l t s us ing

S ca t cha r d - Hi I deb r and t he o ry and o b t a i n e d r ea sonab l e agreement . Thi s work

i s notewor thy as t he f i r s t paper t o deal wi th s o l u b i l i t y in mi x t u r e s of

s o l v e n t s f o r t h i s type of system. T h e i r work a l s o showed t h a t s o l u b i l i t y

can be enhanced by us ing a j u d i c i o u s l y s e l e c t e d mi xture of s o l v e n t s . The

impor tance o f t h i s i s on ly now being f u l l y r ecogni zed ( P r a u s n i t z e t a l .

( 1986) ) .

In 1959 and 1960, McLaughlin and Zaina l (1959,1960, 1960) per formed a

s e r i e s o f exper i ment s measur ing t h e s o l u b i l i t i e s o f f i v e p o l y n uc l e a r

a roma t i c hydrocarbons in benzene, cyc lohexane , and carbon t e t r a c h l o r i d e .

They showed t h a t s i nce t h e f i v e s o l i d s used had s i m i l a r e n t r o p i e s o f f u ­

s i o n , a p l o t of —1n(x2) v e r s u s Tm/T should be a u n i v e r s a l p l o t , a l l owing

p r e d i c t i o n of t he s o l u b i l i t y f o r any system of t h i s t ype . While i n t e r ­

e s t i n g , t h i s a n a l y s i s r e p r e s e n t s a z e r o - o r d e r approximat i on of t he r e ­

Page 35: Classical and Statistical Thermodynamics of Solid-Liquid

s u i t s because i t assumes t h a t t he n o n i d e a l i t i e s encount e r ed wi l l be t he

same in a l l of t he b i n a r y sys tems . Thi s i s t r u e f o r ,lgood" s o l v e n t s

( i d e a l s o l u t i o n s ) but no t f o r bad s o l v e n t s . They then analyzed t h e i r

d a t a in t h e way we have done t o f i n d t h e a c t i v i t y c o e f f i c i e n t s . They

a t t empt ed to c o r r e l a t e t h e s e r e s u l t s us ing the 2 - s u f f i x Margules

e q u a t i on , which gave a r e l a t i v e l y good f i t t o t h e i r d a t a .

Her ic and Posey (1964,1964) de t e rmined t h e s o l u b i l i t i e s of n a p h t ha l ­

ene in mi x t u r e s o f s o l v e n t s and c o r r e l a t e d t h e i r r e s u l t s us ing S c a t ch -

a r d - Hi l d e b r an d t h e o r y . Her ic and Yeh (1970) found t h e s o l u b i l i t y ver sus

t e mp e r a t u r e f o r naph t ha l ene in mi x t u r e s of cyc lohexane and carbon t e t r a ­

c h l o r i d e . Her ic (1967) performed exper i ment s t o de t e rmine the e f f e c t of

h e a t i n g r a t e on t he t e mpe r a t u r e ob t a i n e d in dynamic s o l u b i l i t y e xpe r ­

iment s . He showed t h a t t he amount of ove r s hoo t was p r o p o r t i o n a l to the

h e a t i n g r a t e . He recommended t h a t t he s o l u b i l i t i e s be ob t a i ne d a t a s e ­

r i e s of he a t i ng r a t e s and t h a t t he v a l ues then be e x t r a p o l a t e d back to

ze ro he a t i ng r a t e t o o b t a i n t he t r u e s o l u b i l i t y t e m p e r a t u r e . Thi s i s a

very good idea in t he o r y bu t in p r a c t i c e i t i s no t ne c e s s a r y . The h e a t ­

ing r a t e s used in t h i s s tudy a r e much lower t han t h e lowes t va lue Her ic

used and g ive e s s e n t i a l l y t he s t a t i c v a l ue .

Choi and McLaughlin (1983) de t e rmined t h e s o l u b i l i t i e s f o r t en s o l ­

u t e s in t h i ophene and in p y r i d i n e . They c a l c u l a t e d t he exper imenta l ac ­

t i v i t y c o e f f i c i e n t s and compared t h e s e v a l ue s t o t he p r e d i c t i o n s of

S c a t cha r d - Hi Ide b r a nd t h e o r y . They a l s o c o r r e l a t e d t h e d a t a wi th t he Ex­

tended Sca t ch a r d - Hi Id e b r a n d t h e o r y by f i t t i n g t h e va l ue of t h e b i n a r y

i n t e r a c t i o n paramete r t o f o r c e agreement a t t he lowes t mole f r a c t i o n

Page 36: Classical and Statistical Thermodynamics of Solid-Liquid

16

p o i n t . As would be expec t ed , t h i s s u b s t a n t i a l l y improved t h e c o r r e l a t i o n

of t he c a l c u l a t e d and exper i ment a l va l ue s .

Choi and McLaughlin (1983) showed t h a t t h e equa t i on f o r s o l u b i l i t y

coul d be ext ended to accoun t f o r t he e f f e c t of a s o l i d - s o l i d lambda

t r a n s i t i o n in t he s o l i d and de t e rmined t he c o r r e c t i o n t erm. They used

t h e i r d a t a f o r t he p h e n a n t h r ene - t h i ophene system t o show t h e e f f e c t of

t h i s type o f t r a n s i t i o n on t h e s o l u b i l i t y .

Choi e t a l . (1985) de t e rmined t he s o l u b i l i t i e s of t h e same f i v e s o l ­

u t e s as McLaughlin and Zaina l (1959,1960,1960) in mi x tures o f t he two

s o l v e n t s , benzene and cyc lohexane . They used the d a t a from the p r ev ious

work and de t e rmined t he b i n a r y i n t e r a c t i o n pa rameter s f o r t he

s o l u t e - s o l v e n t b i n a r i e s . They used l i t e r a t u r e VLE d a t a t o o b t a i n t he

s o l v e n t - s o l v e n t b i n a r y i n t e r a c t i o n pa rameter . They then p r e d i c t e d the

s o l u t e a c t i v i t y c o e f f i c i e n t s in t he mul t icomponent mixture and compared

i t t o t he exper i ment a l v a l u e s . They showed, though t he y d i d no t e x p l i c ­

i t l y s t a t e i t , t h a t pa r amet e r s ob t a i n e d by r e g r e s s i o n o f b i n a r y s o l u b i l ­

i t y d a t a coul d be s u c c e s s f u l l y used t o p r e d i c t mul t i component s o l u b i l i t y

d a t a wi th only b i n a ry i n t e r a c t i o n pa r ame t e r s . This c o n c l u s i o n , and the

g e n e r a l i z a t i o n of i t t o conclude t h a t t he b i na ry i n t e r a c t i o n parameter s

o b t a i n e d from b i n a r y s o l u b i l i t y d a t a can be used t o p r e d i c t any l i q u i d

phase n o n i d e a l i t i e s , independent o f t he s p e c i f i c s i t u a t i o n , r e p r e s e n t s

t h e main mot ive f o r t h e p r e s e n t s tudy . Choi e t a l . (1985) were a l s o the

f i r s t r e s e a r c h e r s t o apply a s o l u t i o n model wi th more t ha n one b i na ry

i n t e r a c t i o n pa r amet e r ( Wi l s o n ' s equ a t i o n ) t o t he a n a l y s i s o f s o l u b i l i t y

d a t a .

Page 37: Classical and Statistical Thermodynamics of Solid-Liquid

Acree and many co-workers (Acree and Ryt t ing (1983) , Acree and B e r t ­

rand (1977, 1981, 1983), Marthandan and Acree (1987) , Acree and McCarger

(1987) and McCargar and Acree (1987, 1987)) have been very a c t i v e in

t h i s a r e a in t he pa s t f i v e y e a r s . The thermodynamic tex tbook by Acree

(Acree (1984)) has a whole c ha p t e r devoted to the thermodynamics of s o l ­

i d - l i q u i d s o l u b i l i t y . The main foci of A c r ee ' s work have been in the de­

velopment o f an a n a l y s i s method t h a t they c a l l e d t he Nearly Ideal Binary

Solvent model (NIBS). Thi s model p r e d i c t s t he s o l u b i l i t y of a s o l u t e in

a b i na ry mixture of s o l v e n t s based on the s o l u b i l i t i e s o f t he s o l u t e in

each o f the pure s o l v e n t s . While formula ted in q u i t e d i f f e r e n t t e rms,

t h i s a n a l y s i s i s e s s e n t i a l l y t he same as we have done using extended r e ­

g u l a r s o l u t i o n t he ory , except t h a t i t i s more r e s t r i c t i v e . The b i na ry

s o l u b i l i t y da t a p o i n t s must be a t the same t empera t ure as t he t e r n a r y

system t o be p r e d i c t e d . This i s much more r e s t r i c t i v e than f i t t i n g a b i ­

nary i n t e r a c t i o n parameter a t one t empera t ure f o r each of t he b i n a r i e s

and then us ing them t o p r e d i c t t he s o l u b i l i t i e s in s o l ven t mi xtures a t

any t empera t u r e of i n t e r e s t . The second r e s t r i c t i o n i s t h a t only b ina ry

s o l ven t mi x tures can be handled wi th t h e i r method, whi le the extended

r e g u l a r s o l u t i on methodology can be used wi th any number of components.

As ev i dence , our p r e d i c t i o n s o f s o l u b i l i t i e s in a four s o l ven t mixture

w i l l be p r e s en t e d in c h ap t e r 4. The second a r ea in which Acree and h i s

co-workers have been a c t i v e i s t he a n a l y s i s of the s o l u b i l i t y of ca r ba -

z o l e in b ina ry mi x tures of s o l v e n t s (where one of t he s o lv en t s i s a

h igh l y p o l a r compound) using t he chemical theory f o r a s s o c i a t i n g s o l ­

u t i o n s . The r e s u l t s i n d i c a t e t h a t t h i s might be a very succes s fu l way to

c o r r e l a t e t he s o l u b i l i t i e s in t he p a r t i c u l a r s o l ven t s being s t ud i e d but

i t i s not c l e a r how t he r e s u l t s w i l l be g e n e r a l i z e d . Neve r t he l e s s , t h i s

Page 38: Classical and Statistical Thermodynamics of Solid-Liquid

18

i s an i n t e r e s t i n g l i n e o f r e s e a r c h t h a t complements our own da t a on c a r -

bazole s o l u b i l i t i e s , and our d i f f e r e n t approach t o t he a n a l y s i s of t h a t

d a t a .

Domanska (1987) has a l s o done a g r e a t deal of work in t h i s a rea l a t e ­

l y . While t h i s work has y i e l d e d a l a r g e amount o f d a t a , t h e a n a l y s i s of

t he d a t a have been minimal and no s t r ong c on c l us i on s o r recommendat ions

have r e s u l t e d from t h a t work.

There a r e many more i n d i v i d u a l paper s conce rn ing t he s o l u b i l i t i e s of

p o l y n u c l e a r a r o ma t i c s in o rgan i c s o l v e n t s bu t t h e y u s u a l l y do not add

much i n n o v a t i o n to t he a n a l y s i s of t he d a t a so we w i l l not d i s c u s s them

f u r t h e r a t t h i s t i me .

b. VAPOR-LIQUID EQUILIBRIA

During t he f o r t y y e a r s when VLE r e i g n e d supreme, a t remendous amount

of work was done in t h i s a r e a , producing a l a r g e q u a n t i t y o f d a t a . Most

o f t h e s e d a t a have been c o n s o l i d a t e d i n t o f o u r d a t a b a s e s t h a t a r e e a s i l y

a c c e s s i b l e t o chemical e n g i n e e r s . Examinat ion o f t h e s e d a t a b as e s (Gmehl-

ing e t a l . ( 1980) , Hala e t a l . ( 1967) , H i r a t a e t a l . ( 1975) , Wi c h t e r l e

e t a l . (1973) ) shows, however, t h a t very l i t t l e d a t a have been o b t a i n e d

f o r p o l y n u c l e a r a r oma t i c sys tems . Oil r e f i n e r s were not p a r t i c u l a r l y

i n t e r e s t e d in t h o s e m a t e r i a l s and t h e i r b ehav i o r could be ade q u a t e l y de­

s c r i b e d by lumping them i n t o b o i l i n g p o i n t f r a c t i o n s and t r e a t i n g them

a l l t o g e t h e r . In a d d i t i o n , o b t a i n i n g t he VLE f o r t hos e t y p e s of systems

was very d i f f i c u l t and t h e r e were p l e n t y of systems of i n t e r e s t t h a t

Page 39: Classical and Statistical Thermodynamics of Solid-Liquid

19

were e a s i e r t o s tudy . Both o f t h e se r easons a r e becoming l e s s v a l i d as

t ime p as s e s . Examinat ion o f t he l i t e r a t u r e produced r e c e n t l y shows t h a t

a number of r e s e a r c h e r s a r e now i n v e s t i g a t i n g t h e s e t ype s of systems,

though very l i t t l e has been ob t a i ne d on p o l y n uc l e a r a r oma t i c s and even

l e s s i s known about t he e f f e c t of heteroatom s u b s t i t u t i o n in t h e s e com­

pounds. Some r e c e n t work i s d i s cu s s ed below.

Eng and Sa n d l e r (1984) were t he f i r s t group in t h e Uni t ed S t a t e s t o

employ the S t a g e - Mu e l l e r dynamic e q u i l i b r i u m s t i l l . Though t h e i r cho i ce s

o f systems and a n a l y s i s methods were s u b s t a n t i a l l y d i f f e r e n t than ou r s ,

we have i n c o r p o r a t e d one o f t h e i r equipment m o d i f i c a t i o n s i n t o our appa­

r a t u s .

Willman and Teja (1985) found t he VLE f o r t h r e e systems in a s t i l l

t h a t was a p r e d e c e s s o r of ou r s . Though they con s i d e r ed t h e i r systems t o

be model coal l i q u i d s , t h e i r c h o i ce s ( m- x y l e n e / t o l u e n e ,

n - d e c a n e / t o l u e n e , and n -decane /m-xyl ene) were q u i t e conven t i ona l and d i d

not e n t a i l any unusual exper imenta l d i f f i c u l t i e s . In s p i t e o f t h i s , we

have fo l l owed t h e i r l ead in da t a a n a l y s i s and have chosen most o f t he

same s o l u t i o n models t o c o r r e l a t e t h e d a t a .

Robinson and co-worker s (Robinson (1988) ) a r e c u r r e n t l y o b t a i n i n g VLE

f o r systems o f model coal l i q u i d compounds ( u s u a l l y c o n t a i n i n g one heavy

component and one very l i g h t component l i k e hydrogen or carbon d i o x i d e )

in a dynamic r e c i r c u l a t i n g s t i l l of t h e i r own d e s ig n .

Page 40: Classical and Statistical Thermodynamics of Solid-Liquid

20

Krevor and P r au s n i t z (1986, 1986, 1986) s t ud i ed the VLE e q u i l i b r i a of

b ina ry mixtures of compounds c o n t a i n i ng a heteroatom in t he r ing s t r u c ­

t u r e . They used a s t i l l very s i m i l a r to t he one used in our s tudy.

T h e i r r e s u l t s show e s s e n t i a l l y t he same e f f e c t of heteroatom s u b s t i ­

t u t i o n as our s . Our s tudy, s ince i t i nc ludes the SLE f o r many of the

systems, i s much broader based than t h e i r s tudy. I t a l so i nc ludes VLE

f or systems t h a t have mel t i ng po i n t s above room t e mper a t u r e , which Kre­

vor and P r au s n i t z s t u d i o u s l y avoided due to the d i f f i c u l t i e s a s s o c i a t e d

wi th the VLE exper iment s involv ing t hose types of compounds.

Klara e t a l . (1987) found the VLE da t a f o r Benzene - Toluene (our

t e s t sys tem) , Diphenylmethane - Toluene, m-Cresol - T e t r a l i n and Quino­

l i n e - Benzene using the s t a t i c method. Thei r method i s not very accu­

r a t e as they show p r e s s u r e d e v i a t i o n s as high as 50 mm Hg when comparing

t h e i r vapor p r e s s u re d a t a of the heavy components t o t he l i t e r a t u r e v a l ­

ues. This i s probably due t o problems in degass ing of t he s o l i d which

i s a s e r io u s d e f i c i e n c y of the s t a t i c method.

Page 41: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 2

Acree, W.E., Thermodynamic P r o p e r t i e s o f No ne l ec t r o l y t e S o l u t i o n s , Aca­demic: New York, (1984) , Chap. 10.

Acree, W.E. and Ber t r and , G.L. , J . Phys. Chem., (1977) , 81, 1170.

Acree, W.E. and Ber t rand , G.L. , J . Pharm. S c i . , (1981) , 70, 1033.

Acree, W.E. and Ber t rand , G.L. , J . Sol . Chem., (1983) , 12, 101.

Acree, W.E. and McCargar, J .W. , J . Pharm. S c i . , (1987) , 76 (7 ) , 575.

Acree, W.E. and Ry t t i ng , J . H . , J . Pharm. S c i . , (1983) , 72, 292.

Campbell , A.N. , Can. J . Res . , (1941) , 19, 6, sec. B. , 143.

Choi, P.B. and McLaughlin, E. , I & EC Fund. , (1983) , 22, 46.

Choi, P.B. and McLaughlin, E. , AIChE J . , (1983) , 29 (1 ) , 150.

Choi, P .B. , Wi l l i ams , C. P . , Buehr ing, K.G. and McLaughl in, E. , J . Chem. Eng. Data, (1985) , 30, 403.

Chu, J . C . , Wang, S . L . , Levy, S.L. and Paul , R . , (1956) , Vapor-LiquidEqui l i b r i um Data , J.W.Edwards I n c . : Ann Arbor.

Domanska, U., Fluid Phase E q u i l i b r i a , (1987) , 35(3) , 217.

Eng, R. and Sandle r , S . I . , J . Chem. Eng. Data, (1984) , 29, 156.

Gmehling, j . , Onken, U. and A r l t , W. , Vapor - l i qu i d E q u i l i b r i a Data Col­l e c t i o n , Chemist ry Data S e r i e s , DECHEMA: F r a n k f u r t , (1980) .

Gordon, L. J . and S c o t t , R.L. , J . Am. Chem. Soc. , (1952) , 74, 4138.

Hala, E. , Pick , J . , F r i ed , V. and Vil im, 0 . , (1967) , Vapor-Liquid Equi­l i b r i um , 2nd. Ed. , Pa r t I I I , Pergamon Pres s .

Her i c , E.L. J . Chem. Eng. Data, (1967) 12(1) , 71.

Her i c , E.L. and Posey, C.D. , J . Chem. Eng. Data, (1964) , 9, 1, 35.

Her i c , E.L. and Posey, C.D. , J . Chem. Eng. Data, (1964) , 9, 2, 16.

Her i c , E.L. and Yeh, K.N., J . Chem. Eng. Data, (1970) , 15, 1, 13.

Hi ldebrand, J . H . , P r a u s n i t z , J.M. and S c o t t , R.L. , Regular and Related S o l u t i o n s , Van Nost rand Rheinhold: New York, (1970) .

Hi ldebrand, J . H . , J . Amer. Chem. Soc . , (1929) , 51, 66.

Hi ldebrand , J . H . , Proc. Nat. Acad. S c i . , (1927) , 13, 267.

- 21 -

Page 42: Classical and Statistical Thermodynamics of Solid-Liquid

Hildebrand, J .H. and Jenks , X. , J . Amer. Chem. Soc . , (1920) , 42, 2180.

Hi ldebrand , J .H. and Jenks , X. , J . Amer. Chem. Soc . , (1921) , 43, 2172.

Hi ldebrand , J .H. and Wachter , A . J . , J . Phys. Chem., (1949) , 53, 886.

Hi ldebrand , J .H. and Wood, X. , J . Chem. Phys . , (1933) , 1, 817.

Hi r a t a , M. , Ohe, S. and Nagahama, K . , (1975) , Computer-Aided Data Book of Vapor-Liquid E q u i l i b r i a , E l s e v i e r S c i e n t i f i c .

Klara , S.M. , Mohamed, R.S. , Dempsey, D.M. and Holder , G.D. , J . Chem. Eng. Data, (1987) , 32, 143.

Krevor , D.H. and P r a u s n i t z , J . M. , J . Chem. Eng. Data, (1986) , 31, 349.

Krevor , D.H. and P r a u s n i t z , J . M. , J . Chem. Eng. Data, (1986) , 31, 353.

Krevor , D.H., Lam, F.W. and P r a u s n i t z , J .M. , J . Chem. Eng. Data, (1986) , 31, 357.

Marthandan, M.V. and Acree, W.E., J . Chem. Eng. Data, (1987) , 32, 301.

McCargar, J.W. and Acree, W.E., J . Pharm. S c i . , (1987) , 76 (7 ) , 572.

McCargar, J.W. and Acree, W.E., Phys. Chem. L i q . , (1987) , 17, 123.

McLaughlin, E. and Z a i na l , H.A. , J . Chem. Soc . , (1959) , 863.

McLaughlin, E. and Z a i na l , H.A. , J . Chem. Soc . , (1960) , 2485.

McLaughlin, E. and Za i na l , H.A. , J . Chem. Soc . , (1960) , 3854.

P r a u s n i t z , J . M. , L i c h t e n t h a l e r , R.N. and Azevedo, E.G. , (1986) , Molecu­l a r Thermodynamics o f Fluid Phase E q u i l i b r i a , 2nd Ed. , P r e n t i c e - H a l l .

Robinson, R . , (1988) , P r i v a t e Communication.

Sca t cha rd , G . , Chem. Rev. , (1931) , 8, 321.

Timmermans, J . , Physico-Chemical Cons tant s o f Binary Systems in Concen­t r a t e d S o l u t i o n s , (1959) , Vol. I and I I , I n t e r s c i e n c e P ub l i s he r s I n c . , New York.

Warner, J . G . , Scheib, R.C. and S v i r b e l y , W.J . , J . Chem. Phys . , (1934) , 21, 590.

Wi ch t e r l e , I . , Linek, J . and Hala, E. , (1973) , Vapor-Liquid Equi l ibr ium B i b l i o g r a p hy , E l s e v i e r S c i e n t i f i c .

Willman, B. and Teja A.S . , (1985) , J . Chem. Eng. Data, 30, 116.

Page 43: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 3

EXPERIMENTAL APPARATUS AND PROCEDURES

a. SOLID-LIQUID SOLUBILITY

The exper imenta l methods used to determine t he s o l u b i l i t y of a s o l i d

in a l i q u i d are as v a r i e d as t he types of systems being s t u d i e d . The

o l d e s t method, and s t i l l t he most common method, i s t he most s t r a i g h t ­

forward in appearance. The s o l i d s o l u t e and the l i q u i d s o l ven t a r e v i g ­

orous l y mixed, wi th an excess q u a n t i t y of t he s o l u t e p r e s e n t , in a

t empera t ur e c o n t r o l l e d ba t h . A f t e r a l lowing s u f f i c i e n t t ime f o r e q u i l i b ­

r a t i o n to occur , a sample of t he l i q u i d phase i s analyzed and the compo­

s i t i o n ob t a i ned . Analys i s i s performed by gas chromatography, r e f r a c t i v e

index, or some s pec t r opho t ome t r i c method. The composi t ion ob ta ined r e ­

p r e s e n t s t he s o l u b i l i t y curve ( l i q u i d u s l i n e ) a t t he t empera t ur e of the

ba t h . This method i s prone to a l a r g e number of p os s i b l e sources f o r

e r r o r s t h a t , when taken t o g e t h e r , can s e r i o u s l y reduce the ove r a l l accu­

racy of the r e s u l t s . Some of t h e s e p os s i b l e sources f o r e r r o r a r e :

i . Ana lys i s by gas chromatograph i s s u b j e c t to some

e r r o r and some i r r e p r o d u c i b i l i t y . The c a l i b r a t i o n

procedures ( . i . e . d e t e r mi n a t i o n of response f a c t o r s )

a r e a l s o equa l l y s ub j e c t to t h e se e r r o r s , so t he

t o t a l u n c e r t a i n t y in the composi t ion measurements

can be s u b s t a n t i a l .

i i . Liquid samples t aken from a system con t a i n i n g s o l i d s

- 23 -

Page 44: Classical and Statistical Thermodynamics of Solid-Liquid

24

can be in e r r o r due t o the en t r a i nme n t of t i n y s o l i d

p a r t i c l e s .

i i i . The problem of d e a l i n g wi th t he a n a l y s i s of

s a t u r a t e d samples i s t he d i f f i c u l t y in keeping the

t e mper a t u r e of t he sample h i ghe r than t he system

t e mper a t u r e a t a l l t i me s , t o e l i m i n a t e

s o l i d i f i c a t i o n dur ing sampl ing.

While none of t h e s e a r e i nsurmount able problems, t h e i r combined e f ­

f e c t i s t o dec r e ase the exper imenta l accuracy o b t a i n e d wi th t h i s method

a g r e a t dea l more than expec t ed . An e x c e l l e n t d i s c u s s i o n o f the problems

i n h e r e n t in t h i s type of exper i ment a l procedure i s given in Kel ly and

Keng (1975) . The a u t ho r s in t h a t book d i s c u s s a t g r e a t l e ng t h t he p rob­

lems ment ioned above as they p e r t a i n t o t he measurement of t he s o l u b i l i ­

t y of s uc r ose in wa te r . They a l so d i s c u s s a number o f much more

s o p h i s t i c a t e d exper imenta l methods used to de t e rmine t he s o l u b i l i t y f o r

t h a t commerci a l ly i mpor t an t system. In c h a p t e r 7, t h e r e s u l t s o f some of

t h e se ve ry d i f f i c u l t methods wi l l be compared t o t he r e s u l t s f o r t h i s

same system us ing our exper i ment a l method.

The method used in t h i s work s u p p l i e s t he same i n f o r ma t i on as t he

method d i s c u s s e d above bu t i t does so in a much s imp l e r and more accu­

r a t e way. A sample of known compos i t ion i s p r epa r ed by adding t he pure

s o l i d s o l u t e and t h e pure l i q u i d s o l v e n t in a sample tube t h a t has been

weighed, weighing i t again as each i s added. The weighing i s performed

on an a n a l y t i c a l ba l ance t h a t has r e s o l u t i o n t o 0.00001 grams and i s be­

Page 45: Classical and Statistical Thermodynamics of Solid-Liquid

25

l i e v ed to be ac c u r a t e to wi t h i n 0.001 gram. The mole f r a c t i o n i s c a l c u ­

l a t e d from the masses of each component. The sample i s f rozen and then

i t i s s ea l ed . The e r r o r in mole f r a c t i o n using t h i s method i s be l i eved

t o be l e s s than 0.001. This i s much g r e a t e r p r e c i s i o n than can be ob­

t a i n e d using gas chromatographic a n a l y s i s .

The samples prepared in t h i s manner a r e then heated a t a very slow

r a t e (approx imate ly 0.3 K/hr) u n t i l a l l of the s o l i d has d i s s o l v e d . The

t empera t ur e a t which the l a s t of the s o l i d d i s a ppe a r s i s the s o l u b i l i t y

t empera t ur e f o r t h a t composi t ion. The endpoint i s observed v i s u a l l y and

t he t empera t ure i s read from a 0.1 K increment p r ec i s i o n thermometer .

A schemat ic of the appara tus i s shown in f i g u r e 3-1. I t c o n s i s t s of

an i n s u l a t e d c on s t a n t t empera t ure bath t h a t i s c o n t r o l l e d by a Ver sa t -

herm o n - o f f t empera t ure c o n t r o l l e r , Model2158. The hea t i npu t r a t e i s

v a r i e d us ing a Var iac Auto t r ans former , al lowing t he hea t i npu t to be

lowered s u b s t a n t i a l l y as the endpoint i s r eached. This method has proven

t o be q u i t e e f f e c t i v e a t ma in t a i n ing s t eady t emper a t u r e s in t he ba t h .

The ba th i s heated wi th immersion hea t i ng c o i l s l o c a t ed a t t he bottom

of t he v e s s e l . Also loc a t ed a t the bottom of t he vessel a r e copper c o o l ­

ing c o i l s . While t h e se c o i l s a r e not c o n t r o l l e d d i r e c t l y , they are used

f o r t empera t ur e con t ro l in a manner where coo l ing i s supp l i ed a t i t s

f u l l r a t e and the t empera t u re i s a d j us t e d us ing t he c o n t r o l l e d hea t ing

system. While not adequate f o r c o n t r o l l i n g t he system a t t empera t ur es

below room t e mpe r a t u r e , t h i s method has proved e f f e c t i v e f o r a l lowing

good t empera t ur e con t ro l near room t empera t ur e . P r e v i o u s l y , con t ro l of

Page 46: Classical and Statistical Thermodynamics of Solid-Liquid

26

PRECISIONIMMERSIONT H E R M O M E T E R

P O W E R S U P P L Y

STIRRING MOTORVAR I AC A U T O ­

TRANSFORMERHINGED LID

SAMPLE

INTERIOR SIDE L I G H T IN G -----

STIRRING PADDLESO N / O F F

TEMPERATURE CONTROLLERCOOUNG WATER

COOLING COILS I N S U L A T I O NHEATING ELEM EN T

FIGURE 3 - 1 : SCHEMATIC OF THE SOLID-L IQUID SOLUBILITY APPARATUS

Page 47: Classical and Statistical Thermodynamics of Solid-Liquid

27

t he t e mpera t u r e a t t e mpe r a t u r e s j u s t s l i g h t l y above ambient was d i f f i ­

c u l t .

The ba t h s a r e made of g l a s s and o b s e r va t i on of t he d i s s o l u t i o n p roc­

e s s i s accompl i shed through a window in t he f r o n t of t he ba t h . The i n t e ­

r i o r o f t he ba t h i s s i d e - l i g h t e d t o a s s i s t in observ ing t he presence of

s o l i d s in t he sample mi x t u re . The sample t ubes a r e c o n s t a n t l y r o t a t e d in

an end-over - end f a s h i o n to ensure s u f f i c i e n t mixing of t h e phases in t he

t u b e s . This mot ion a l s o r o t a t e s paddles on t he mixing s h a f t which keep

t h e ba t h wel l -mixed to minimize t e mpera t u r e g r a d i e n t s in t he b a t h s . The

bath hea t i n g f l u i d i s l i q u i d ve ge t ab l e o i l . This f l u i d has t he d e s i r a ­

b l e p r o p e r t i e s of t r a n s p a r e n c y , low c o s t , low v i s c o s i t y , and h igh f l a s h

p o i n t t h a t a r e needed. The f l u i d i s changed p e r i o d i c a l l y as high t emper ­

a t u r e o p e r a t i o n s do cause some d e g r ad a t i o n . The a p pa r a t u s used f o r

t hos e exper i ment s i s simple in d e s i g n , low c o s t , and very easy t o o pe r ­

a t e .

b. VAPOR-LIQUID EQUILIBRIA

In c o n t r a s t , t he a ppa r a t u s used f o r t he v a p o r - l i q u i d e q u i l i b r i a ex­

pe r iment s i s both expens ive and compl i ca t ed , both in i t s des i gn and in

i t s o p e r a t i n g c h a r a c t e r i s t i c s . Thi s i s not s t a t e d as an i n d i c t m e n t of

t he manufa c t u r e r bu t i s simply an i n d i c a t i o n of the r e l a t i v e d i f f i c u l t y

of doing the two t ype s of exper i ment s . The e q u i l i b r i u m s t i l l i s a com­

m e r c i a l l y a v a i l a b l e dynamic e q u i l i b r i u m s t i l l wi th r e c i r c u l a t i o n o f both

t he l i q u i d and vapor phases . The schemat i c of t he system i s shown in

Page 48: Classical and Statistical Thermodynamics of Solid-Liquid

28

f i g u r e 3-2. The main components of t he s t i l l w i l l be d i s cus s ed i n d i v i d ­

ual l y .

1. Components of the Dynamic Equi l ibr ium S t i l l

The most impor tan t p a r t of the s t i l l i s t he e q u i l i b r i u m c e l l . This i s

where the vapor and l i q u i d phases a t e q u i l i b r i um ar e s epa r a t ed and the

t empera t u re i s measured. The c e l l in our appa ra tus c o n s i s t s of a g l a s s

v e s s e l , comple te ly enc l osed in an evacuated and s i l v e r e d i n s u l a t i n g

j a c k e t . The bottom of t he c e l l i s connected t o a hea t i ng s ec t i on t h a t

c o n t a i n s an immersion h e a t e r . The hea t i ng s ec t i on j o i n s to t he s e p a r a t ­

ing vesse l and becomes a C o t t r e l l pump, which i s a h e l i c a l g l a s s tube

t h a t s p i r a l s up i n t o t he e q u i l i b r i u m c e l l and ends in a nozzl e . Above

the nozzle i s a thermometer we l l . In o p e r a t i on , the b o i l i n g l i q u i d r i s e s

up t he C o t t r e l l pump j u s t as co f f ee does in a p e r c o l a t o r and j e t s out of

t he nozz l e , sp l a sh ing onto t he thermometer we l l . The l i q u i d and vapor

s e p a r a t e , t he t empera t ur e i s measured and the two s t reams are d i r e c t e d

i n t o d i f f e r e n t pa t hs out of the c e l l . The vapor s t ream i s condensed and

r e t u r ne d to a mixing v e s s e l . The l i q u i d r e t u r n s to the same mixing ves ­

s e l . An a u x i l i a r y condenser i s provided t o ensure t h a t none of t he l i q ­

uid evapor a t e s a f t e r l e av i ng t he c e l l . The two s t reams a r e mixed and

then r e t u r n to t he h e a t e r s e c t i on to be bo i l ed aga i n .

The t empera t ure i s measured by means o f a 100 ohm pla t inum r e s i s t a n c e

thermometer . The thermometer i s ob t a i ne d from t he manufac tur e r o f the

s t i l l . I t i s g l a s s encased to minimize the thermal i n e r t i a of t he sys­

tem. We have c a l i b r a t e d t he thermometer us ing t he i c e - p o i n t

Page 49: Classical and Statistical Thermodynamics of Solid-Liquid

29

ROTAMETER WATERT R A P

N I T R O G E NS U P P L Y

VACUUM R E L E A S E

COLD S U R G E T A N KT R A P

N O T E S

F I S C H E R 0 6 0 1

MERCURYM A N O M E T E R

tP R E S S U R E

CONT R OL LERVKH 1 0 0

VACUUM P U M P

D I G I T A L MANOMETER

D P I 101

5 '/2 DIGIT MULTIMETER

MIXING A C H AM BER —/ V

H IMAG N ETICS T I R R E R

IM M E R S IO N HEATER

1. E q u i l i b r i u m Cel l2 . C o n d e n s e r s3 . I 0 0 J 2 P t RTD4 . S o l e n o i d S am pl ing

Valves5 . S a m p l e Tubes

FIGURE 3 - 2 : SCHEMATIC OF THE VAPO R-L IQU ID EQUILIBRIA APPARATUS

Page 50: Classical and Statistical Thermodynamics of Solid-Liquid

and b o i l i n g p o i n t of wa t e r . We have a l s o used t he s t i l l t o f i nd t he

vapor p r e s s u r e o f cyclohexane and compared t h e s e r e s u l t s t o t he l i t e r a ­

t u r e v a l u e s , as a t e s t of our c a l i b r a t i o n cu rve . Wi thin t he l i m i t s of

our p r e s s u r e measurements , no s ys t e ma t i c d e v i a t i o n of the vapor p r e s s u r e

curve was ob t a i ne d . Thi s i n d i c a t e s t o us t h a t our measured t e mper a t u r e s

a r e a c c u r a t e t o a t l e a s t 0 . 2 K. The r e s i s t a n c e measured i s moni tored

us ing a Hewle t t -Packard 5 1/2 d i g i t m u l t i m e t e r , Model # 3468B. Resol ­

u t i on i s t o 0.003 K so i t i s l i k e l y t h a t our accuracy i s l i m i t e d by the

probe, not by the mu l t i me t e r . While t h i s l e ve l o f accuracy i s not as

high as cl a imed by many of t h e r e s e a r c h e r s in t he f i e l d , we f ee l t h e

d a t a in t he l i t e r a t u r e i n d i c a t e s t he e s t i m a t e s of some t o be o p t i m i s t i c

a t b e s t .

The system p r e s s u r e i s measured wi th a d i g i t a l p r e s s u r e gauge (DPI

101) manufac tured by Druck I n c . . I t s accuracy i s s t a t e d by t h e manufac­

t u r e r t o be + / - 0 . 4 % o f t h e r e a d i n g . This va l ue r e p r e s e n t s an e r r o r o f

0 . 3 mm Hg a t t h e h i g h e s t p r e s s u r e s cons i de r e d in t h i s work. Our vapor

p r e s s u r e measurements f o r cyc lohexane g ive d e v i a t i o n s g r e a t e r than t h i s

from t he l i t e r a t u r e v a l ues but two sources of l i t e r a t u r e va l ues a l s o

g ive d e v i a t i o n s g r e a t e r than t h i s so i t i s d i f f i c u l t t o a s s e s s our accu­

racy based on t h e s e measurements . Comparisons o f our p r e s s u r e r ea d i ng s

wi th two p r e c i s i o n barometer s shows agreement t o w i t h i n t h i s l e ve l o f

accuracy so we a r e r e a s ona b l y c o n f i d e n t t h a t our p r e s s u r e measurements

a r e a c c u r a t e . Again, l i t e r a t u r e c l a ims f o r p r e s s u r e accu racy a r e u s u a l l y

much b e t t e r than t h i s bu t t he d a t a r a r e l y suppor t t hos e c l a i ms .

Page 51: Classical and Statistical Thermodynamics of Solid-Liquid

31

The unique f e a t u r e of t h i s s t i l l i s i t s p r e s s u r e c on t ro l system. The

s t i l l i s run wi th a n i t r o g e n b l a n k e t supp l i ed from a c y l i n d e r of high

p r e s s u r e n i t r o g e n through a r o t a m e t e r . At the same t i me , a vacuum pump

i s c o n s t a n t l y evacua t i ng t h e system. Between the s t i l l and the pump i s a

p r e s s u r e c o n t r o l l e r ( F i s c h e r VKH 100) t h a t uses a s o l e n o i d a c t i v a t e d

va l ve t o open and c l o s e t he pa th t o t h e vacuum pump based on the p r e s ­

sure measured i n t e r n a l l y by the c o n t r o l l e r . Note t h a t t h i s p r e s s u r e mea­

surement i s independent o f our system p r e s s u r e measurements and the

l e ve l of accuracy i s much lower in t h i s case . The r a t e of gas be ing r e ­

moved by t he pump when t he va l ve i s open i s c o n t r o l l e d manual ly us ing a

t h r o t t l e va l ve . By r e s t r i c t i n g the f low wi th t h i s v a l ve , t h e f l u c t u ­

a t i o n s in p r e s s u r e caused by t he o n - o f f a c t i o n of t h e c o n t r o l l e r a re

minimized. Even when op t i mi z ed , t h e s e f l u c t u a t i o n s a r e d e t e c t a b l e ( + / -

0.1 mm Hg) on our main p r e s s u r e gauge. In s p i t e o f t h i s l i m i t a t i o n , t he

c on t ro l o f the s t i l l wi th t h i s system i s probably s u p e r i o r t o t h a t ob­

t a i n e d us ing t e mpe r a t u r e c on t ro l of t he h e a t e r as has been used in o ld e r

dynamic s t i l l s .

There a r e a number o f a u x i l i a r y components t o t he s t i l l . The manufac­

t u r e r s u p p l i e s a c o n t r o l u n i t ( F i s c h e r 0601) c o n s i s t i n g o f t h e a c t u a t o r s

f o r t he s o l e n o i d - a c t i v a t e d sampl ing v a l v e s , an a u t o t r a n s f o r m e r f o r ad­

j u s t i n g t h e r a t e o f h ea t i n pu t t o t h e s t i l l , and a t e mp e r a t u r e c o n t r o l ­

l e r f o r c o n t r o l l i n g t he t e mp e r a t u r e o f t he mant l e . The mant l e i s an

a u x i l i a r y h e a t e r t h a t sur rounds t he e q u i l i b r i u m c e l l . I t i s s e t a t the

t e mp e r a t u r e expec t ed in t he c e l l . Th i s f u r t h e r r educes any p o s s i b l e tem­

p e r a t u r e g r a d i e n t s w i t h i n t h e c e l l t h a t would a f f e c t t h e r e s u l t s .

Page 52: Classical and Statistical Thermodynamics of Solid-Liquid

The system a l so i nc ludes a surge t ank l oca t ed between the s t i l l and

the p r e s s u r e c o n t r o l l e r to minimize the p r e s s u r e f l u c t u a t i o n s , an

a c e to n e / d r y i ce cold t r a p l oc a t ed between the s t i l l and t he p r es su re

gauge to prevent any condensa t ion o f o rgan ics on the su r f ace of the

sens ing elements and a l so to p r even t l o s s of ma t e r i a l t o the vacuum sys ­

tem, and a 3-way valve t h a t a l lows us to supply n i t r ogen to t he sampling

l egs of t he s t i l l wi thou t a f f e c t i n g the o p e r a t i on . The s t i l l i s valved

in a manner t h a t a l lows the sampl ing l egs to be p r e s s u r i z e d t o atmo­

sphe r i c p r e s su re whi l e the main body of the s t i l l cont inues to ope ra t e

under vacuum. This f e a t u r e s i m p l i f i e s t he ope r a t i on and i nc r e a s es t he

r a t e a t which sample p o i n t s can be ob ta ined .

2. Modi f i c a t i ons t o t he Dynamic Equi l ibr ium S t i l l

A number of m o d i f i c a t i o n s were made to the s t i l l purchased from West

Germany to improve i t s o p e r a b i l i t y . These i nc lude :

i . Replacement of 3-way g l a s s s topcocks by t h r e e 2-way

high vacuum t e f l o n s topcocks . This improved the

ope r a t i ona l f l e x i b i l i t y of t he s t i l l .

i i . Condensers were i n s t a l l e d in t he sample po r t

n i t r ogen l i n e s . This a s s u r e s t h a t no p a r t of our

samples a r e f l a s h i n g dur ing the sampling procedure.

This mod i f i ca t i on was sugges ted by Sandle r (1985) .

i i i . The quar t z immersion h e a t e r was r ep l a ced wi th a

Pyrex s he l l a t t a c h e d t o a ground g l a s s j o i n t . This

r ep l a ced an 0 - r i n g seal t h a t was a l a r g e source of

Page 53: Classical and Statistical Thermodynamics of Solid-Liquid

33

l e aks .

iv . The sample t ube s were modi f i ed t o i nc l ude ground

g l a s s j o i n t s (minimizing l e a k s and s i mp l i f y i n g

removal) and s ep t a f o r i n - s i t u sampl ing o f t he two

phases . The s e p t a were sugges t ed by Will man (1984) .

v. A c l o s e d - l o o p c o o l i ng system was b u i l t us ing an

e t h y l e n e g l y c o l - w a t e r a n t i f r e e z e c o o l a n t . By

moni to r ing t he c o o l a n t t e mp e r a t u r e , very good

c o n t r o l o f t he condenser t e mp e r a t u r e s was p o s s i b l e .

v i . The mixing chamber was i n c r e a s ed in s i z e t o i n c r e a s e

t he t o t a l holdup in t h e s t i l l from 80 ml. t o 150 ml.

Thi s was done t o help c on t ro l t e mpera t u r e swings in

t he h e a t e r s e c t i o n caused by nonuniform

r ecombina t ion of t he c i r c u l a t i n g vapor and l i q u i d

s t r eams .

Taken t o g e t h e r , t h e s e m o d i f i c a t i o n s s u b s t a n t i a l l y improved t he o pe r ­

a b i l i t y o f t he s t i l l and t he r e p r o d u c i b i l i t y o f t h e r e s u l t s .

3. Opera t i on of t he Dynamic Equ i l i b r i um S t i l l

The s t i l l i s o p e r a t e d in t h e f o l l owi ng manner. The empty s t i l l i s

evacua t ed and held under vacuum f o r approx i mat e l y 30 minu tes . I t i s then

b rought up t o a t mospher i c p r e s s u r e us ing dry n i t r o g e n . Thi s minimizes

t h e amounts of wa te r and oxygen in t h e s t i l l . The f eed p o i n t i s opened

and approx i ma t e l y 150 ml. o f t he more v o l a t i l e component a r e added to

Page 54: Classical and Statistical Thermodynamics of Solid-Liquid

34

t he s t i l l . The s t i l l i s c o n s t a n t l y being f l u s he d wi th dry n i t r o g e n d u r ­

ing l oa d i ng . The s t i l l i s s e a l e d and again evacua t ed t o t he expec ted

p r e s s u r e of t he system a t t he t e mp e r a t u r e being i n v e s t i g a t e d . The c o o l ­

ing system i s t u r ne d on and the c o o l a n t t e mper a t u r e i s a d j u s t e d t o t he

d e s i r e d va l ue . Thi s i s done manual ly by adding dry i c e t o a dry

i c e / a c e t o n e bath t h rough which t he c o o l a n t i s pumped. When t he d e s i r e d

c o o l i ng t e mp e r a t u r e i s r eached , t he h e a t e r i s t u r ne d on. The l i q u i d i s

hea t ed to b o i l i n g and t he t e mp e r a t u r e in t he e q u i l i b r i u m c e l l moni tored

u n t i l i t s e t t l e s t o a c o n s t a n t v a l ue . The- hea t i n g r a t e i s a d j u s t e d as

t he f lows o f bo th l i q u i d and vapor s t r eams reach a c c e p t a b l e and c o n s t a n t

v a l u e s . The system p r e s s u r e i s then s lowly changed u n t i l t he t e mper a t u r e

observed in t he e q u i l i b r i u m c e l l r eaches t he d e s i r e d va l ue . The system

i s a l lowed t o e q u i l i b r a t e f o r approx i ma t e l y one hour w i t h minor a d j u s t ­

ments be ing made i f needed t o t he p r e s s u r e s e t p o i n t . When e q u i l i b r a t i o n

i s r eac hed , t he t e mp e r a t u r e and p r e s s u r e a r e r eco rded . Thi s va l ue i s t he

vapor p r e s s u r e o f t he more v o l a t i l e component. The hea t i n g i s s topped

and t h e s t i l l i s r e t u r n e d t o a t mospher i c p r e s s u r e . A small amount of

s o l v e n t i s d r a i n e d from t he s t i l l and i s r e p l a c e d by t he l e s s v o l a t i l e

component , which i s a s o l i d a t room t e mp er a t u r e . The s t i l l i s r e s e a l e d

and t he whole procedure i s r e p e a t e d , u n t i l e q u i 1i b r a t i o n has been

r eached a t t he same t e mpe r a t u r e as b e f o r e . Since we a r e now d ea l i n g

wi th a mi x t u r e , t e mp e r a t u r e and p r e s s u r e r ea d i ngs a r e no t enough. Using

t h e s o l e n o i d - a c t i v a t e d v a l ve s samples o f both phases a r e t a k e n . The

v a l v i ng on t h e s t i l l i s changed t o i s o l a t e t h e r e c i r c u l a t i n g s t i l l from

t he sample l e g s . The sample l e gs a r e then r a i s e d t o a t mospher i c p r e s ­

s u r e . Samples a r e t aken wi th a s y r i nge t h rough s e p t a in t h e sample tubes

and t h e samples p l a ced in l a b e l e d sample v i a l s . For p o i n t s c o n t a i n i n g a

Page 55: Classical and Statistical Thermodynamics of Solid-Liquid

35

high p r op o r t i o n of t he heavy component, s o l i d i f i c a t i o n wi l l occur in t he

sample t ube s as t he samples coo l . In t h e se c a s e s , a s o l v e n t ( xy l e n e s ) i s

added t o t he samples to gua ran t ee t h a t t he sample i s comple te ly l i q u i d .

A f t e r t he samples have been removed from t h e s t i l l , t h ■ sample l egs a r e

opened, c l ea n e d , and d r i e d . They a r e then r e s e a l e d , evacua t ed , and r e -

va lved back i n t o the main system, which has been running c on t i nuous l y

t h r oughout t he sampl ing p rocedure . The system p r e s s u r e i s then changed

t o g ive a new t e mpe r a t u r e and t he p r oces s c o n t i n u e s . In t h i s manner,

m u l t i p l e t e mpe r a t u r e p o i n t s can be done a t the same compos i t i ons w i t hou t

having t o r e p r e s s u r i z e t he s t i l l .

Page 56: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 3

Kel ly , F.H.C. and Keng, M.F. , The Sucrose Crys t a l and I t s S o l u t i o n , ( 1975) , Chap. 10, Singapore U n i v e r s i t y P r e s s .

S a n d l e r , S . , (1985) , P r i v a t e communicat ion.

Wil lman, B. , M a s t e r ' s T h e s i s , ( 1984) , Georgia Tech. U n i v e r s i t y .

- 36 -

Page 57: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 4

SOLUBILITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS IN

MIXTURES OF COMMON ORGANIC SOLVENTS

Manuscr ipt pub l i she d in Journal of Chemical and

Engineer ing Data, ( 1987) , 32, 233.

Page 58: Classical and Statistical Thermodynamics of Solid-Liquid

3 7 AAttn: Ms. Barbara PolanskiAttn: Journal of Chemical and Engineering Data American Chemical Society Publications 1155 Sixteenth Street NW Washington, DC 20036Dear M s .-Polanski,

I am writing to you in connection with a paper that I coauthored in the Journal of Chemical and Engineering Data.The paper is titled:"Solubilities of Polynuclear Aromatic Hydrocarbons in Mixtures of Common Organic solvents."

by J. E. Coon, M. Troth, and E. McLaughlinwhich appeared in J. Chem. Eng. Data, 32, 233-240, (1987).

The purpose of this letter is to request a letter from you allowing this paper to be published in my Ph.D. dissertation as a chapter. My college requires the letter because the dissertation will be microfilmed by University Microfilms Inc., who will distribute it on a Request Only Basis to other researchers. The letter in no way affects your copyright to the paper.

The letter should specifically state the conditions I have given in the above paragraph.

As I am scheduled to graduate in December of this year and must have my dissertation (including letters) in by November 25, 1988, I request that you respond to this letter as quickly as possible. Thank you in advance for your timely response.

Sincerely,

{ f , 1 C-.V ■?, GRAFTED BY THEj j „ | A , . 1 , - - ! *■_ i '

I i ' s v r . c r e p t u t ' s r e q u i r e d .[ I p ■ r . r v :- ;V- Rppriritcc! v.;t.

I . '-or'i li-j" tO'.-m:', K ! C '.-o v t1". A iw u s n Ohsmfca? Society'

! ~ J S

I Vi'Jiwij.;- C . // a . ?

John E. Coon

Page 59: Classical and Statistical Thermodynamics of Solid-Liquid

38

SOLUBILITIES OF POLYNUCLEAR' AROMATIC HYDROCARBONS

IN MIXTURES OF COMMON ORGANIC SOLVENTS

by

John E. Coon Mayann Troth a.

Edward McLaughlin

Department o f Chemical Engineering Louisiana S ta te U n ivers ity

Baton Rouge, Louisiana 70803

* Author for Correspondence

JE860I22V

Page 60: Classical and Statistical Thermodynamics of Solid-Liquid

39

Abstract

The s o l u b i l i t i e s o f naphthalene, acenaphthene, f luorene and

phenanthrene have been determined experim entally in 5 binary mixtures

and 1 quaternary mixture o f four common organic so lv e n ts (benzene,

cyclohexane, thiophene and p y r id in e) from 25 C to the m elt ing p o in ts o f

the s o lu t e s . The r e s u l t s have been corre la ted using the c l a s s i c a l

equation for s o l i d - l iq u id s o l u b i l i t y and the experimental a c t i v i t y

c o e f f i c i e n t s obtained have been compared to the va lu es pred icted by

Regular So lution Theory, Extended Regular S o lu t ion Theory, W ilson's

Equation and UNIQUAC, a f t e r obta in ing binary parameters from the

s o l u b i l i t y o f each so lu te in the pure s o lv e n t s .

Page 61: Classical and Statistical Thermodynamics of Solid-Liquid

40

Introduction

With the presen t trend in the petroleum industry toward heavier

feed stock s and co a l-d e r iv e d l iq u id s , there i s a strong need for

expansion o f the small database o f thermodynamic data on heavier

compounds th a t p r e s e n t ly e x i s t s . As th ese heav ier fe e d s to c k s , r ich in

p olynuclear aromatic hydrocarbons (PAH's), become more common, there

w i l l be a corresponding in c re a se in the need fo r thermodynamic data for

design purposes. A c t iv i t y c o e f f i c i e n t data w i l l be needed as w i l l

s o l u b i l i t y l im i t data , which are important to ensure th a t p r e c ip i t a t io n

o f th ese heavy components, with consequent p lugging o f l in e s and

v e s s e l s , does not occur.

The a c t i v i t y c o e f f i c i e n t data, u su a l ly obtained from VLE r e s u l t s ,

w i l l have to be obtained by o ther methods as VIE data w i l l be d i f f i c u l t

or im possib le to obtain for binary mixtures o f s p e c ie s w ith such w idely

d isp ara te vapor p r e ssu re s . The obvious source o f the n ecessary data i s

s o l i d - l i q u i d s o l u b i l i t y r e s u l t s . Because o f the need for t h i s type o f

data , there has been a renewed in te r e s t in in v e s t ig a t io n s such as we

reported here, which have s u b s ta n t ia l ly extended the a v a i la b le

database (1 -7 ) . A good d iscu ss io n o f t h i s area through 1984 i s

a v a i la b le ( 8 ) . In t h i s work, we have extended the s tu d ie s o f McLaughlin

and Zainal (1 -3 ) and Choi and McLaughlin (A) to m ixtures o f s o lv e n t s .

This i s a con tin u ation o f the work presented in Choi e t a l . ( 5 ) .

The c a lc u la t io n o f a c t i v i t y c o e f f i c i e n t s from s o l i d - l i q u i d

s o l u b i l i t y data i s d iscu sse d in the next s e c t io n . The th ir d s e c t io n

p r e se n ts the a c t i v i t y c o e f f i c i e n t models used. The fourth and f i f t h

s e c t io n s p resen t our experim ental r e s u l t s and d isc u ss our con c lu sion s

concerning the appropriate choice o f a c t i v i t y c o e f f i c i e n t models.

Page 62: Classical and Statistical Thermodynamics of Solid-Liquid

Experimental Procedures

The chemicals used in t h i s study were purchased and p u r i f ie d by

methods d iscu ssed in prev ious papers ( 4 ,5 ) . These chemicals (the

s o lu t e s ) are recovered by ro tary evaporation o f the so lv en ts in vacuo

and reused. The p u r i t i e s o f the recovered m ater ia ls r e la t iv e to the

o r ig in a l are monitored by m elt in g p o in t determ inations to ensure that no

contam ination or degradation i s occurring. A ll o f the s o lv e n ts are

A ldrich "Gold Label" q u a l i ty and are used on a "once through" b a s is as

purchased.

The experim ental procedures used are e s s e n t i a l l y the same as those

described in previous p u b lic a t io n s (1 -5 ) . This c o n s is t s of determining

th e temperature at which the l a s t tra ce o f a known quantity o f the s o l i d

s o lu te d isappears while being s low ly heated in a known q uan tity o f

s o lv e n t . The temperature obtained represents the l iq u id u s l i n e a t th a t

com position . The whole l iq u id u s curve can be obtained by running

samples a t var iou s com posit ions. This technique i s f a s t and has proven

to be very r e l i a b l e .

The errors in composition are qu ite small using t h i s method as both

components are weighed out to 0.00001 g . I f an accuracy o f 0 .002 g i s

assumed (q u ite c o n se rv a t iv e ly ) the la r g e s t expected error in s o lu te mole

f r a c t io n i s ±0.0003 which i s much l e s s than 1% o f the low est va lues

reported . The error in temperature measurement i s l e s s than 0.1°C based

on the accuracy o f our thermometers. I t should be noted, however, that

th e la r g e s t source of error in our measurement i s human error in

v i s u a l l y determining the endpoint. Though i t i s d i f f i c u l t to a ss ig n

error bars to human er ro r , we are confident th a t the endpoints can be

determined to l e s s than 0.3°C a l l o f the time and are u s u a l ly much

c lo s e r than th a t .

Page 63: Classical and Statistical Thermodynamics of Solid-Liquid

42

These errors have a minimal e f f e c t on the ca lcu la ted a c t i v i t y

c o e f f i c i e n t s ; much l e s s than the e f f e c t o f p o s s ib le errors in the

l i t e r a t u r e va lues o f the thermodynamic p ro p er t ie s used. For th ese

r e a so n s , and because many o f the samples have been repeated m u lt ip le

t im es with a high degree o f r e p r o d u c ib i l i ty , we have a high l e v e l of

confidence in the data l i s t e d and in the experimental a c t i v i t y

c o e f f i c i e n t s c a lc u la te d .

Theory

The c l a s s i c a l theory o f s o l i d - l i q u i d equilibrium i s w e l l

e s ta b l i s h e d and e x c e l le n t d is c u ss io n s are a v a i la b le in many textbooks

( 8 , 9 ) . By equating the fu g a c ity o f the pure s o l i d to the fu g a c ity of

the s o l i d in s o lu t io n and making use o f the ap p l ica b le thermodynamic

c y c l e , the fo llo w in g equation can be obtained fo r the s o l u b i l i t y o f a

s o lu t e in a so lv en t or mixture o f so lv e n ts :

where As^, ACp and are the molar entropy o f fu s io n o f the s o lu te a t

i t s t r i p l e p o in t , the d i f f e r e n c e between i t s s o l i d and l iq u id heat

c a p a c i t i e s a t the t r i p l e p o in t , and the l iq u id phase a c t i v i t y

c o e f f i c i e n t , r e s p e c t iv e ly . The t r i p l e p o in t temperature has been

rep laced in equation 1 by the m elt ing p o in t , a s im p l i f i c a t io n th a t

in trod u ces a n e g l ig ib le error . The l a s t term in equation 1, K,

Page 64: Classical and Statistical Thermodynamics of Solid-Liquid

43

represents the e f f e c t on the s o l u b i l i t y of a s o l i d - s o l i d lambda phase

t r a n s i t io n in the s o lu te (1 0 ) . I t i s zero i f the temperature i s above

the t r a n s i t io n temperature but for temperatures below the lambda

t r a n s i t io n i t i s g iven by

Ah? As?A = RF" ~ T T ^

P Pwhere As^ and Ah are the entropy and enthalpy changes of the lambda

t r a n s i t i o n , r e s p e c t iv e ly .

I f the a c t i v i t y c o e f f i c i e n t in equation 1 i s u n ity (an id ea l

s o l u t i o n ) , the equation for the id e a l s o l u b i l i t y o f a so lu te in a

s o lv e n t remains. I t i s the d e v ia t io n s o f ac tu a l s o l u b i l i t i e s from the

id e a l va lu es due to l iq u id phase n o n id e a l i t i e s th a t are o f in t e r e s t .

While i t may appear that equation 1, when combined with a su i ta b le

e x p ress io n for the a c t i v i t y c o e f f i c i e n t , makes s o l i d - l i q u i d s o l u b i l i t y a

c lo se d s u b je c t , the r e a l i t y i s l e s s s im ple . Equation 1 i s only

a p p l ic a b le in theory when the s o lu te and so lv e n ts are completely

im m iscib le in the s o l id pha s e . This i s u s u a l ly the case though there

can be excep tion s (1 1 ) . I t i s only ap p l ica b le in p r a c t ic e when the

n ecessary c a lo r im e tr ic data are a v a i la b le . The number o f compounds for

which the necessary data e x i s t i s very l im ite d . We have chosen to study

four PAH's fo r which the required data e x i s t . They are: naphthalene,

acenaphthene, f luorene and phenanthrene. These compounds, while not as

v a r ied as we would have l ik e d , are a l l commonly found in heavy feed ­

s to ck s and c o a l l iq u id s .

The next s e c t io n p resen ts the models we used to p r e d ic t the

a c t i v i t y c o e f f i c i e n t s for comparison with the experim ental va lues found

from equation 1.

Page 65: Classical and Statistical Thermodynamics of Solid-Liquid

44

S olu tion Models Considered

The fo l lo w in g equations have been chosen to c o r r e la te the

experim ental a c t i v i t y c o e f f i c i e n t s : regular s o lu t io n theory (1 2 ) ,

W ilson's Equation (1 3 ) , and the UNIQUAC Equation (1 4 ) . Each o f these

equations i s d iscu ssed b r i e f l y below.

Regular S o lu t io n Theory

Regular s o lu t io n theory , as formulated by Scatchard and Hildebrand

(1 2 ) , g iv e s the fo llow in g equation fo r the l iq u id phase a c t i v i t y

c o e f f i c i e n t o f the s o lu te (2) in a multicomponent mixture:

RT In y2 = v* (6,, - 6 ) 2 (3)

where

and

5 = 1 0 . 6 . , , ,i l l (4)

&x . v .^ (5)

2 x v i i i

£v- and 6 are the molar volume and s o l u b i l i t y parameter o f

component i , r e s p e c t iv e ly . The s o l u b i l i t y parameter i s defined by

— S - (6)" Wwhere Au i s the in te r n a l energy change fo r component i upon going from

th e l iq u id to the id e a l gas s t a t e .

The theory assumes th a t the excess entropy o f mixing i s zero. I t

can p r e d ic t on ly p o s i t i v e d e v ia t io n s from R a o u lt 's law due to the use o f

Page 66: Classical and Statistical Thermodynamics of Solid-Liquid

the geometric mean approximation for un like in te r a c t io n en erg ies in i t s

d e r iv a t io n .

The s o l u b i l i t y parameters (equation 6) are u su a l ly evaluated at

25 C. Choi and McLaughlin (4) have shown that a more convenient (and

e q u a l ly as c o r re c t) temperature i s the m elting p o in t o f the s o l i d .

They c a l l t h i s cho ice o f temperature for the s o l u b i l i t y parameters the

F lo a t in g Datum P oint Method. Their r e s u l t s in d ica ted th a t the average

error for the s o l u b i l i t y a t temperatures from 25 C to the s o lu te m elting

p o in t was lower when the parameters were evaluated a t the m elt ing p o in t .

They concluded th a t th is happened because o f the inherent d i f f i c u l t y of

try in g to eva lu a te 6^ for the subcooled l iq u id s o lu te at 25 C.

Regular s o lu t io n theory can be extended in a number o f ways to be

more w idely a p p l ic a b le . The most common ex ten s ion (12) i s the a d d it ion

o f an a d ju stab le parameter to equation 3 , which becomes

2-iz i s a parameter th a t i s obtained by f i t t i n g data a t a s in g le

s o l u b i l i t y p o in t and represents the d ev ia t io n o f th e u n lik e p a ir i n t e r ­

a c t io n from the geometric mean approximation. Another obvious ex ten s ion

i s obtained by us ing equation 3 and a llow ing the s o l u b i l i t y parameters

to be fu n c tio n s o f temperature. The va lu es o f 6 . for the s o lv e n t are

ca lc u la te d a t var iou s temperatures and f i t t e d to a polynom ial. The

va lu e o f 6^ fo r the s o lu te i s ca lcu la ted a t i t s m elt in g p o in t but i t s

va lu e at 25 C i s determined by f i t t i n g the s o l u b i l i t y r e s u l t s a t 25 C.

RT In k2 = I I (1.S1. [D.,, - % D..] (7 )

where

( 8 )

and

(9)

Page 67: Classical and Statistical Thermodynamics of Solid-Liquid

46

These values are a lso f i t t e d to a polynomial. Equation 3 is then used

with these temperature dependent parameters.

I t should be noted that addition o f SLy allows p red ic t ion o f e ith e r

p o s i t iv e or n egative dev ia tion s from Raoult's law while the extension to

temperature dependent s o lu b i l i t y parameters s t i l l only p r e d ic ts p o s i t iv e

d e v ia t io n s . This i s not a ser iou s l im ita t io n for the types o f systems

we are in v e s t ig a t in g as i t has been demonstrated that they genera lly

e x h ib i t p o s i t i v e d ev ia tion s from R aoult's law. Based on our a n a ly s is ,

there are approximately equal f i t s to the data using e i t h e r extension so

only the more common £ 1 2 ex tension has been used in the data a n a ly s is .

W ilson's Equation

W ilson's equation (1 3 ) , i s an entrop ic equation th a t u t i l i z e s the

concept o f lo c a l compositions in the l iq u id phase to pred ict the

n o n id e a l ity . The a c t i v i t y c o e f f i c i e n t of the s o lu te i s given by

In y„ = 1 - In (1 x . G ,.) - 1 j k

where

xk Gk21 x . G. . J kj

( 10)

v .

v . £1

A,..exp ( —|£ ) ( 11)

Unlike regular s o lu t io n theory , W ilson's equation can p red ic t

p o s i t iv e or n egative d ev ia t io n s from R aoult's law. I t a lso g iv es an

e x p l i c i t form o f the temperature dependence of the a c t i v i t y c o e f f i c i e n t ,

which i s very important in s o l u b i l i t y s tu d ie s . The problem with

W ilson's equation i s th a t i t requires f i t t i n g of s o l u b i l i t y r e s u l t s in

the pure so lv e n t a t a minimum o f two d i f f e r e n t temperatures to obtain

va lues for the binary in te r a c t io n parameters ( ^ j ) -

Page 68: Classical and Statistical Thermodynamics of Solid-Liquid

47

UNIQUAC (Universal Quasi-chemical Equation)

The UNIQUAC equation (14) i s very sim ilar to W ilson's equation in

form and underlying theory. I t d i f f e r s in two ways. The f i r s t i s that

from the Van der Waal's areas and volumes (14 ,15) instead of molar

volumes which are used in Wilson's equation. This i s intended to allow

more d i f f e r e n t ia t io n based on molecular shape. The other d ifferen ce i s

th a t UNIQUAC has a lso been formulated as a group contribution method

c a l le d UNIFAC. Using UNIFAC, no f i t t i n g of data for the parameters i s

necessary , as long as the necessary group parameters e x i s t . UNIQUAC i s

given , for a multicomponent system, by:

i t uses two pure component parameters, r and q^, that are ca lcu lated

( 12)

where

and

(13)

(14)

and

(15)

and

i

(16)

Page 69: Classical and Statistical Thermodynamics of Solid-Liquid

48

The s ig n if ic a n c e o f the parameters i s explained in the o r ig in a l

reference (13).

Binary Solvent Mixtures

Experimental s o l u b i l i t i e s have been determined from ambient

conditions to the m elting po in ts o f the so lu te s for the fo llow ing

systems:

S o lu tes - Naphthalene, Acenaphthene, Fluorene, and Phenanthrene in

S olvents - 70% Benzene/30% Pyrid ine, 70% Benzene/30% Thiophene,

70% Cyclohexane/30% Pyrid ine, 70% Cyclohexane/30% Thiophene,

and 70% Thiophene/30% Pyridine.

The choice of so lv e n ts to study was based on the d e s ir e to produce

data o f use in the design o f coal l iq u e fa c t io n p la n ts . The c r ite r io n

for u se fu l so lv en ts i s a high so lv a t io n a b i l i t y which tr a n s la te s to

systems that are qu ite c lo se to id e a l . This choice can therefore make

discr im in ation o f the most appropriate a c t i v i t y c o e f f i c i e n t model very

d i f f i c u l t and p o s s ib ly favors the simpler forms ( l i k e regu lar s o lu t io n ) .

The a l te r n a t iv e i s to choose so lv en ts that are very poor so lvents

because they form very nonideal so lu t io n s with the s o lv e n t s . These

r e s u lt s would o f f e r a more d iscr im inatin g t e s t o f the equations. The

data i t s e l f , however, would be o f l e s s value for design purposes so we

have not taken t h i s approach.

The s o l u b i l i t y r e s u l t s are presented in ta b le s I -IV , along with the

a c t i v i t y c o e f f i c i e n t s c a lcu la ted from equation 1. The a c t i v i t y

c o e f f i c i e n t s p red icted by the models d iscussed in the l a s t s e c t io n are

a lso presented , along with the percent d ev ia tion o f those values from

the experim entally determined va lu e s . The percent d ev ia tion s are

defined as:

Page 70: Classical and Statistical Thermodynamics of Solid-Liquid

49

i = KVcalc. ' ^expt. } /^expt. 1 " 100'°The values o f the necessary constants are presented in tab les

V-VIII. The constants that required data f i t t i n g ( ^T Ai^, A ^ , A11:,

A i l ) were obtained by f i t t i n g the s o lu b i l i t y r e s u l t s for the so lu tes in

the pure so lv e n ts from prev iou sly published data ( 1 - 5 ) . The parameters

fo r the s o lv e n t - so lv e n t pa irs (Ai a , As*, \ i a , A.i a , £ i a ) were obtained

from the l i t e r a t u r e (16). For £ i a , the VLE data was regressed to give

the b est f i t . We have not presented the values for r^ and needed in

UNIQUAC as they are e a s i l y ca lcu la ted , knowing only the structure o f the

compounds (14 ) .

Examination o f ta b le s I-IV reveals that none o f the four a c t iv i t y

c o e f f i c i e n t equations g ive d ev iations greater than 16*4% for the systems

stu d ied and the average d ev ia tions are much sm aller than t h i s . The

average d ev ia t io n for each o f the equations based on a l l the data

presented are: regular so lu t io n theory, 2.6%; extended regular so lu tion

theory , 3.4%; W ilson's equation , 2.1%; and UNIQUAC, 2.7%. These r e su lt s

show that W ilson's equation i s s l i g h t ly superior to regular so lu tion

theory for p r e d ic t in g the s o l u b i l i t y in these so lv e n t mixtures. This i s

to be expected s in c e i t contains two adjustable parameters while regular

s o lu t io n theory contains no adjustable parameters. The d ec is io n as to

which equation to use should be based on the a v a i l a b i l i t y o f pure

s o lv e n t s o l u b i l i t y data. I f there are s o lu b i l i t y data a v a i la b le (at

l e a s t two temperatures are required), we recommend using Wilson's

equation . I f no pure so lven t s o lu b i l i t y data are a v a i la b le (or lim ited

or u n r e l ia b le d a ta ) , then regular so lu t io n theory can be used with

reasonable confidence.

Considering th a t i t a lso has two adjustable parameters, we were

somewhat surprised by the poor showing o f UNIQUAC. This i s p oss ib ly a

Page 71: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE 1

Comparison o f the Experimental and Predicted A c t iv i ty Coef f i c i e n t s o f Naphthalene in Five Binary So lv e n t Hi xtures

& . . = otj t . . t 0 'J W i l s o n ' s E p n . U N I Q U A CT e m pk \

x 2 ( e x p t . ) Y j C e x p t . ) Y - ( c a 1 c . ) A%

Y „ ( c a l c . ) A%

Y , ( c a l c . ) A %

Y , ( c a l c . ) A %

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % T h i o p h e n e3 0 3 . 9 0 . 3 4 3 3 1 . 0 8 5 1 . 0 7 4 - 1 . 0 1 . 0 4 6 -3.fi 1 . 0 7 4 - 1 . 0 1 . 0 5 8 - 2 . 53 1 4 . e 0 . 4 4 7 6 1 . 0 6 4 1 . 0 4 6 - 1 . 7 1 . 0 2 9 - 3 . 3 1 . 0 5 7 - 0 . 7 1 . 0 4 9 - 1 . 43 4 4 . 4 0 . 8 4 2 4 1 . 0 2 1 1 . 0 0 3 - 1 . 8 1 . 0 0 2 - 1 . 9 1 . 0 0 6 - 1 . 5 1 . 0 0 6 - 1 . 53 3 6 . 2 0 . 7 1 4 2 1 . 0 3 1 1 . 0 0 9 - 2 . 1 1 . 0 0 6 - 2 . 4 1 . 0 1 8 - 1 . 2 1 . 0 1 8 - 1 . 33 2 4 . 6 0 . 5 5 2 1 . 0 5 5 1 . 0 2 7 - 2 . 7 1 . 0 1 7 - 3 . 6 1 . 0 4 1 - 1 . 4 1 . 0 3 7 - 1 . 77 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 0 3 . 7 0 . 3 4 2 1 1 . 0 8 4 1 . 0 4 6 - 3 . 5 1 . 0 6 1 - 2 . 1 1 . 0 5 5 - 2 . 6 1.0 81 - 0 . 23 1 5 . 0 0 . 4 5 2 5 1 . 0 5 7 1 . 0 2 8 - 2 . 7 1 . 0 3 7 - 1 . 9 1 . 0 5 0 - 0 . 6 1 . 0 6 6 + 0 . 93 2 4 . 7 0 . 5 6 1 9 1 . 0 4 3 1 . 0 1 6 - 2 . 6 1 . 0 2 1 - 2 . 1 1 . 0 4 0 - 0 . 2 1 . 0 4 8 + 0 . 53 3 5 . 4 0 . 7 0 5 4 1 .02 8 1 . 0 0 6 -2. 1 1 . 0 0 8 -1 .9 1 . 0 2 4 - 0 . 4 1 . 0 2 5 - 0 . 33 4 4 . 0 0 . 8 3 8 2 1 . 0 1 9 1 . 0 0 2 - 1 . 7 1 . 0 0 2 - 1 . 7 1 .00 9 - 1 . 0 1 . 0 0 8 - 1 . 17 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % T h i o p h e n e3 0 8 . 2 0 . 2 8 8 0 1 . 4 2 9 1 . 3 0 9 - 8 . 4 1 . 3 2 6 - 7 . 2 1 . 3 0 2 - 8 . 9 1 . 3 0 5 - 8 . 63 1 2 . 9 0 . 3 5 9 3 1 . 2 7 1 1 . 2 3 2 - 3 . 1 1 . 2 4 5 - 2 . 0 1 . 2 3 6 - 2 . 8 1 . 2 3 4 - 2 . 93 1 9 . 7 0 . 4 4 3 1 . 1 9 0 1 . 1 6 0 - 2 . 5 1 . 1 6 8 - 1 . 8 1.1 7 1 - 1 . 6 1 . 1 6 6 - 2 . 03 2 7 . 1 0 . 5 4 8 6 1 . 1 2 2 1 . 0 9 6 - 2 . 3 1 . 1 0 1 - 1 . 9 1 . 1 0 8 - 1 . 3 1 . 1 0 2 - 1 . 83 3 7 . 9 0 . 7 2 0 2 1 . 0 5 6 1 . 0 3 2 - 2 . 3 1 . 0 3 4 - 2 . 1 1 . 0 3 9 - 1 . 6 1 . 0 3 6 - 1 . 93 4 7 . 8 0 . 8 9 9 8 1 . 0 1 7 1 . 0 0 4 - 1 . 3 1 . 0 0 4 - 1 . 3 1 . 0 0 5 - 1 . 2 1 . 0 0 4 - 1 . 3

ipo

Page 72: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE I (c o n t inued)

C o m p a r i s o n o f t h e E x p e r i m e n t a l a n d P r e d i c t e d A c t i v i t y C o e f f i c i e n t s o f N a p h t h a l e n e in F 1v e B i n a r y S o l v e n t Hi . . ~ 0 J>. . t iJ 0 W i I s o n ' s Eijn. U N I Q U A C

T e m pK

x 2 ( e x p t . ) V 2 ( e x p t . ] y 2 ( c a l c . ) A V 2 (c a l c . ) A %

y 2 ( c a l c . ) A Y 2 ( c n l r . ) A%

7 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 1 4 . 8 3 4 1 . 3 3 4 7 . 23 0 1 . 13 2 2 . 23 3 0 . 8

0 . 4 0 8 30 . 7 8 3 20 . 8 9 8 40 . 2 7 6 30 . 5 0 4 70 . 6 1 8 9

1 . 1 6 51 . 0 3 61 . 0 0 61 . 2 6 41 . 1 0 31 . 0 7 2

1 . 1 4 8 1 . 0 1 5 1 . 0 0 3 1 . 2 5 6 1 . 0 9 5 1 . 0 5 2

- 1 . 5- 2 . 0- 0 . 3- 0 . 6- 0 . 7- 1 . 9

1 . 1 6 6 1 . 0 1 7 1 . 0 0 3 1 .289 1 . 1 0 7 1 . 0 5 8

+ 0 . 1- 1 . 8- 0 . 3+ 2 . 0+ 0 . 4- 1 . 3

1 . 1 4 51 . 0 1 61 . 0 0 31 . 2 3 81 . 0 9 61 . 0 5 3

- 1 . 7 - 1 . 9 - 0 . 3 - 2 . 1 - 0 . 6 - 1 . 7

1 . 1 3 6 1 . 0 1 5 1 . 0 0 3 1 . 2 2 6 1 . 0 8 9 1 . 0 3 9

- 2 . 5 - 2 . 1 - 0 . 3 - 3 . 0 - 1 . 2 -2. 1 .

7 0 tno le% T h i o p h e n e a n d 3 0 ntole% P y r i d i n e3 0 3 . 83 0 6 . 73 1 7 . 83 2 3 . 03 4 6 . 0

0 . 3 5 6 10 . 3 8 2 20 . 4 9 1 10 . 6 7 3 70 . 8 6 9 6

1 . 0 4 41 . 0 4 01 . 0 3 41 . 0 2 81 . 0 1 7

1 . 0 0 41 . 0 0 4 1 . 0 0 2 1 . 0 0 1 1 . 0 0 0

- 3 . 8- 3 . 5- 3 . 1- 2 . 6- 1 . 7

1 . 0 2 21 . 0 1 91 . 0 1 21 . 0 0 41 . 0 0 1

- 2 . 1- 2 . 0- 2 . 1- 2 . 3- 1 . 6

1 . 0 0 51 . 0 0 91 . 0 1 61 . 0 1 41 . 0 0 4

- 3 . 7- 3 . 0- 1 . 7- 1 . 3- 1 . 6

1 . 0 0 31 . 0 1 01 . 0 2 41 . 0 2 01 . 0 0 5

- 3 . 8- 2 . 8- 0 . 9- 0 . 7- 1 . 2

Page 73: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE II

Comparison o f the Experimental and P redicted A c t iv i ty C o e f f i c ie n t s c f Acenaphthene in Five Binary Solvent Mixtures

11•nc* : 0 2. . * +J 0 W i l s o n ' s E q n . U N I Q U A CT e m p X j f e x p t . ) Y 2 ( e x p t . ) Y j t c a l c . ) A Y 2 ( c a l e . ) A Y 2 C c a l c . ) A Y 2 ( c a l c , ) AK % % % %

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % T h i o p h e n e3 0 1 . 5 0 . 2 0 0 7 1 . 1 3 0 1 . 1 2 3 - 0 . 6 1 . 1 0 3 - 2 . 4 1 . 0 9 6 - 3 . 0 1 . 0 7 8 - 4 . 63 0 9 . 2 0 . 2 5 1 4 1 . 1 0 6 1 . 0 9 8 - 0 . 7 1 . 0 8 3 - 2 . 1 1 . 0 8 0 - 2 . 4 1 . 0 6 8 - 3 . 33 1 7 . 9 0 . 3 1 8 9 1 . 0 8 7 1 . 0 7 3 - 1 . 3 1 . 0 6 2 - 2 . 3 1 . 0 6 1 - 2 . 4 1 . 0 5 7 - 2 . 73 Z 5 . 7 0 . 3 9 5 9 1 . 0 5 7 1 . 0 5 2 - 0 . 5 1 . 0 4 4 - 1 . 3 1 . 0 4 5 - 1 . 1 1 . 0 4 5 - 1 . 13 3 5 . 2 0 . 5 0 3 9 1 . 0 3 4 1 . 0 3 0 - 0 . 4 1 . 0 2 6 - 0 . 8 1 . 0 2 8 - 0 . 6 1 . 0 3 0 - 0 . 43 4 4 . 9 0 . 6 4 1 4 1 . 0 0 5 1 . 0 1 4 + 0 . 8 1 . 0 1 1 + 0 . 6 1 . 0 1 3 + 0 . 8 1 . 0 1 6 + 1 . 03 5 5 . 6 0 . 8 1 4 8 0 . 9 8 9 1 . 0 0 3 + 1.4 1 . 0 0 3 + 1 . 4 1 , 0 0 3 + 1.4 1 . 0 0 4 + 1 . 47 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 1 1 . 1 0 . 2 5 2 4 1 . 1 5 8 1 . 0 5 8 - 8 . 6 1 . 1 3 7 - 1 . 8 1 . 1 3 1 - 2 . 3 1 . 1 5 3 - 0 . 43 4 9 . 6 0 . 7 1 8 2 0 . 9 9 2 1 . 0 0 5 + 1 . 2 1 . 0 1 1 + 1 . 9 1 . 0 1 4 + 2 . 2 1 . 0 1 4 + 2 . 23 2 2 . 9 0 . 3 5 4 5 1 . 1 0 5 1 . 0 3 7 - 6 . 1 1 . 0 8 7 - 1 . 6 1 . 0 9 0 - 1 . 4 1 . 1 0 1 - 0 . 33 3 1 . 8 0 . 4 5 7 0 1 . 0 5 8 1 . 0 2 3 - 3 . 3 1 . 0 5 4 - 0 . 4 1 . 0 6 0 + 0 . 1 1 . 0 6 5 + 0 . 63 3 3 . 6 0 . 4 7 8 6 1 . 0 5 1 1 . 0 2 1 - 2 . 9 1 . 0 4 8 - 0 . 3 1 . 0 5 4 + 0 . 3 1 . 0 5 9 + 0 . 73 4 0 . 3 0 . 5 7 7 5 1 . 0 1 2 1 . 0 1 2 0 . 0 1 . 0 2 8 + 1 . 6 1 . 0 3 4 + 2 . 1 1 . 0 3 5 + 2 . 37 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % T h i o p h e n e3 0 4 . 1 0 . 1 5 1 1 1 . 6 1 0 1 . 5 3 2 - 4 . 8 1 . 7 0 2 + 5 . 7 1 . 5 5 9 - 3 . 2 1 . 4 9 0 - 7 . 43 1 0 . 2 0 . 1 8 8 5 1 . 5 1 4 1 . 4 5 1 - 4 . 2 1.5 91 + 5 . 0 1 . 4 7 0 - 2 . 9 1 . 4 2 2 - 6 . 13 1 6 . 0 0 . 2 3 3 2 1 . 4 1 8 1 . 3 7 2 - 3 . 3 1 . 4 8 3 + 4 . 6 1 . 3 8 4 - 2 . 4 1 . 3 5 1 - 4 . 73 2 1 . 5 0 . 2 8 2 0 1 . 3 4 3 1 . 3 0 2 - 4 . 0 1 . 3 8 9 + 3 . 5 1 . 3 0 9 - 2 . 5 1 . 2 8 7 - 4 . 23 2 7 . 8 0 . 3 5 1 9 1 . 2 5 0 1 . 2 2 3 - 2 . 2 1 . 2 8 5 + 2 . 8 1 . 2 2 6 - 2 . 0 1 . 2 1 3 - 3 . 03 3 3 . 5 0 . 4 3 1 1 1 . 1 6 3 1 . 1 5 5 - 0 . 7 1. 197 + 2 . 9 1 . 1 5 6 - 0 . 6 1 . 1 4 9 - 1 . 23 4 0 . 6 0 . 5 3 8 1 1 . 0 9 2 1 . 0 9 1 - 0 . 1 1 . 1 1 5 + 2 . 1 1 . 0 9 0 - 0 . 2 1 . 0 8 7 - 0 . 53 4 8 . 0 0 . 6 6 5 4 1 . 0 3 5 1 . 0 4 2 + 0 . 7 1 . 0 5 3 + 1 . 8 1 . 0 4 2 + 0 . 6 1 . 0 4 0 + 0 . 53 5 6 . 3 0 . 8 1 9 3 0 . 9 9 7 l . O l l + 1 . 4 1 . 0 1 4 + 1.6 1 . 0 1 1 + 1 .4 1 . 0 1 0 + 1.3

Page 74: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE II (c ontin u ed)

Compa rison o f the Experiment a l and Pred icted A ct iv i t y C o e f f i c ie n t s o f Acenaphthene in F ive Binary Solvent HixUirrs

SL = 0 I j oi.j i.i W i l s o n ' s E q n . U N I Q U A CT e m p x „ ( e x p t . ) y . ( e x p t . ) y ( c a l c . ) _ A _ y , ( c a l c . ) y ( c a l c . ) A y ( c a l c . ) AK _______ ' _ _____ JL — -I JL _!______ JL

7 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 0 4 . 5 0 . 1 7 0 2 1 . 4 4 4 1 . 3 7 3 - 5 . 0 1 . 6 0 2 + 1 0 . 9 1 . 4 1 9 - 1 . 7 1 . 3 4 1 - 7 . 23 1 0 . 3 0 . 2 0 7 9 1 . 3 7 7 1 . 3 1 8 - 4 . 3 1 . 5 0 8 + 9 . 5 1 . 3 5 0 - 1 . 9 1 . 2 9 2 - 6 . 23 1 9 . 2 0 . 2 8 1 0 1 . 2 7 4 1 . 2 3 4 - 3 . 1 1 . 3 6 7 + 7 . 3 1 . 2 4 9 - 1 . 9 1 . 2 1 5 - 4 . 63 2 6 . 8 0 , 3 6 0 2 1 . 1 9 3 1 . 1 6 7 - 2 . 2 1 . 2 5 8 + 5 . 5 1 . 1 7 3 - 1 . 7 1 . 1 5 3 - 3 . 47 0 m o l e % T h i o p h e n e a n d 3 0 m o l e % P y r i d i n e3 1 1 . 5 0 . 2 8 2 5 1 . 0 4 6 1 . 0 0 5 - 3 . 9 1 . 0 6 1 + 1 . 4 1 . 0 4 1 - 0 . 5 1 . 0 4 1 - 0 . 53 2 2 . 2 0 . 3 6 1 9 1 . 0 6 4 1 . 0 0 3 - 5 . 7 1 . 0 4 2 - 2 . ! 1 . 0 3 6 - 2 . 7 1 . 0 3 6 - 2 . 73 3 1 . 2 0 . 4 5 7 2 1 . 0 4 1 1 . 0 0 2 - 3 . 8 1 . 0 2 7 - 1 . 4 1 . 0 2 8 - 1 . 3 1 . 0 3 8 - 1 . 33 3 5 . 9 0 . 5 1 9 5 1 . 0 1 9 1 . 0 0 2 - 1 . 8 1 . 0 1 9 0 . 0 1 . 0 2 3 + 0 . 4 1 . 0 2 3 + 0 . 43 4 1 . 6 0 . 5 9 5 6 1 . 0 0 6 1 . 0 0 1 - 0 . 5 1 . 0 1 2 + 0 . 6 1 . 0 1 7 + 1.0 1 . 0 1 7 + 1 . 03 5 0 . 4 0 . 7 2 5 8 0 . 9 9 9 1 . 0 0 0 + 0 . 1 1 . 0 0 5 + 0 . 6 1 . 0 0 8 + 0 . 9 1 . 0 0 8 + 0 . 9

Page 75: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE III

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n t s o f Phenanthene i n Five Binary PnK'ent Hixlnrr'S

£. . = 0 t . . t . U 0 W i 1 s o n 1s _ _ _ U N I Q U A C

T e m p x 2 ( e x p t . ) Y , ( e x p t . ) > ( c a l c . ) A V 2 ( c n l r . ) A Y 2 ( c a l r . ) A 1f2 ( c a l c . ) AK J L J L JL

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % T h i o p h e n e3 0 6 . 5 0 . 2 4 7 9 1 . 2 3 6 1 . 2 8 5 + 4 . 0 1 . 2 0 4 - 2 . 6 1 . 2 0 5 - 2 . 5 1 . 2 0 7 - 2 . 33 1 1 . 6 0 . 2 8 8 8 1 . 1 8 1 1 . 2 3 3 + 4 . 4 1 . 1 6 8 - 1 . 2 1 . 1 7 8 - 0 . 3 1 . 1 8 0 - 0 . 13 1 6 . 1 0 . 3 2 2 3 1 . 1 6 1 1 . 1 9 7 + 3 . 0 1 . 1 4 2 - 1 . 7 1 . 1 5 7 - 0 . 4 1 . 1 5 9 - 0 . 33 2 6 . 8 0 . 4 0 2 4 1 . 1 0 8 1 . 1 3 1 + 2 . 0 1 . 0 9 6 - 1 . 2 1 . 1 1 6 + 0 . 6 1 . 1 1 6 + 0 . 63 3 1 . 5 0 . 4 7 1 0 1 . 0 8 1 1 . 0 9 2 + 1 . 0 1 . 0 6 7 - 1 . 3 1 . 0 8 7 + 0 . 6 1 . 0 8 6 + 0 . 53 3 8 . 7 0 . 5 4 5 5 1 . 0 7 1 1 . 0 6 2 - 1 . 0 1 . 0 4 4 - 2 . 5 1 .061 - 0 . 9 1 . 0 6 0 - 1 . 03 4 7 . 8 0 . 6 5 5 0 1 . 0 4 4 1 . 0 3 0 - 1 . 4 1 . 0 2 2 - 2 . 1 1 . 0 3 3 - 1 . 0 1 . 0 3 2 - 1 . 13 5 6 . 5 0 . 7 6 7 3 1 . 0 2 2 1 . 0 1 2 - 1 . 0 1 . 0 0 9 - 1 . 3 1 . 0 1 4 - 0 . 8 1 . 0 1 3 - 0 . 87 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 1 3 . 4 0 . 2 9 8 3 1 . 1 8 9 1 . 1 5 8 - 2 . 6 1 . 1 5 9 - 2 . 5 1 . 1 3 9 - 4 . 2 1 . 1 9 5 + 0 . 53 2 5 . 2 0 . 3 9 9 3 1 . 1 2 7 1 . 0 9 6 - 2 . 8 1 . 0 9 6 - 2 . 7 1 . 1 0 6 - 1 . 9 1 . 1 2 4 - 0 . 33 3 4 . 3 0 . 5 0 1 4 1 . 0 7 3 1 . 0 5 6 - 1 . 6 1 . 0 5 6 - 1 . 6 1 . 0 7 4 + 0 . 1 1 . 0 7 5 + 0 . 23 4 2 . 6 0 . 5 9 6 8 1 . 0 5 5 1 . 0 3 2 - 2 . 2 1 . 0 3 2 - 2 . 2 1 . 0 4 9 - 0 . 6 1 . 0 4 4 - 1 . 03 5 1 . 8 0 . 7 0 3 3 1 . 0 3 7 1 . 0 1 5 - 2 . 1 1 . 0 1 5 - 2 . 1 1 . 0 2 6 - 1 . 0 1 . 0 2 1 - 1 . 53 5 9 . 2 0 . 8 0 7 5 1 . 0 1 4 1 . 0 0 6 - 0 . 8 1 . 0 0 6 - 0 . 8 1 . 0 1 1 - 0 . 3 1 . 0 0 8 - 0 . 57 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % T h i o p h e n e3 0 1 . 9 0 . 1 1 6 8 2 . 3 7 5 2 . 5 5 7 + 7 . 7 2 . 6 1 7 + 1 0 . 2 2 . 1 8 4 - 8 . 1 2 . 2 0 2 - 7 . 33 0 9 . 2 0 . 1 5 5 8 2 . 0 B 2 2 . 2 3 9 + 7 . 6 2 . 2 8 5 + 9 . 7 1 . 9 8 5 - 4 . 7 1 . 9 6 7 - 5 . 53 1 6 . 5 0 . 2 0 9 6 1 . 8 0 1 1 . 9 2 7 + 7 . 0 1 . 9 5 8 + 8 . 7 1 . 7 7 2 - 1 . 6 1 . 7 2 7 - 4 . 13 2 3 . 3 0 . 2 7 5 9 1 . 5 7 0 1 . 6 6 0 + 5 . 7 1 . 6 8 1 + 7 . 0 1 . 5 7 5 + 0 . 3 1 . 5 1 9 - 3 . 33 3 0 . 7 0 . 3 7 3 1 1 . 3 4 3 1 . 4 0 5 + 4 . 6 1 . 4 1 7 + 5 . 5 1 . 3 7 3 + 2 . 3 1 . 1 4 9 - 1 . 83 4 0 . 3 0 . 5 1 6 5 1 . 1 6 5 1 . 1 9 0 + 2 . 1 1 . 1 9 5 + 2 . 5 1 . 1 8 7 + 1 . 8 1 . 0 4 4 - 0 . 73 5 1 . 6 0 . 7 0 0 7 1 . 0 3 7 1 . 0 5 7 + 2 . 0 1 . 0 5 9 + 2 . 1 1 .061 + 2 . 3 1 . 0 5 1 + 1.4

Page 76: Classical and Statistical Thermodynamics of Solid-Liquid

TABf.E I I I ( c o n t i n u e d )C o m p a r i s o n o f t h e E x p e r i m e n t a l a n d P r e d i c t e d A c t i v i t y C o e f f i c i e n t s o f P h e n a n t l iene i n F i v e B i n a r y S o l v e n t H i x U i res

T?.m EKx 2 ( e x p t . ) Y 2 ( e x p t .

£. . = _______ U 0 ' 9. . . t iJ 0 W i I s o n ' s E<pi.

A'%

UNIOIIAC) Y 2 (c a l c - ) A %

Y 2 (c a l c . ) A Y 2 ( c a l c . ) Y 2 ( c a l c . ) A

7 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 2 5 . 6 3 3 8 . 2 3 2 8 . 53 4 5 . 7 3 5 5 . 4

0 . 3 4 4 20 . 5 0 3 60 . 3 8 3 00 . 6 0 5 90 . 7 2 6 7

1 . 3 1 81 . 1 5 01 . 2 5 51 . 1 0 01 .0 6 1

1 . 3 8 31 . 1 6 91 . 3 1 71 . 0 9 31 . 0 3 8

+ 4 . 9 + 1 . 6 + 4 . 9 - 0 . 7 - 2 . 1

1 . 4 1 8 1. 183 1 . 3 4 4 1. 100 1 .0 41

+ 7 . 5 + 2 . 9 + 7 . 1 0 . 0

- 1 . 8

1 - 3 1 31 - 1 4 81 . 2 6 31 . 0 8 41 . 0 3 7

- 0 . 3- 0 . 2+ 0 . 7- 1 . 4- 2 . 3

1 . 2 5 71 . 1 1 51 . 2 1 31 . 0 6 31 . 0 2 6

- 4 . 6 - 3 . 0 - 3 . 3 - 3 . 4 - 3 . 3

7 0 m o l e % T h i o p h e n e a n d 3 0 m o l e % P y r i d i n e3 0 8 . 33 0 9 . 73 2 7 . 73 4 4 . 43 5 1 . 03 5 1 . 1

0 . 3 0 3 B0 . 3 1 3 60 . 4 5 9 90 . 6 2 9 60 . 7 1 5 70 . 7 1 5 7

1 . 0 4 91 . 0 4 61 . 0 2 81 . 0 3 51 . 0 0 71 . 0 0 7

1 . 0 4 6 1 . 0 4 4 1 . 0 2 1 1 . 0 0 81 . 0 0 41 . 0 0 4

- 0 . 3- 0 . 2- 0 . 7- 2 . 6- 0 . 3- 0 . 3

1 . 0 6 5 1 . 0 6 2 1 . 0 2 9 1 . 0 1 1 1 . 0 0 6 1 . 0 0 6

+ 1.5 + 1 . 5 + 0 . 1 - 2 . 3 - 0 . 1 -0. 1

1 . 0 2 91 . 0 3 0 1 . 0 3 4 1 . 0 2 11 . 0 1 41 . 0 1 4

- 1 . 9 - 1 . 5 + 0 . 6 - 1 . 3 + 0 . 7 + 0 . 7

1 . 0 2 81 . 0 3 31 . 0 5 81 . 0 3 61 . 0 2 21 . 0 2 2

- 2 . 0 - 1 . 2 + 2 . 9 + 0 . 7 + 1.5 + 1.5

<-TItn

Page 77: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IV

Comparison o f the Experimental and Predic t e d A c t iv i ty C o e f f i c ie n t s o f Flu o rene i n F ive Binary Solvent Mixtures

2. . = _ _ _ >J 0 i . . * 0 Vi 1 s o n 1s .?an- IINIQOACTemjjK

x 2 ( e x p t . ) V 2 ( e x p t . ) Y2 ( c a l c . ) A X

V 2 (c.ilc. ) A Y2 ( c a l c . ) A Y2 ( c a l c . ) A%

7 0 m o l e % B e n z e n e a n d 30 m o l e % T h i o p h e n e3 0 3 . 0 3 1 0 . 7 3 1 7 . A 3 2 5 . A 3 3 1 . 9 3 3 9 . 3 3 4 7 . 53 5 4 . 0

0 . 1 5 7 80 . 1 9 4 00 . 2 3 1 60 . 2 8 3 90 . 3 3 3 20 . 3 9 5 90 . 4 7 9 30 . 5 5 3 0

1. 168 1 . 1 5 0 1 . 1 3 0 1 . 1 0 5 1 . 0 8 4 1 . 0 6 5 1 . 0 3 5 1 . 0 1 6

1 . 2 1 8 1. 184 3 . 1 5 4 1 . 1 2 1 1 . 0 9 6 1 . 0 7 1 1 . 0 4 7 1 . 0 3 1

+ 4 . 3 + 2 . 9 + 2 . 2 + 1 . 4 + 1.1 + 0 . 6 + 1.1 + 1 . 5

1 . 1 5 4 1 . 130 1 . 1 10 1 . 0 8 6 1 . 0 6 9 1 . 0 5 1 1 . 0 3 4 1 . 0 2 2

- 1 . 2 - l . B - 1 . 8 - 1 . 7 - 1 . 4 - 1 . 3 - 0 . 2 + 0 . 7

1 . 1 4 2 1 . 1 3 2 1 . 1 2 2 1 . 1 0 8 1 . 0 9 5 1 . 0 7 9 1 . 0 6 0 1 . 0 4 4

- 2 . 3 - 1 . 5 - 0 . 7 + 0 . 3 + 1 . 0 + 1 . 3 + 2 . 4 + 2 . 8

1 . 1 2 3 1 . 1 1 4 1 . 1 0 5 1 . 0 9 2 1 . 0 8 0 1 . 0 6 5 1 . 0 4 8 1 . 0 3 5

- 3 . 8 - 3 . 1 - 2 . 2 - 1 . 2 - 0 . 4 0 . 0

+ 1 . 3 + 1.9

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 0 8 . 7 0 . 1 8 4 5 1 . 1 5 6 1 . 1 2 2 - 2 . 9 1 . 1 8 7 + 2 . 7 1 . 1 4 1 - 1 . 3 1 . 2 0 7 + 4 . 43 2 6 . 0 0 . 2 7 3 6 1 . 1 6 3 1 . 0 8 1 - 7 . 1 1 . 1 2 3 - 3 . 5 1 . 1 1 0 - 4 . 6 1 . 1 4 9 - 1 . 23 3 3 . 1 0 . 3 3 9 4 1 . 0 9 4 1 . 0 6 0 - 3 . 1 1 . 0 9 1 - 0 . 3 1 . 0 9 2 - 0 . 2 1 . 1 1 7 + 2 . 13 5 1 . 6 0 . 5 0 3 1 1 . 0 6 7 1 . 0 2 7 - 3 . 8 1 . 0 4 0 - 2 . 6 1 . 0 5 1 - 1 , 5 1 . 0 5 7 - 0 . 93 5 9 . 8 0 . 6 0 4 2 1 . 0 3 5 1 . 0 1 5 - 1 . 9 1 . 0 2 2 - 1 . 2 1 . 0 3 2 - 0 . 3 1 , 0 3 4 - 0 . 17 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e X T h i o p h e n e3 0 0 . 5 0 . 0 8 2 8 2 . 0 8 7 1 . 9 7 3 - 5 . 5 2 . 4 2 4 + 16. 1 1 . 7 7 2 - 1 5 . 1 1 . 7 4 5 - 1 6 . 43 0 8 . 6 0 . 1 1 0 8 1 . 9 1 4 1 . 8 3 5 - 4 . 1 2 . 2 0 5 + 1 5 . 2 1 . 6 9 8 - 1 1 . 3 1 . 6 7 3 - 1 2 , 63 1 6 . 0 0 . 1 4 2 9 1 . 7 7 2 1 . 7 0 9 - 3 . 6 2 . 0 0 9 + 1 3 . 4 1 . 6 2 0 - 8 . 6 1 . 5 9 4 - 1 0 . 13 2 2 . 7 0 . 1 7 9 2 1 . 6 4 8 1 . 5 9 4 - 3 . 3 1 . 8 3 6 + 1 1 . 4 1 . 5 4 1 - 6 . 5 1 . 5 1 3 - 8 . 23 3 1 . 1 0 . 2 3 7 8 1 . 4 9 4 1 . 4 5 3 - 2 . 7 1 . 6 2 6 + 8 . 9 1 . 4 3 4 - 4 . 0 1 . 4 0 3 - 6 . 13 3 8 . 7 0 . 3 0 7 3 1 . 3 5 5 1 . 3 3 0 - 1 . 9 1 . 4 4 9 + 7 . 0 1 . 3 3 1 - 1 . 8 1 . 3 D 0 - 4 . 03 4 5 . 2 0 . 3 8 2 4 1 . 2 4 1 1 . 2 3 3 - 0 . 6 1 . 3 1 3 + 5 . 9 1 . 2 4 3 + 0 . 2 ,1. 215 - 2 . 13 5 4 . 0 0 . 5 0 0 5 1 122 1 . 1 3 0 + 0 . 7 1 . 1 7 2 + 4 . 4 1 . 1 4 3 + 1 . 9 1 . 1 2 2 0 . 0

Page 78: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IV (continued)

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n t s o f Fluorene in Five Binary So lvent Mixtures

i . . = 0 £. . t ‘.I 0 W i l s o n ’s F.tjn. U N I Q U A CT e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) y 2 ( c a l c . ) A%

y _ U - n l c . ) a1

Y 2 ( c a l c . ) a%

y 2 ( c a l c . ) A%

7 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 2 5 . 8 3 3 3 . 43 3 5 . 83 4 3 . 03 4 7 . 1

0 . 2 2 6 10 . 2 8 3 60 . 3 0 8 80 . 3 8 9 80 . 4 3 1 4

1 . 4 0 11 . 3 1 81 . 2 7 01 . 1 6 71 . 1 4 2

1 . 3 7 31 . 2 8 81 . 2 5 81 . 1 7 81 . 1 4 6

- 2 . 0- 2 . 2- 1 . 0+ 1 . 0+ 0 . 4

1 . 6 0 B1 . 4 6 21 . 4 1 01 . 2 7 91 . 2 2 7

+ 1 4 . 8 + 1 0 . 9 + 1 1 . 0 + 9 . 6 + 7 . 5

1 . 3 8 21 . 2 9 21 . 2 6 01 . 1 7 81 . 1 4 5

- 1 . 4 - 2 . 0 - 0 . 8 + 1 . 0 + 0 . 3

1 . 3 1 41 . 2 4 31 . 2 1 71 . 1 4 91 . 1 2 1

- 6 . 2- 5 . 7- 4 . 2- 1 . 6- 1 . 8

7 0 % raole % T h i o p h e n e a n d 3 0 m o l e % P y r i d i n e3 0 8 . 0 3 2 2 . 5 3 3 0 . 33 3 5 . 23 4 0 . 33 4 3 . 0

0 . 1 9 1 30 . 2 7 3 10 . 3 2 8 50 . 3 6 4 40 . 4 1 2 30 . 4 3 7 8

1 . 0 9 4 1 . 0 7 8 1 . 0 6 4 1 . 0 6 3 1 . 0 4 4 1 . 0 3 9

1 . 0 1 9 1 . 0 1 3 1 . 0 1 0 1 . 0 0 8

1 . 0 0 7 1 . 0 0 6

- 6 . 9- 6 . 0- 5 . 1- 5 . 2- 3 . 5- 3 . 2

1 . 0 4 7 1 . 0 3 2 1 . 0 2 5 1 . 0 2 1 1 . 0 1 6 1 . 0 1 4

- 4 . 3- 4 . 3- 3 . 7- 4 . 0- 2 . 7- 2 . 4

0 . 9 4 10 . 9 8 00 . 9 9 B1 . 0 0 61 . 0 1 41 . 0 1 7

- 1 4 . 0- 9 . 1- 6 . 2- 5 . 4- 2 . 9- 2 . 2

0 . 9 2 7 - 0 . 9 8 5 1 . 0 0 8 1 . 0 1 8 1 . 0 2 6 1 . 0 2 9

1 5 . 3 - 8 . 7 - 5 . 3 - 4 . 2 - 1 . 7 - 1 .0

tn’-i

Page 79: Classical and Statistical Thermodynamics of Solid-Liquid

T A B L E _ VS o l u b i l i t y P a r a m e t e r s a n d M o l a r L i q u i d V o l u m e s o f S o l i d s a n d L i q u i d s a t t h e M e l t i n g P o i n t s o f S o l i d s

S o l i d s P y r i d i n e T h i o p h e n e B e n z e n e C y c l o h e x a n e

<5 2V <5 2

V 6 £V a

£V <S£ 2

V

T mK

3 4 2 . 6

( J / m 3 ) ^ x 10

( m 3m o l ) x I 0 " 6

( J / m 3 ) ^ x 10

( m 3m o l , * ) x 1 0 ~ 6

P / m 3 )*4 x 10

( m 3m o l , *) x 1 0 ' 6

( J / m 3 )*4 x 10

( m 3m o l , ') x 1 0 ' 6

( J / m 3 ) ^ x 10

( m 3m o l ] x 10

B i p h e n y l 1 . 9 3 0 4 a 1 5 5 . I6b 2 . 0 2 5 9 * 8 4 . 8 7 h 1 , 8 7 5 9 C 8 3 . 7 R ' 1 1 . 7 2 7 4 ^ 9 4 . 5 7 k 1.5 473-’ 1 1 4 . R 2 kN a p h t h a l e n e 3 5 2 . 8 1 . 9 6 6 2 * 1 3 0 . 8 6 e 1 . 9 9 3 8 * 8 5 . 8 6 b 1 . 8 4 2 6 C 8 4 . 8 7 d 1.6957-* 9 5 . 9 6 * 1 .5 2 0 3 * 1 1 6 . 8 9 kP h e n a n t h r e n e 3 7 2 . 8 1 . 9 7 7 2 * 1 6 8 . 0 5 f 1 . 9 3 7 7 * 8 7 . 3 1 b 1 . 7 7 S 9 C 8 7 . 1 4 d 1 . 6 2 8 3 * 9 8 . 6 3 * 1 . 4 5 0 1 * 1 2 0 . 2 3 *F l u o r e n e 3 8 7 . 6 1 . 8 5 0 8 ® 1 6 3 . 7 0 h 1 . 8 8 4 1 * B 9 .3 6 b 1 , 7 2 5 9 C 8 8 . 9 6 d 1 . 5 8 1 7 j 1 0 0 . 4 D k 1 . 4 4 1 1 * 1 2 2 , 3 3 *A c e n a p h t h e n e 3 6 6 . 5 1 . 8 9 3 0 8 1 4 9 . B 0 l 1 . 9 5 1 9 * 8 7 . 19b 1 . 7 9 7 4 c 8 6 , 3 8 d 1 . 6 6 0 7 * 9 7 . 6 4 * 1 . 4 8 4 5 * 1 I B . 5 4 *

a. E n t h a l p y o f v a p o r i z a t i o n w a s e v a l u a t e d b y u s i n g t h e C l a u s i u s - C l a p e y r o n e q u a t i o n w i t h t h e A n t o i n e e q u a t i o n c o n s t a n t s g i v e n b y R e i d e t al. ( 1 7 ) .

b . T i m m e r m a n s ( 18 ).c. E n t h a l p y o f v a p o r i z a t i o n d a t a f r o m A d v a n c e d C h e m i s t r y S e r i e s , V o l . 1 5 / 2 2 ( 19 ).d. I n t . C r i t . T a b l e s , V o l . 3 ( 20 ).e. W e a s t e t al. ( 2 1 ) , R e i d e t al, (17 ) a n d D e a n ( 2 2 ) .f. Int . C r i t . T a b l e s ( 2 0 ) . E x t r a p o l a t e d b y u s i n g e q u a t i o n 1 2 - 3 . 2 o f R e i d e t al. (17).g. A n t o i n e e q u a t i o n c o n s t a n t s g i v e b y D e a n ( 22 ).h. M c L a u g h l i n a n d U b b e l o h d e (23 ).i. L a n g e a n d F o r k e r (24 ).j . H e a t o f v a p o r i z a t i o n d a t a f r o m F i g . 7 B 1 * 1 1 a n d 7 B 1 * 1 8 in A P I D a t a B o o k ( 25 ).k. F i g - 1 6 - 1 2 , N G P S A E n g i n e e r i n g D a t a B o o k (26 ).

Page 80: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VI

(al V a l u e s o f t h e B i n a r y P a r a m e t e r , £ 1 2 , n e e d e d f o r t h e e x t e n d e d r e g u l a r s o l u t i o n t h e o r y . T h e s e v a l u e s w e r e o b t a i n e d h y f i t t i n g t h e l o w e s t m o l e f r a c t i o n s o l u b i l i t y d a t a p o i n t i n t h e p u r e s o l v e n t t o t h e e q u a t i o n .

S o l u t e (2) S o l v e n t (1)B e n z e n e C y r l o h e x a n e P y r i d i n e T h i o p h e n e

N a p h t h a l e n e £ 1 2 - 1 . 9 1 8 3 E - 0 3 2 . 4 0 0 6 F.-03 4 . 0 1 9 9 E - 0 3 2 . 6 0 1 2 7 E - 0 4P h e n a n t h r e n e £ 1 2 - A . 3 9 0 E - 0 3 3 . 3 4 6 8 E - 0 3 3 . 8 3 4 1 E - 0 3 - 1 . 9 3 9 4 E - 0 4F l u o r e n e £ 1 2 - 1 . 9 5 4 1 E - 0 3 1 . 3 2 0 E - 0 2 6 . 7 4 8 9 E - 0 3 - 1 . 4 8 6 1 6 E - 0 3A c e n a p h t h e n e £ 1 2 - 4 . 9 9 1 E - 0 4 8 . 8 2 7 9 E - 0 3 1 . 0 3 0 E - 0 2 5 . 5 4 2 9 E - 0 4

(b) V a l u e s o f t h e C r o s s P a r a m e t e r 2 , 3 , n e e d e d f o r t h e E x t e n d e d R e g u l a r S o l u t i o n T h e o r y .

S o l u t e C 2 ) S o l v e n t S y s t e mB e n z e n e (l) T h i o p h e n e ( 3 )

B e n z e n e ( l ) C y c l o h e x a n e ( 1) P y r i d i n e ( 3 ) T h i o p h e n e ( 3 )

C y c l o h e x a n e ( l ) T h i o p h e n e (' P y r i d i n e ( 3 ) P y r i d i n e l l

N a p h t h a l e n e JZ13 0 . 0 0 3 2 6 8 - 0 . 0 0 8 3 2 5 0 . 0 1 0 3 7 0 0 . 0 1 1 5 3 - 0 . 0 0 0 6 0 1P h e n a n t h r e n e 2 , 3 0 . 0 0 3 2 9 8 - 0 . 0 1 0 1 2 7 0 . 0 0 9 9 7 8 0 . 0 0 8 7 0 - 0 . 0 0 1 0 3 4F l u o r e n e 2 , 3 0 . 0 0 3 5 4 6 - 0 . 0 1 0 1 0 9 0 . 0 1 1 4 9 0 0 . 0 1 0 9 5 - 0 . 0 0 0 8 6 6A c e n a p h t h e n e 2 , 3 0 . 0 0 3 7 8 5 - 0 . 0 0 9 1 3 8 0 . 0 1 1 5 7 0 0 . 0 1 2 3 3 - 0 . 0 0 0 7 1 6

Page 81: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VII

V a l u e s o f (J/jtmol)

S o l u t e (2)

N a p h t h a l e n e

P h e n a n t h r e n e

F l u o r e n e

A c e n a p h t h e n e

W i l s o n ’s P a r a m e t e r s , A , z a n d \ Z I , ( J / g m o l ) , a n d U N I Q U A C P a r a m e t e r s , A la a n d A 2 j C a l c u l a t e d liy F i t t i n g T h e S o l u h i l i t y D a t a fo r F.ach S o l i d / S i n g l e S o l v e n t S v s t e m

S o lv e n t (1 )

B e n z e n e C y c l o h e x a n e T h i o p h e n eA 12 2 3 9 9 . 6 7 1 0 7 1 . 9 1 2 6 7 3 . 4 3A 2I - 1 6 0 1 . 9 4 2 0 7 7 . 9 7 2 2 0 4 . 1 4A i 2 - 1 0 8 3 . 3 8 1 0 9 4 . 3 5 - 1 1 0 0 . 1 2A 21 1 6 4 6 . 3 5 - 3 2 1 . 7 4 1 5 6 4 . 3 9

A12a2 ,

AI2a 2 i

1 6 4 2 . B 8- 3 7 5 . 4 4- 6 4 3 . 3 0 1 2 9 7 . 4 5

2 0 7 4 . 9 63 7 3 3 . 3 3

2 1 0 3 . 5 5- 1 6 7 5 . 5 3

1 5 0 1 . 3 5 - 4 1 1 . 4 4

- 7 9 3 . 2 1 1 3 4 1 . 3 2

A 12A Z J

A 12A21

1 1 9 6 . 5 3■ 3 0 8 . 2 2■ 5 1 3 . 5 0

97*8.72

a 12A21

A1 2 A21

4 7 4 . 9 03 8 0 . 5 19 6 . 8 2

3 5 5 . 0 6

1 2 7 1 . 6 6 3 4 6 7 . 4 3

2 8 6 1 . 7 2 - 2 5 0 3 . 6 5

1 9 9 3 . 3 7 - 6 8 0 . 6 5

- 1 0 3 8 . 6 71 5 5 7 . 8 6

9 3 0 . 1 32 6 5 6 . 8 1 1 0 8 2 . 2 5

- 9 2 4 . 2 31 6 5 9 . 1 2

- 7 9 5 . 4 2- 7 4 1 . 7 2 1 0 7 0 . 9 9

Pjr r i j i in e

2 7 8 8 . 9 22 0 7 8 . 3 5

- 1 2 1 8 . 8 01 7 3 6 . 6 0

1 2 7 2 . 7 5 - 8 7 1 . 0 6

1 2 8 . 3 01 6 . 8 3

15 7 6 . 4 5- 9 5 5 . 6 6- 7 4 1 . 2 2 1 0 7 3 . 3 3

1 3 5 0 . 0 7 3 1 1 . 4 4

- 3 9 3 . 3 2 7 0 4 . 4 2

Page 82: Classical and Statistical Thermodynamics of Solid-Liquid

V a l u e s o f T h e S o l v e n t - S o l v e n t

S o l v e n t P a i r _ _ _

B e n z e n e (1) - P y r i d i n e (3)

B e n z e n e (1) - T h i o p h e n e (3)

C y c l o h e x a n e (I) - P y r i d i n e (3)

C y c l o h e x a n e (1) - T h i o p h e n e (3)

T h i o p h e n e C D - P y r i d i n e (3)

TABLE V]II

C r o s s P a r a m e t e r s O b t a i n e d F r o m L i t e r a t u r e V L E D a t a (15 )

Sy s t era___________________________

m j I Q U A C J J / g m o l ) V I 1,SOU' S EQN. ( J / Rni o l )

A 1 3 = - 6 9 6 . 3 7 9 3 * 1 3 = - 2 4 6 3 . 6 3 3 9A 3 1 = 7 2 1 . 3 0 6 2 * 3 1 = 4 4 0 3 . 5 1 3 6* 1 3 = - 8 0 7 . 1 0 5 8 * 1 3 = 1 3 2 5 . 7 3 7 8* 3 1 = 1 1 1 6 . 9 3 7 5 *3 1 = - 6 9 7 . 8 5 5 9A j 3 = 2 6 0 1 . 3 8 9 1 * 1 3 = 9 9 0 . 3 9 6 0* 3 1 - 6 7 4 . 9 5 2 5 *3 1 = 3 6 5 4 . 2 7 8 6* 1 3 = 9 9 0 . 5 7 6 3 * 1 3 = 6 8 1 . 7 2 4 6* 3 1 - 2 2 1 . 9 8 1 4 * 3 1 = 1 2 3 4 . 9 2 3 1* 1 3 . 3 4 3 0 . 9 8 5 0 * 1 3 2 1 3 3 . 3 1 3 1* 3 1 = - 2 0 5 9 . 2 3 1 4 * 3 1 = 4 2 1 5 . 6 5 7 7

Page 83: Classical and Statistical Thermodynamics of Solid-Liquid

62

consequence of the nearly id ea l a c t i v i t y c o e f f i c i e n t s being predicted

( i t may have a high "noise" l e v e l ) or i t might imply that molar volumes

are a b e t t e r c o r r e la t in g parameter for th ese systems than the UNIQUAC r^

and q . .1

Quaternary Solvent Mixture

Based on the su ccess of th ese a c t i v i t y c o e f f i c i e n t express ions to

p r e d ic t the s o l u b i l i t i e s o f these s o lu te s in b inary so lv e n t m ixtures, i t

i s appropriate to t e s t them on a more complex mixture, contain ing a l l

four o f the so lv e n ts ( in equimolar amounts) th a t have been s tu d ied . The

r e s u l t s , presented in ta b le IX, have again been corre la ted using the same

four eq u ation s. The average d ev ia tion s for each are: regu lar s o lu t io n

th eory , 2.0%; extended regular s o lu t io n , 2.0%; W ilson's equation , 1.7%;

and UNIQUAC, 1.7%. Our conclusion i s th a t the advantage gained by

f i t t i n g parameters to the data , which i s s u b s ta n t ia l for the

s o l u b i l i t i e s in the pure so lv en ts (5) becomes n e g l ig ib le as the number

o f components in the so lv en t mixture in c r e a s e s . While we s t i l l

recommend using W ilson's equation i f the pure s o l u b i l i t y data e x i s t s ,

r egu lar s o lu t io n theory appears to be a very good a l t e r n a t iv e .

O bviously , the r e s u l t s presented are not an exhaustive t e s t o f t h i s

c o n c lu s io n but we f e e l they are a good in d ic a t io n o f what can be

expected when d ea lin g w ith mixtures o f good (n ear ly id e a l ) s o lv e n t s .

Page 84: Classical and Statistical Thermodynamics of Solid-Liquid

T A M J . IXComparison o f the Experimental and Calculated A c t iv i ty C o e f f i c ie n t s for the Four ParentHydrocarbons in a Hixture o f 25% Benzene, 25% Cyclohexane, 25% Thiophene and 25% Pyrid ine.

£ =0 £ # 0 1. 1 ij W i l s o n ' s E q n . U M I Q U A C

x ( e x p t . ) y ( e x p t . ) y , ( c a l c . ) _ A _ y . f c a l c . ) _ A _ y ( c a l c . ) J L y , ( c a l c . )L £ % % * % £ %

A c e n a p h t h e n e3 0 5 . 8 0 . 2 2 I A 1 . 1 A 9 1 . 1 0 9 - 3 . 5 1 . 1 7 2 + 2 . 0 1 . 1 3 6 - 1 . 2 1 . 1 2 6 - 2 . 03 1 2 . 0 0 . 2 6 6 2 1 . 1 2 3 1 . 0 9 0 - 2 . 9 1 . 1 A 1 + 1.6 1 . 1 1 6 - 0 . 6 1 . 1 1 2 - 1 . 03 2 0 . 9 0 . 3 A 1 5 1 . 0 9 3 1 . 0 6 5 - 2 . 5 1 : 1 0 1 + 0 . 8 1 . 0 8 7 - 0 . 5 1 . 0 8 9 - 0 . 33 2 8 . 9 0 . A 2 3 8 1 .065 1 . 0 A 5 - 1 . 9 1 . 0 6 9 + 0 . 4 1 . 0 6 3 - 0 . 2 1 . 0 6 7 + 0 . 23 3 7 . A 0 . 5 2 7 0 1 . 0 3 9 1 . 0 2 7 - 1 . 2 1 . 0 A 1 + 0 . 2 1 . 0 3 9 0 . 0 1 . 0 4 4 + 0 . 53 4 6 . 9 0 . 6 6 A 9 1 . 0 1 2 1 . 0 1 2 0 . 0 1 . 0 1 8 + 0 . 6 1 . 0 1 8 + 0 . 6 1 . 0 2 2 + 1.03 5 5 . 6 0 . 8 1 0 1 0 . 9 9 A 1 . 0 0 3 + 0 . 9 1 . 0 0 5 + 1.1 1 . 0 0 5 + 1.1 1 .00 7 + 1.2P h e n a n t h r e n e3 0 3 . 5 0 . 2 3 9 2 1 . 2 0 1 1 . 2 9 3 + 7 . 7 1 . 2 7 6 + 6 . 3 1 . 1 9 9 - 0 . 1 1 . 2 1 0 + 0 . 83 1 2 . 8 0 . 3 0 5 3 1 . 1 4 6 1 . 2 1 2 + 5 . 8 1 . 2 0 0 + 4 . 7 1 . 1 6 6 + 1.8 1 . 1 6 9 + 2 . 03 2 1 . 9 0 . 3 8 4 0 1 . 0 9 7 1 . 1 4 4 + 4 . 3 1 . 1 3 6 + 3 . 5 1 . 1 3 0 + 3 . 0 1. 127 + 2 . 73 2 9 . 4 0 . 4 5 7 5 1 . 0 6 8 1 . 0 9 8 + 2 . 9 1 . 0 9 3 + 2 . 4 1 . 1 0 0 + 3 . 0 1 . 0 9 4 + 2 . 43 3 8 . 1 0 . 5 5 5 0 1 . 0 4 1 1 . 0 5 7 + 1 . 6 1 . 0 5 4 + 1 . 3 1 . 0 6 6 + 2 . 4 1 . 0 6 0 + 1.83 4 7 . 7 0 . 6 7 7 7 1 . 0 0 8 1 . 0 2 5 + 1 . B 1 . 0 2 4 + 1 .6 1 . 0 3 3 + 2 . 6 1 . 0 2 9 +2. 13 5 3 . 4 0 . 7 5 3 3 0 . 9 9 2 1 . 0 1 4 + 2 . 2 1 . 0 1 3 + 2 . 1 1 . 0 1 9 + 2 . 7 1 . 0 1 6 + 2 . 4N a p h t h a l e n e3 0 7 . 7 0 . 3 8 6 0 1 . 0 5 3 1 . 0 7 8 + 2 . 4 1 . 0 7 3 + 2 . 0 1 . 0 6 2 + 0 . 9 1 . 0 7 4 +2. 13 1 5 . 4 0 . 4 6 5 5 1 . 0 3 6 1 . 0 5 4 + 1.7 1 . 0 5 1 ' + 1.5 1 . 0 5 2 + 1.5 1 . 0 6 1 + 2 . 43 2 6 . 6 0 . 5 9 5 6 1 . 0 2 3 1 . 0 2 7 + 0 . 5 1 . 0 2 6 + 0 . 3 1 . 0 3 4 + 1 .2 1 . 0 3 9 + 1.63 2 9 . 4 0 . 6 2 6 2 1 . 0 2 9 1 . 0 2 3 - 0 . 6 1 . 0 2 1 - 0 . 7 1 . 0 3 0 + 0 . 1 1 . 0 3 4 + 0 . 53 3 8 . 1 0 . 7 5 7 4 1 . 0 0 8 1 . 0 0 9 + 0 . 1 1 .00 B 0 . 0 1 . 0 1 5 + 0 . 7 1 . 0 1 6 + 0 . 8

tr>Ul

Page 85: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IX (con t i nued)

C o m p a r i s o n o f t h e E x p e r i m e n t a l a n d C a l c u l a t e d A c t i v i t y C o e f f i c i e n t s f o r t h e F o u r P a r e n t H y d ro c a r b o n s i n a H i x t u r e o f 2 5 % B e n z e n e , 2 5 % C y c l o h e x a n r , 2 5 % T h i o p h e n e a n d 2 5 % P y r i d i ne_^

i . . = 0 iJ t . . # 0IJ Wi I s o n ’s E q n . U N I Q U A CT e m pK

x 2 ( e x p t . ) Y2 ( c x p t . ) V2 ( c a l c . ) aX

Y2 ( c a t c . ) AX

Y2 (c a 1 c . ) A%

Y2 ( c a l c . ) A

F l u o r e n e3 0 3 . 83 1 1 . 9 3 2 2 . 43 2 9 . 23 3 8 . 3 3 4 6 . 8 3 5 4 . 1

0 . 1 5 5 90 . 1 9 5 80 . 2 5 5 10 . 3 0 3 90 . 3 7 7 90 . 4 6 1 30 . 5 4 1 0

1 . 2 0 6 1 . 1 7 3 1 . 1 5 0 1 . 1 2 2 1 . 0 9 3 1 . 0 6 1 1 . 0 4 0

1 . 2 0 71 . 1 7 21 . 1 3 11 . 1 0 51 . 0 7 51 . 0 5 01 . 0 3 2

+ 0 . 1- 0 . 1- 1 . 6- 1 . 5- 1 . 7- 1 . 1- 0 . 8

1 . 2 9 0 1 . 2 4 0 1 . 1 8 2 1 . 1 4 5 1 . 1 0 3 1 . 0 6 8 1 . 0 4 6

+ 6 . 9+ 5 . 7+ 2 . 8+ 2 . 1+ 0 . 9+ 0 . 6+ 0 . 4

1 . 1 2 2 1 . 1 1 7 1 .107 1 . 0 9 7 1 .08 0 1 . 0 6 2 1 . 0 4 6

- 7 . 0- 4 . 8- 3 . 8- 2 . 2- 1 . 1+ 0 . 1+ 0 . 5

1 . 129 1 . 1 2 5 1 . 1 1 4 1 . 1 0 3 1 . 0 8 4 1 . 0 6 4 1 . 0 4 6

- 6 . 4- 4 . 1- 3 . 1- 1 . 7- 0 . 8+ 0 . 3+ 0 . 6

Page 86: Classical and Statistical Thermodynamics of Solid-Liquid

65

Summary

The s o l u b i l i t i e s o f four polynuclear aromatic hydrocarbons in

mixtures of four organic so lvents have been determined from ambient

con d ition s to the so lu te m elting p o in t . These r e su lt s have been used to

determine the a c t i v i t y c o e f f i c i e n t o f the so lu te in the l iq u id so lu t io n .

The r e su lt s have been corre la ted using four common a c t i v i t y c o e f f i c i e n t

express ions with the necessary binary parameters obtained by regression

o f the s o lu b i l i t y data for the so lu te s in the ' pure s o lv e n t s . The

s o lv e n t - so lv e n t parameters were obtained from l i t e r a t u r e VLE data.

The r e su lt s show that a l l the models g ive reasonable p red ic t ion s

but th a t Wilson's equation i s b est o v e r a l l .

Page 87: Classical and Statistical Thermodynamics of Solid-Liquid

UNIQUAC binary parameter (J /gm ol) ,

Heat Capacity o f l iq u id i - Heat Capacity o f s o l i d i measured at the m elting po in t o f i (J/gmol K).

Defined by Eqn. 8.

Defined by Eqn. 11.

Enthalpy change o f a s o l i d - s o l i d phase t r a n s i t io n for component i (J /grao l) .

Defined by Eqn. 13.

Extended Regular S o lu t ion Model binary parameter.

2Pressure (N/m ) .

2Vapor Pressure o f i (N/m ) .

Pure component parameter in UNIQUAC.

Pure component parameter in UNIQUAC.

Gas Constant (J/gmol K ).

Entropy o f fu s io n o f i measured a t the m e lt in g -p o in t o f i (J/gmol K ).

Entropy change o f a s o l i d - s o l i d phase t r a n s i t io n o f i (J/gmol K ).

Temperature (K ).

M elt in g -p o in t Temperature (K ).

In te r n a l energy o f i in changing from a l iq u id to an id e a l gas .

Molar volume o f l iq u id i - molar volume o f s o l i d i (m /gm ol) .

Molar volume o f l iq u id i (m /gm ol).

Page 88: Classical and Statistical Thermodynamics of Solid-Liquid

67

x^ Hole fa c t io n of i .

Greek L etters

A (V2 ( e x p t . ) - y2 ( « 1 c . ) ) / y2 (e x p t .) x 100

6.1

S o l u b i l i t y Parameter o f i .

6 Defined by Eqn. 4.

* i A c t iv i t y C o e f f ic ie n t of i .

\ Defined by Eqn. 2.

A. . iJ

W ilson's Eqn. Binary Parameter (J /g m o l) .

Q.i

Volume fr a c t io n of component i .

4*.i

Defined by Eqn. 16.

t . . iJ

Defined by Eqn. 14.

0 .i Defined by Eqn. 15.

Page 89: Classical and Statistical Thermodynamics of Solid-Liquid

68

Literature Cited

( 1) McLaughlin, E. and Z aina l, H.A., J . Chem. S o c . , (1959), 863.

( 2) McLaughlin, E. and Zainal, H.A., J. Chem. S o c . , ( I9 6 0 ) , 2485.

( 3) McLaughlin, E. and Zaina l, H.A., J . Chem. S o c . , ( I9 6 0 ) , 3854.

( 4) Choi, P.B. and McLaughlin, E . , I & EC Fund., (1983), 22, 46.

( 5) Choi, P .B ., W illiam s, C .P ., Buehring, K.G., and McLaughlin, E . ,J. Chem. Eng. Data, (1985), 30, 403.

( 6) Acree, W.E. and Bertrand, G .L ., J. Phys. Chem., (1977), 81,1170.

( 7) Acree, W.E. and R ytting , J .H ., J . Pharm. S c i . , (1983), 72, 292.

( 8) Acree, W.E., Thermodynamic Properties o f N on elec tro ly te S o lu t io n s , Academic P ress , F lo r id a , (1984), Chap. 10.

( 9) Prausnitz , J .M ., Molecular Thermodynamics o f F luid Phase E q u i l ib r ia , P r e n t ic e -H a ll , (1969), Chap. 9.

(10) Choi, P.B. and McLaughlin, E . , AIChE J . , (1983), 29 ( 1 ) , 150.

(11) McLaughlin, E. and Messer, C.E., J . Chem. Soc. (A), (1966), 106.

(12) Hildebrand, J .H . , P rausn itz , J.M ., and S c o t t , R .L ., Regular andRelated S o lu t io n s , Van Nostrand Reinhold Co., New York, (1973).

(13) Wilson, G.M., J . Am. Chem. S oc ., (1964), 86, 127.

(14) Abrams, D.S. and P rausn itz , J.M., AIChE J . , (1975), 2 1 (1 ) , 116.

(15) Bondi, A ., Physica l Properties, o f Molecular C rysta ls , L iquids, andG lasses , Wiley, New York, (1968).

(16) Gmehling, J . , Onken, U ., and A r lt , W. , Chemistry Data S e r i e s ,DECHEMA, Frankfurt, (1980).

(17) Reid, R .C ., P rausn itz , J .M ., and Sherwood, T .K ., The Propertieso f Liquids and Gases, 3rd. E d i t . , McGraw-Hill, New York, (1977).

(18) Timmermans, J . , Physico-Chemical Constants o f Pure Organic Compounds,E ls e v ie r , New York, (1950/1965), Vol. I , I I .

(19) Advances in Chemistry S e r ie s , Vol. 15 and 22, P hysica l P ropertieso f Compounds, Am. Chem. S o c . , Washington, D .C ., (1955).

(20) In tern ation a l C r i t i c a l T ables , National Academy o f S c ien ce , (1926).

(21) Weast, R.C., CRC Handbook o f Chemistry and P h y s ic s , CRC Press I n c . ,F lor ida , (1979).

Page 90: Classical and Statistical Thermodynamics of Solid-Liquid

69

(22) Dean, A ., Lange's Handbook of Chemistry, 12th E d i t . , McGraw-Hill,New York, (1979).

(23) McLaughlin, E. and Ubbelohde, A .R ., Trans. Faraday Soc. (1957),53, 628.

(24) Lange, N.A. and Forker, G.M., Handbook of Chemistry, 10th E d i t . ,McGraw-Hill, New York, (1961).

(25) API Technical Data Book, API, Ju ly , (1968).

(26) NGPSA Data Book, NGPSA, (1972).

Page 91: Classical and Statistical Thermodynamics of Solid-Liquid

70

Acknowledgements

The authors g r a te fu l ly acknowledge support for th is work from the

Department o f Energy through grant //DE-FG22-84PC70784 and the National

Science Foundation through grant #CPE 83-14224. JEC a lso thanks the

S h e l l Companies Foundation for a Fellow ship.

Page 92: Classical and Statistical Thermodynamics of Solid-Liquid

b. F u r th e r D iscuss ion of the S o l u b i l i t i e s o f the

S o lu t e s in Mix tu res of So lven t s .

The work, p r e s e n t e d in th e preced ing paper r e p r e s e n t s an ex ten s io n o f

t h e work of Choi e t a l . (1985). In t h a t pape r , the s o l u b i l i t i e s o f f i v e

s o l u t e s in m ix tu re s of benzene and cyclohexane were de te rmined exper ­

im e n t a l l y and compared to th e th e p r e d i c t i o n s of r e g u l a r s o lu t i o n th e o ­

ry , ex tended r e g u l a r s o l u t i o n th e o ry , and W i ls o n 's eq u a t io n . In our

work, th e s o l u b i l i t i e s o f th e same f i v e s o l u t e s were e x p e r im e n ta l ly de­

te rm ined in f i v e b in a ry s o lv e n t m ix tu res and one q u a t e rn a ry s o lv e n t mix­

t u r e . These r e s u l t s , along with th e r e s u l t s o f Choi e t a l . (1985) , were

used t o t e s t th e p r e d i c t i v e c a p a b i l i t i e s of UNIQUAC, a s well a s the

t h r e e models a l r e a d y mentioned above. Based on the comparison of ex p e r ­

imental and p r e d i c t e d a c t i v i t y c o e f f i c i e n t s , i t was determined t h a t the

s o l u t i o n models could p r e d i c t s o l u b i l i t i e s in mult icomponent m ix tu re s

q u i t e a c c u r a t e l y , us ing only b in a ry p a ram e te r s . The f i v e component sys ­

tem was c o n s id e re d a s t r i n g e n t t e s t and th e r e s u l t s were very good. The

r e s u l t s a l s o showed, however, t h a t r e g u l a r s o l u t i o n th e o r y , w ith no ad­

j u s t a b l e p a r a m e te r s , was a l s o q u i t e e f f e c t i v e a t p r e d i c t i o n of t h e r e ­

s u l t s .

A number of f a c t s have come to l i g h t s in c e th e p u b l i c a t i o n o f t h a t

paper t h a t should be c o n s id e re d . As w i l l be d i s c u s s e d in c h a p t e r 5 , s ec ­

t i o n b . , c h a p t e r 6, s e c t i o n b. and in c h a p t e r 7, the p r e d i c t i o n s o f the

s o l u t i o n models c o n t a in in g two a d j u s t a b l e pa ram e te rs (W i l s o n ' s equa t ion

and UNIQUAC) can be u n r e a l i s t i c f o r p r e d i c t i o n s o u t s i d e of the mole

f r a c t i o n range where th e b in a ry param ete rs were de te rm ined . This does

- 71 -

Page 93: Classical and Statistical Thermodynamics of Solid-Liquid

72

not n e c e s s a r i l y mean t h a t th e s o l u b i l i t i e s p r e d i c t e d in t h e s e r eg io n s

w i l l be i n c o r r e c t , but i t does mean t h a t the p r e d i c t i o n s must be used

w i th c a u t io n . This d i s c u s s i o n i s based on r e s u l t s o b ta in e d s in c e the pu­

b l i c a t i o n of th e p reced ing paper . I t does not i n v a l i d a t e any of th e r e ­

s u l t s given in t h a t work b u t i t does i n d i c a t e t h a t th e co n c lu s io n s might

no t be as c l e a r as i n d i c a t e d .

Page 94: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 5

SOLUBILITIES OF HETEROCYCLIC POLYNUCLEAR AROMATICS

IN ORGANIC SOLVENTS AND THEIR MIXTURES

a. Manuscr ip t a c c ep ted f o r p u b l i c a t i o n in J ou rna l of

S o lu t io n Chemis try , (1988) .

Page 95: Classical and Statistical Thermodynamics of Solid-Liquid

73 a

1 0 / 7 / B 8

Attn: Ms. Georgia Prince Rights and Permissions Dept.Plenum.Press Inc.233 Spring StreetNew York, New York 10013Dear Ms. Prince,

I am writing to you in connection with a paper that I recently coauthored in the Journal of Solution Chemistry.The paper is titled:11 Solubilities of Series of Heterocyclic Polynuclear Aromatic Hydrocarbons in Organic Solvents and Their Mixtures."

by J. E. Coon, W. B. Sediawan, J. E. Auwaerter, and E. McLaughlinThe paper has been accepted for publication but I regret to say that I have been unable to locate the manuscript number.

The purpose of this letter is to request a letter from you allowing this paper to be published in my Ph.D. dissertation as a chapter. My college requires the letter because the dissertation will be microfilmed by University Microfilms Inc., who will distribute it on a By Request Only basis to other researchers. The letter in no way affects your copyright to the paper.

The letter should specifically state the conditions I have given in the above paragraph.

As I am scheduled to graduate in December of this year and must have my dissertation (letters included) in by November 25, 1988, I request that you respond to this letter as quickly as possible. Thank you in advance for your timely response.

♦ ta f m aterialPERMISSION gr*HT® w ithout c r e d ithas appeared in °“r obtaln thet o another source • a t M ^ i n a lof th e author 1 s) ^ ^ lg cor.f in edp u t l i c a t i o H !anC ' c '- . . . . . . . . x p s r i s s i c n i st o the purpose ■

Sincerely,

John E. Coon

,v.,e?T^'Biven

Prince Date

O ff ic e ofP u b l i s h i n g Corp, 233 bprm *set- ^ r v , Vi 10013

Page 96: Classical and Statistical Thermodynamics of Solid-Liquid

74

SOLUBILITIES OF FAMILIES OF HETEROCYCLIC POLYNUCLEAR

AROMATICS IN ORGANIC SOLVENTS AND THEIR MIXTURES

John E. Coon

Wahyudi B. Sediawan

John E. Auwaerter

Edward McLaughlin*

Department o f Chemical Eng inee r ing

L o u i s i an a S t a t e U n i v e r s i t y

Baton Rouge, LA 70803

^Author f o r Correspondence

Page 97: Classical and Statistical Thermodynamics of Solid-Liquid

75

ABSTRACT

The s o l u b i l i t i e s o f a n t h r a c e n e , a c r i d i n e , x an thene , t h i o x a n th e n e ,

c a r b a z o l e , d ib e p z o fu ra n , and d ibe nzo th iophe ne have been e x p e r im e n ta l ly

de te rm ined in benzene, cyc lohexane , th i o p h e n e , and p y r i d i n e from ambient

t e m p e ra tu re to app rox im ate ly 440 K. The r e s u l t s have been c o r r e l a t e d

u s in g t h e c l a s s i c a l e q u a t io n f o r s o l i d - l i q u i d s o l u b i l i t y t o o b t a in th e

exper im en ta l a c t i v i t y c o e f f i c i e n t o f t h e s o l u t e in t h e s o lv e n t . These

exper im en ta l a c t i v i t y c o e f f i c i e n t s have been r e g r e s s e d , us ing t h r e e

common s o l u t i o n models , t o f i n d th e b i n a ry i n t e r a c t i o n pa ram e te r s needed

in t h o s e models .

The s o l u b i l i t i e s o f b ip h e n y l , d ib e n z o fu ra n , and d ibe nzo th iophene

have been e x p e r i m e n t a l l y de te rm ined in f i v e b in a ry m ix tu res o f th e

s o l v e n t s . The exper im en ta l a c t i v i t y c o e f f i c i e n t s have been found and

compared t o t h e va lues p r e d i c t e d by th e f o u r s o l u t i o n models , us ing th e

b i n a r y i n t e r a c t i o n pa ra m e te r s o b ta in e d from th e s o l u b i l i t i e s in th e pure

s o l v e n t s and s o l v e n t - s o l v e n t b i n a ry i n t e r a c t i o n p a ram e te r s o b ta in e d from

l i t e r a t u r e VLE d a ta .

The e f f e c t o f s u b s t i t u t i n g v a r io u s he te roa tom s i n t o t h e r i n g s t r u c ­

t u r e has been d i s c u s s e d .

KEYWORDS

S o l u b i l i t i e s , S o l i d - L i q u i d E q u i l ib r iu m , P o ly n u c le a r Aromatic Hydrocar­

bons , S o lu t i o n Models

Page 98: Classical and Statistical Thermodynamics of Solid-Liquid

76

I . INTRODUCTION

There has been a l a r g e i n c r e a s e in t h e l a s t t e n y e a r s i n t h e number

o f p ap e r s d e a l i n g w i th sol i d - l i q u i d e q u i l i b r i a in o rg a n ic systems ( 1 - 8 ).

Th is i n t e r e s t i s due t o t h e p r e s e n t t r e n d in t h e pe t ro leum in d u s t r y

towards h e a v i e r f e e d s to c k s and c o a l - d e r i v e d f u e l s where a s u b s t a n t i a l

d a t a b a s e o f thermodynamic p r o p e r t i e s has to be developed f o r systems

c o n t a i n i n g bo th normal and h e a v i e r components in s u b s t a n t i a l q u a n t i t i e s .

A c t i v i t y c o e f f i c i e n t d a t a , which a r e needed f o r many des ign c a l c u ­

l a t i o n s , a r e u n a v a i l a b l e f o r systems c o n t a in in g p o ly n u c l e a r a rom a t ic

hydrocarbons . This i s mainly due to t h e d i f f i c u l t y invo lved in o b t a i n ­

ing exper im en ta l VLE d a t a f o r t h e s e ty p e s of systems due t o t h e i r high

m e l t i n g p o i n t s . F o r t u n a t e l y , t h e s e d a t a can be o b ta in e d us ing s o l i d -

l i q u i d s o l u b i l i t y d a t a as wel l ( 1 - 3 , 9 -11 ) . The work r e p o r t e d here i s a

c o n t i n u a t i o n o f our p r e v io u s e f f o r t s In t h i s a r e a ( 1 - 3 ) and has been

used to o b t a i n b i n a ry i n t e r a c t i o n p a ram e te r s f o r t h r e e s o l u t i o n models

( ex tended S c a t c h a rd -H i ld e b ra n d th e o ry ( 1 2 ) , W i l s o n ' s Equa t ion ( 1 3 ) , and

UNIQUAC ( 1 4 ) ) f o r 28 b in a ry sys tems. The u s e f u l n e s s o f t h e p a ram e te r s

o b t a in e d has been t e s t e d by p r e d i c t i n g t h e s o l u b i l i t i e s o f t h r e e s o l u t e s

i n f i v e b i n a ry m ix tu re s and comparing th e p r e d i c t i o n s w i th t h e e x p e r i ­

mental r e s u l t s .

In t h i s pape r t h e t h e o ry o f s o l i d - l i q u i d s o l u b i l i t y i s b r i e f l y

reviewed and i s fo l low ed by expe r im en ta l p ro c e d u r e s , chem ica ls used in

t h e program and l i k e l y s o u rc e s o f e r r o r in d e t e rm in in g th e exper imenta l

a c t i v i t y c o e f f i c i e n t s from t h e d a t a . The exper im en ta l r e s u l t s f o r

s o l u b i l i t i e s in t h e pure s o l v e n t s and a d i s c u s s i o n o f t h e r e g r e s s i o n

Page 99: Classical and Statistical Thermodynamics of Solid-Liquid

t e c h n i q u e f o r d e t e r m in i n g t h e b i n a r y i n t e r a c t i o n p a r a m e te r s f o l lo w . The

a c t i v i t y c o e f f i c i e n t s from t h e s o l u b i l i t i e s o f t h e s o l u t e s in t h e b i n a ry

s o l v e n t m i x tu r e s a r e compared w i th t h e p r e d i c t e d a c t i v i t y c o e f f i c i e n t s

i n t h e f i f t h s e c t i o n and t h i s i s fo l low ed by a s e c t i o n d i s c u s s i n g t h e

e f f e c t o f he te ro a to m s u b s t i t u t i o n on th e r e s u l t s . The l a s t s e c t i o n

summarizes our r e s u l t s and c o n c l u s i o n s .

Page 100: Classical and Statistical Thermodynamics of Solid-Liquid

78

I I THEORY

While so l id - l iqu id equil ibr ia data have not been used for the

determination of l iquid phase nonideali t ie s until recently ( 1-11), the

equation which predicts s o lu b i l i t y has been known for many years and i s

given in the l i terature in many equivalent forms. The most general form

of the equation is:

As! ACP.nT T ’T T*i .. — ID / Ul ^ ^ [ D / I T l -j\-In x . _ _ _ c - - 1 ) -------- — c - - 1)

ACpnT T Av-

+ — p - S In ( -* ) + lny. + ^ ( P - P*a t ) + \ (1)

f ACwhere As^, P. , Av^, and y. are the molar entropy of fusion of the

so lu te , the difference between i t s s o l id and liquid heat capaci t ies , the

difference between i t s so l id and l iquid molar volumes, (a l l evaluated at

i t s t r ip l e point) and the so lu te liquid-phase a c t iv i ty c o e f f i c i e n t ,

respect ively. The t r i p l e point has been replaced in equation 1 by the

so lute melting point, a s im pl i f icat ion that introduces neg lig ib le error

into the analysis . The l a s t term, A, in equation 1 represents the

e f f e c t on the solute s o lu b i l i t y of a s o l id - s o l id lambda phase transit ion

in the so lute (1 ) . I t i s zero i f the temperature i s above the tran s i ­

t ion temperature but for temperatures below the lambda trans it ion i t i s

given by:P PAh. As.

A " r t r

P Pwhere As. and Ah. are the entropy and enthalpy changes of the lambda

tran s i t ion , respect ively . Excellent discussions of the derivation of

equation 1 are available in the l i tera ture (6 , 15).

Page 101: Classical and Statistical Thermodynamics of Solid-Liquid

79

For our s o l u t e s , no s o l i d - s o l i d phase t r a n s i t i o n s a r e known, so the

l a s t te rm in equa t ion 1 i s z e ro . The Poynt ing c o r r e c t i o n i s a l s o n e g l i ­

g i b l e a t t h e low p r e s s u r e s used in our work. To f i n d th e l i q u i d - p h a s e

a c t i v i t y c o e f f i c i e n t of t h e s o l u t e in t h e s o l v e n t ( o r s o l v e n t m i x t u r e ) ,

on ly T , As*", and AC a r e needed. Because t h e s e d a t a a r e n o t a v a i l a b l e m p

in t h e l i t e r a t u r e f o r th e s o l u t e s be ing i n v e s t i g a t e d , t h e needed va lues

have been de termined e x p e r i m e n t a l ly .

Page 102: Classical and Statistical Thermodynamics of Solid-Liquid

80

I I I . EXPERIMENTAL ACTIVITY COEFFICIENTS FROM

SOLID-LIQUID EQUILIBRIUM DATA

Heats o f f u s io n and h e a t c a p a c i t i e s were measured us ing a C-80

Setaram D i f f e r e n t i a l Scanning C a lo r im e te r . The c a l o r i m e t e r c o n s i s t s of

two i d e n t i c a l and in dependen t h e a t f low d e t e c t o r s which a r e su rrounded

by a h e a t conduc t ive b lo c k , t h e te m p e ra tu r e o f which i s c o n t r o l l e d

p r e c i s e l y by a t e m p e ra tu re p r o g r a m m e r / c o n t r o l l e r . The h e a t f low d e t e c ­

t o r s t r a n s f e r h e a t to two i d e n t i c a l t u b e s , one o f which c o n t a i n s th e

sample w h i l e t h e o t h e r tu b e i s kept empty.

The h e a t f l u x d e t e c t o r s a r e c o n s t r u c t e d t o p o s s e s s h igh the rmal

c o n d u c t i v i t i e s so t h a t t h e t e m p e ra tu r e s of t h e b loc k and th e tu b e s a r e

i d e n t i c a l , and they a r e d i f f e r e n t i a l l y connec ted to ensu re t h a t the rmal

p e r t u r b a t i o n s t o th e b lo c k a r e e l i m i n a t e d and on ly t h e s ig n a l due t o

h e a t exchange with t h e sample i s g e n e ra te d .

To measure h e a t s o f f u s i o n , t h e t e m p e ra t u r e o f t h e b lock was i n ­

c r e a s e d a t a c o n s t a n t r a t e from below th e m e l t i n g p o i n t o f t h e sample t o

above i t , and th e h e a t f l u x moni to red . By i n t e g r a t i n g t h e h e a t f l u x

d u r in g t h e m e l t in g p r o c e s s , t h e h e a t o f f u s i o n was t h e n o b ta in e d . The

r e s u l t s o f t h e measurements o f t h e h ea t s o f f u s io n have been checked by

comparison w i th l i t e r a t u r e d a t a and our e s t i m a t e o f t h e e r r o r i s ±1%.

In measurements o f t h e h e a t c a p a c i t i e s , t h e t e m p e ra t u r e o f t h e

b lo c k was in c r e a s e d a t a c o n s t a n t r a t e . The h e a t f l u x due t o t h e sen­

s i b l e h e a t can be o b t a in e d by s u b t r a c t i n g t h e h e a t f l u x measured when

o p e r a t i n g w i th empty tu b e s from t h e h e a t f l u x measured when o p e r a t i n g

w i th t h e sample. Our e s t i m a t e o f t h e e r r o r in t h e s e measurements i s

±4%.

Page 103: Classical and Statistical Thermodynamics of Solid-Liquid

The thermodynamic p r o p e r t i e s de te rmined by th e methods d i s c u s s e d

above a r e p r e s e n t e d in Table I , a long w i th t h e l i t e r a t u r e v a lu e s f o r

b ip h e n y l . With t h e s e thermodynamic p r o p e r t i e s o f t h e s o l u t e s , a n a l y s i s

o f t h e sol i d - l i q u i d s o l u b i l i t y d a t a can be accomplished.

The exper im en ta l p ro ced u res used t o f i n d th e s o l u b i l i t y d a t a have

been d i s c u s s e d in p r e v io u s p ap e r s ( 1 - 3 , 9 -1 1 ). The exper im en ts c o n s i s t

o f d e t e rm in in g th e t e m p e ra tu r e a t which th e l a s t t r a c e of a known quan­

t i t y o f t h e s o l i d s o l u t e d i s a p p e a r s w h i le be ing s lowly hea ted in a known

q u a n t i t y o f s o lv e n t . The t e m p e ra tu r e o b ta in e d r e p r e s e n t s t h e l i q u i d u s

l i n e a t t h a t com pos i t ion and th e whole l i q u i d u s l i n e can be o b t a in e d by

runn ing samples a t v a r io u s com pos i t ions . The te c h n iq u e i s f a s t and

h ig h l y a c c u r a t e . As d i s c u s s e d in a p r e v io u s pape r ( 3 ) , t h e e r r o r s in

com posi t ion a r e l e s s than ±0.0003 in s o l u t e mole f r a c t i o n and ±0 .1 K in

t e m p e ra tu r e based on th e acc u racy of our t e m p e ra tu re measurements.

These e r r o r s have an i n s i g n i f i c a n t e f f e c t on t h e exper im en ta l a c t i v i t y

c o e f f i c i e n t s o b t a in e d b u t a s l i g h t l y l a r g e r e r r o r (and s i g n i f i c a n t l y

more d i f f i c u l t t o e s t i m a t e ) i s t h e human e r r o r in d e t e rm in in g t h e end­

p o i n t v i s u a l l y which can be de te rm ined t o ±1 .0 K a l l o f th e t ime and

u s u a l l y much c l o s e r than t h a t . S e n s i t i v i t y a n a l y s i s shows t h a t t h i s

s i z e e r r o r s t i l l has a minimal e f f e c t on t h e a c t i v i t y c o e f f i c i e n t s

o b t a in e d . This i n s e n s i t i v i t y t o expe r im en ta l e r r o r and t h e r e l a t i v e

ea s e o f per fo rm ing t h e exper im en ts makes t h i s method o f p roduc ing l i q -

u id -p h a s e d a t a v e ry a t t r a c t i v e .

The chem ica ls used were pu rchased from A ld r ic h Chemicals , e x ce p t

f o r th io x a n th e n e and a c r i d i n e . The a n t h ra c e n e i s t h e i r Gold Label

q u a l i t y (99.99+%) and i s used as pu rchased as was t h e xan thene (99.64%).

The a c r i d i n e , p u rchased from Kodak and p u r i f i e d by vacuum s u b l im a t io n a t

Page 104: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE 1

Thermodynamic Properties for the Solutes Necessary for Analysis of the Data to Find Act iv ity Coeff ic ient

AH!Solute

Biphenyl ( 1 iterature)

Anthracene

Acridine

Xanthene

Thioxanthene

Dibenzothiophene

Dibenzofuran

Carbazole (1 i terature)

342.6

389.5

384.2

373.7

401.7

371.4

355.7

519.2

(a)

(b)

'TmJ/gmol

18,659

28,600

19,700

19.200

26,100

21,000

18,600

27.200

(a)

(b)

According to Spaght e t a l . (16)

According to Radomska and Radowski (32).

ASf.i ACTm

J/gmol K

54.67

58.44

51.37

51.26

64.87

56.42

51.59

52.39

TmJ/gmol K

36.3

5.4

39.8

18.0

19.4

31.4

9.6

2. 2

(a)

00ro

Page 105: Classical and Statistical Thermodynamics of Solid-Liquid

373 K, has a p u r i t y o f 99.87%. The d ibe nzo fu ran (99.55%) and d ibenzo-

th iophene (99.45%) were d i s s o lv e d in t o l u e n e and then reco v e re d by

r e c r y s t a l l i z a t i o n in a r o t a r y e v a p o r a to r . The c a r b a z o le ( i n d i c a t e d

p u r i t y 99%) was used as purchased a l th o u g h i t s m e l t i n g p o i n t (515 K -

521 K) and v i s u a l o b s e r v a t i o n o f t h a t m e l t in g p ro c e s s make us doubt t h a t

p u r i t y . Comparisons o f our da ta f o r Ah^ w i th t h e l i t e r a t u r e va lue

l i s t e d in Table I a l s o i n d i c a t e p u r i t y problems. Our a t t e m p t s ( r e c r y s -

t a l l i z a t i o n under facuum from to l u e n e ) a t f u r t h e r p u r i f i c a t i o n were no t

s u c c e s s f u l . The th io x a n th e n e used in t h e program was s y n t h e s i z e d by Dr.

E. J . E isenbraun a t Oklahoma S ta t e U n i v e r s i t y . He i n d i c a t e d a p u r i t y of

99+% and our r e s u l t s (99.24%), a f t e r f i l t e r i n g i t in a t o l u e n e s o l u t i o n

and r e c r y s t a l l i z a t i o n in a r o t a r y e v a p o r a t o r , agreed w i th h i s f i g u r e .

The p u r i t i e s l i s t e d by us were o b ta in e d by gas chromatography and r e p r e ­

s e n t a r e a p e r c e n t s and no a t t e m p t has been made t o i d e n t i f y t h e im pur i ­

t i e s . The numbers s h o u ld , t h e r e f o r e , be c o n s id e re d e s t i m a t e s . All t h e

s o l v e n t s (A ld r i c h Gold Label (99.9+%)) were used as pu rchased a f t e r t h e

p u r i t i e s were checked by gas chromatography and th e y were s t o r e d over

m o lecu la r s i e v e s t o minimize w a te r a b s o r p t i o n .

Page 106: Classical and Statistical Thermodynamics of Solid-Liquid

84

IV. SOLUBILITY RESULTS IN PURE SOLVENTS

The s o l u b i l i t i e s o f 28 s y s t e m s , from am bient t e m p e r a t u r e t o a pp rox ­

im a t e l y 440 K have been measured , and t h e d a t a and t h e e x p e r im e n ta l

a c t i v i t y c o e f f i c i e n t s o b t a in e d u s in g e q u a t i o n 1 a r e g iven in Tab les I I

t h ro u g h V f o r t h e seven s o l u t e s in each o f t h e f o u r p u re s o l v e n t s . As

shown i n f i g u r e 1, t h e seven s o l u t e s i n v e s t i g a t e d , a lo n g w i th f l u o r e n e ,

r e p r e s e n t two f a m i l i e s o f model compounds d i f f e r i n g on ly by i n s e r t i o n o f

a d i f f e r e n t he te ro a to m i n t o t h e r i n g s . D ibenzo fu ran , d i b e n z o t h i o p h e n e ,

and c a r b a z o l e a r e t h e oxygen, s u l f u r , and n i t r o g e n h e t e ro a to m an a lo g s of

f l u o r e n e w i th x a n t h e n e , t h i o x a n t h e n e , and a c r i d i n e t h e an a lo g s of a n t h ­

ra c e n e . The s o l u b i l i t y r e s u l t s f o r f l u o r e n e have n o t been p r e s e n t e d in

T a b le s I I th ro u g h V a s t h e y have been p u b l i s h e d p r e v i o u s l y ( 1 , 9 , 1 1 ) ) .

Also p r e s e n t e d in t h e t a b l e s a r e t h e p r e d i c t e d a c t i v i t y c o e f f i c ­

i e n t s u s in g f o u r common s o l u t i o n models ( S c a t c h a r d - H i 1 debrand t h e o r y ,

e x tended S c a t c h a r d - H i 1 debrand t h e o r y , W i l s o n ' s e q u a t i o n , and UNIQUAC).

The v a l u e s g iv e n r e p r e s e n t t h e b e s t f i t s o f t h e s o l u t i o n model t o t h e

ex p e r im e n ta l d a t a e x c e p t f o r S c a t c h a r d - H i 1 debrand t h e o r y which has no

a d j u s t a b l e p a r a m e te r s in i t . Extended S c a t c h a r d - H i I d e b r a n d t h e o r y has

one b i n a r y i n t e r a c t i o n p a r a m e t e r and W i l s o n ' s e q u a t io n and UNIQUAC each

have two b i n a r y i n t e r a c t i o n p a r a m e te r s . Also g ive n a r e t h e p e r c e n t

d e v i a t i o n s between c a l c u l a t e d and e x p e r im e n ta l a c t i v i t y c o e f f i c i e n t s f o r

each o f t h e models .

The b i n a r y p a r a m e te r s r e s u l t i n g from r e g r e s s i o n o f t h e d a t a a r e

d i s c u s s e d below and p r e s e n t e d i n Tab les VI ( a ) and VII ( a ) . The p a r a ­

m e te r s f o r b ipheny l have been g iven i n t h e s e t a b l e s , even though t h e

Page 107: Classical and Statistical Thermodynamics of Solid-Liquid

85

S o l u t e s

F l u o r e n e A n t h r a c e n e Biphenyl

Heierootom Analog of ■

I) Fluorene

iH

D i b e n j o t u r o n O i b e n z o m i o o n e n e C o r c a z o i e

2) Anthracene

X a n t h e n e T h i o x o n t n e n e Ac r i d i ne

Figure 5=1; Structures of the Compounds

Studied In the Paper In Chapter 5*

Page 108: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE II

Comparison o f Experimental and Calculated A c t iv i ty C o e f f i c ie n t s fo r the Seven S o lu tes in Benzene

TempK

x2(expt.) V2(expt.)i . . = 1.1 0 £ i.i * 0 Wilson's Eqn. UNIQUACY 2 ( c a 1 c . ) A

%Y - ( c a l c . ) A

* %Y 2 ( c a l c . ) A

%Y 2 ( c a l c . ) A

%

Dibenzofuran3 2 1 . 93 2 3 . 53 2 9 . 43 3 2 . 03 3 8 . 7

0 . 4 7 9 70 . 5 0 6 80 . 5 8 4 40 . 6 2 2 20 . 7 2 2 4

1 . 0 9 31 . 0 7 01 . 0 4 61 . 0 3 51 . 0 1 5

1 . 1 2 51 . 1 0 81 . 0 6 91 . 0 5 51 . 0 2 6

2 . 9 3 . 6 2 . 2

1 . 9 1 , 1

1 . 0 9 31 . 0 8 11 . 0 5 21 . 0 4 11 . 0 2 0

1 . 0

0 , 50 , 6

0 . 4

1 . 0 9 01 . 0 7 51 . 0 4 51 . 0 3 41 . 0 1 5

0 . 30 . 50 . 2

0 . 1

0 . 0

1 . 0 9 01 . 0 7 51 . 0 4 51 . 0 3 41 . 0 1 5

0 . 30 . 50 . 1

0 . 1

0 . 0

Dibenzothiophene3 0 9 . 93 1 5 . 33 2 7 . 83 3 7 . 23 4 2 . 3

0 . 1 8 9 60 . 2 2 4 60 . 3 3 4 70 . 4 3 6 20 . 5 1 4 4

1 . 4 6 51 . 4 0 41 . 2 4 91 . 1 7 31 . 1 0 6

1 . 7 8 21 . 6 4 71 . 3 6 61 . 2 1 61 . 1 4 1

2 1 . 6

1 7 . 39 . 33 . 73 . 2

1 . 4 6 51 . 3 9 11 . 2 2 91 . 1 3 81 . 0 9 1

1 . 0

1 . 6

3 . 01 . 3

1 . 4 6 61 . 4 0 31 . 2 5 51 . 1 6 31 . 1 1 2

0 . 0

0 . 1

0 . 40 . 90 . 6

1 . 4 6 51 . 4 0 41 . 2 5 61 . 1 6 21 . 1 1 1

0 . 0

0 . 0

0 . 50 . 90 . 4

Carbazole3 0 7 . 1 3 1 0 . 33 1 3 . 2 3 2 4 . 1 3 2 6 . 83 4 0 . 3

0 . 0 0 5 40 . 0 0 6 80 . 0 0 6 30 . 0 0 9 30 . 0 1 0 90 . 0 1 3 4

2 . 4 4 02 . 1 7 22 . 5 9 12 . 4 5 82 . 2 7 82 . 7 5 4

3 . 3 6 53 . 3 0 63 . 2 7 63 . 1 1 33 . 0 6 62 . 9 0 8

3 7 . 95 2 . 22 6 . 52 6 . 6 3 4 . 65 . 6

2 . 4 4 02 . 4 0 82 . 3 9 22 . 3 0 42 . 2 7 82 . 1 9 2

1 0 . 97 . 76 . 30 . 0

2 0 . 4

2 . 3 9 62 . 4 0 92 . 4 2 32 . 4 6 42 . 4 7 22 . 5 2 0

1 . 71 0 . 96 . 5 0 . 2

8 . 58 . 5

2 . 3 2 82 . 3 6 12 . 3 8 92 . 4 8 92 . 5 1 12 . 6 1 4

4 . 68 . 77 . 8 1 . 3

1 0 . 2

5 . 1 03at

Page 109: Classical and Statistical Thermodynamics of Solid-Liquid

T A B L E II ( C o n t i n u e d )C o m p a r i s o n o f E x p e r i m e n t a l a n d C a l c u l a t e d A c t i v i t y C o e f f i c i e n t s f o r t h e S e v e n S o l u t e s i n B e n z e n e

T e m pK

x 2 ( e x p t . ) Y 2 ( e x p t . ) Y 2 ( c a l c . ) A%

A n t h r a c e n e3 0 8 . 9 0 . 0 1 0 1 1 . 7 5 5 1 . 0 7 6 3 8 . 63 3 0 . 6 0 . 0 2 0 3 1 . 7 8 2 1 . 0 6 9 4 0 . 03 3 8 . 2 0 . 0 2 5 7 1 . 7 6 2 1 . 0 6 6 3 9 . 53 4 4 . 6 0 . 0 3 0 3 1 . 8 0 0 1 . 0 6 3 4 0 . 93 5 3 . 9 0 . 0 3 9 3 1 . 7 9 0 1 . 0 6 0 4 0 . 83 6 4 . 3 0 . 0 4 9 9 1 . 8 4 5 1 . 0 5 8 4 2 . 8A c r i d i n e2 9 6 . 3 0 . 1 0 0 4 1 . 9 0 0 1 . 4 8 1 2 2 . 03 0 4 . 7 0 . 1 3 2 0 1 . 7 3 7 1 . 4 0 7 1 9 . 03 1 7 . 2 0 . 1 9 9 8 1 . 4 9 2 1 . 2 9 1 1 3 . 53 2 4 . 2 0 . 2 4 1 3 1 . 4 2 1 1 . 2 3 8 1 2 . 93 3 0 . 3 0 . 2 8 7 8 1 . 3 4 4 1 . 1 9 0 1 1 . 43 3 5 . 6 0 . 3 4 4 1 1 . 2 4 3 1 . 1 4 6 7 . 8T h i o x a n t h e n e3 1 9 . 1 0 . 0 9 7 2 1 . 4 6 3 2 . 4 0 1 6 4 . 13 2 9 . 7 0 . 1 3 8 9 1 . 3 7 8 2 . 0 7 8 5 0 . 83 4 1 . 5 0 . 2 0 0 1 1 . 3 0 7 1 . 7 5 9 3 4 . 63 4 3 . 9 0 . 2 2 7 0 1 . 2 2 5 1 . 6 6 0 3 5 . 53 4 7 . 7 0 . 2 5 2 8 1 . 2 0 9 1 . 5 7 5 3 0 . 33 5 1 . 9 0 . 3 0 0 1 1 . 1 3 0 1 . 4 5 2 2 8 . 4

0 W i l s o n ' s Eqn . U N I Q U A C( c a l c . ) A %

V 2 ( c a l c . ) A%

Y , ( c a l c . ) A %

1 . 7 5 5 1 . 7 3 5 1 . 1 1 . 7 3 2 1 . 31 . 6 6 0 6 . 8 1 . 7 8 3 0 . 1 1 . 7 8 7 0 . 31 . 6 2 6 7 . 7 1 . 7 9 4 1 . 8 1 . 7 9 8 2 . 01 . 5 9 9 1 1 . 2 1 . 8 0 2 0 . 1 1 . 8 0 4 0 . 21 . 5 5 6 1 3 . 1 1 . 8 0 8 1 . 0 1 . 8 0 7 1 . 01 . 5 1 3 1 8 . 0 1 . 8 1 1 1 . 9 1 . 8 0 5 2 . 2

1 . 9 0 0 - 1 . 8 9 5 0 . 3 1 . 8 9 4 0 . 31 . 7 4 6 0 . 5 1 . 7 4 0 0 . 2 1 . 7 4 1 0 . 21 . 5 1 7 1 . 7 1 . 5 1 3 1 . 4 1 . 5 1 4 1 . 41 . 4 1 6 0 . 3 1 . 4 1 3 0 . 6 1 . 4 1 3 0 . 61 . 3 2 9 1 . 1 1 . 3 2 7 1 . 3 1 . 3 2 6 1 . 31 . 2 4 9 0 . 5 1 . 2 4 8 0 . 4 1 . 2 4 7 0 . 3

1 . 4 6 3 - 1 . 4 7 4 0 . 7 1 . 4 7 4 0 . 71 . 3 7 4 0 . 3 1 . 3 7 2 0 . 4 1 . 3 7 3 0 . 31 . 2 7 8 2 . 2 1 . 2 6 8 3 . 0 1 . 2 6 8 2 . 91 . 2 4 6 1 . 7 1 . 2 3 5 0 . 8 1 . 2 3 5 0 . 81 . 2 1 8 0 . 8 1 . 2 0 6 0 . 2 1 . 2 0 6 0 . 21 . 1 7 6 4 . 0 1 . 1 6 3 2 . 9 1 . 1 6 3 2 . 9

Page 110: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE II (Continued)

Comparison o f Experimental and Calculated A c t iv i ty C o e f f i c ie n t s for the Seven S o lu tes in Benzene

g ij ~ 0 g i.i * 0 W i l s o n ' s Eqn. U N I Q U A CTemp x2Cexpt.) Y 2 ( e * p t . ) Y 2 ( c a ! c . ) Y 2 ( c a l c . ) _ A _ v 2 ( c a l c . ) _ a _ Y 2 ( c a l c . )K % % % _______ __

Xanthene2 9 9 . 6 0 . 1 6 5 8 1 . 3 9 0 1 . 5 9 7 1 4 . 9 1 . 3 9 0 - 1 . 3 9 6 0 . 4 1 . 3 9 3 0 . 2

3 1 5 . 2 0 . 2 5 2 9 1 . 3 0 4 1 . 3 8 2 6 . 0 1 . 2 5 5 3 . 7 1 . 3 0 4 0 . 0 1 . 3 0 6 0 . 2

3 1 5 . 9 0 . 2 5 3 4 1 . 3 2 1 1 . 3 8 0 4 . 5 1 . 2 5 4 5 . 1 . 1 . 3 0 3 1 . 4 1 . 3 0 5 1 . 2

3 2 4 . 9 0 . 3 3 0 5 1 . 2 2 6 1 . 2 6 1 2 . 9 1 . 1 7 7 4 . 0 1 . 2 3 7 0 . 9 1 . 2 3 8 1 . 0

3 3 6 . 0 0 . 4 3 7 9 1 . 1 5 8 1 . 1 5 2 0 . 5 1 . 1 0 5 4 . 6 1 . 1 6 1 0 . 2 1 . 1 5 9 0 . 13 4 9 , 6 0 . 6 1 2 4 1 . 0 7 4 1 . 0 5 6 1 . 6 1 . 0 3 9 3 . 2 1 . 0 7 3 0 . 0 1 . 0 7 0 0 . 4

g

Page 111: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE III

Comparison o f Experimental and Cacluated A ctiv i

T e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) Y 2 ( c a l c . ) A%

D i b e n z o f u r a n3 2 7 . 8 0 . 4 2 2 6 1 . 4 0 1 1 . 5 1 3 8 . 0

3 3 0 . 2 0 . 4 8 0 5 1 . 2 9 3 1 . 3 8 1 6 . 8

3 3 4 , 0 0 . 5 4 3 6 1 . 2 3 2 1 . 2 6 9 3 . 03 3 7 . 5 0 . 6 3 0 0 1 . 1 3 8 1 . 1 6 0 1 . 93 3 8 . 5 0 . 6 7 0 0 1 . 0 9 0 1 . 1 2 2 2 . 33 4 5 . 1 0 . 8 1 2 0 1 . 0 1 8 1 . 0 3 5 1 . 6

D i b e n z o t h i o p h e n e3 2 0 . 6 0 . 0 8 7 1 4 . 0 9 0 5 . 4 6 0 3 3 . 53 2 6 . 6 0 . 1 1 2 9 3 . 6 0 7 4 . 6 8 5 2 9 . 93 2 8 . 2 0 . 1 2 9 4 3 . 2 5 9 4 . 3 1 8 3 2 . 53 3 5 . 3 0 . 1 9 9 9 2 . 4 8 5 3 . 1 5 6 2 7 . 03 4 3 . 0 0 . 3 1 5 4 1 . 8 3 0 2 . 1 4 2 1 7 . 13 4 3 . 3 0 . 3 3 4 6 1 . 7 3 5 2 . 0 3 4 1 7 . 2C a r b a z o l e3 2 0 . 6 0 . 0 0 0 6 6 3 1 . 1 0 9 1 0 . 8 2 6 6 5 . 23 2 1 . 1 0 . 0 0 0 8 3 2 5 . 1 2 7 1 0 . 7 7 4 5 7 . 13 2 5 . 1 0 . 0 0 1 0 6 2 2 . 2 6 3 1 0 . 4 4 9 5 3 . 13 5 7 . 2 0 . 0 0 2 9 3 1 9 . 6 6 7 8 . 3 7 3 5 7 . 4

ty C o e f f i c ie n t for the Seven S o lu tes in Cyclohexane

\ i * ° Wilson‘5 Eqn. U N I Q U A C2 ( c a l c . ) A

%Y 2 ( c a l c . ) A

%Y2( c a l c . ) A

%

A . 4 0 1 1 . 4 0 1 0 . 0 1 . 4 0 0 0 . 1

1 . 3 0 0 0 . 6 1 . 3 0 2 0 . 7 1 . 3 0 3 0 . 71 . 2 1 4 1 . 5 1 . 2 1 7 1 . 2 1 . 2 1 7 1 . 2

1 . 1 2 8 0 . 8 1 . 1 3 2 0 . 5 1 . 1 3 2 0 . 51 . 0 9 8 0 . 7 1 . 1 0 2 1 . 1 1 . 1 0 1 1 . 0

1 . 0 2 8 1 . 0 1 . 0 3 0 1 . 2 1 . 0 3 0 1 . 1

4 . 0 9 0 4 . 1 0 8 0 . 4 4 . 0 9 1 0 . 0

3 . 6 0 2 0 . 1 3 . 5 5 4 1 . 5 3 . 5 6 1 1 . 33 . 3 6 7 3 . 3 3 . 2 8 9 0 . 9 3 . 3 0 8 1 . 52 . 5 9 6 4 . 6 2 . 4 9 3 0 . 3 2 . 5 0 6 0 . 8

1 . 8 8 2 2 . 8 1 . 8 1 8 0 . 7 1 . 8 0 2 1 . 51 . 8 0 2 3 . 9 1 . 7 4 5 0 . 5 1 . 7 2 6 0 . 5

3 1 . 1 0 9 2 7 . 0 2 3 1 3 . 1 2 6 . 8 9 1 1 3 . 63 0 . 8 9 5 2 3 . 0 2 6 . 7 4 5 6 . 4 2 6 . 7 0 6 6 . 32 9 . 5 5 7 3 2 . 8 2 5 . 5 8 7 1 4 . 9 2 5 . 6 0 9 1 5 . 02 1 . 4 7 3 9 . 2 1 8 . 7 0 0 4 . 9 1 8 . 8 9 4 3 . 9

m>

.

Page 112: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE III (C o n t i n u e d )

Comparison o f Experimen ta l and Caclua te d A ct ivi

T e m p x 2 ( e x p t . ) y 2 ( e x p t . ) Y - ( c a l c - ) AK %

A n t h r a c e n e3 4 6 . 8 0 , 0 0 9 5 6 . 0 5 4 1 . 6 6 3 7 2 . 53 5 8 . 5 0 . 0 1 4 3 5 . 5 5 7 1 . 6 2 4 7 0 . 83 6 6 . 8 0 . 0 1 9 0 5 . 1 7 3 1 . 5 9 6 6 9 . 13 7 8 . 3 0 . 0 2 5 5 5 . 0 8 9 1 . 5 6 0 6 9 . 33 9 1 . 2 0 . 0 3 7 5 4 . 6 4 1 1 . 5 1 5 6 7 . 44 0 2 . 4 0 . 0 5 0 0 4 . 4 2 5 1 . 4 7 5 6 6 . 7A c r i d i n e3 0 9 . 3 0 . 0 2 0 9 1 2 . 1 1 5 4 . 3 1 6 6 4 . 43 2 0 . 3 0 . 0 3 0 3 1 0 . 4 7 3 3 . 9 5 2 6 2 . 33 3 0 . 9 0 . 0 4 9 2 7 . 9 6 4 3 . 5 2 4 5 5 . 73 4 5 . 4 0 . 1 0 6 9 4 . 8 0 4 2 . 7 6 4 4 2 . 53 5 3 . 3 0 . 2 4 5 0 2 . 4 2 3 1 . 8 9 4 2 1 . 8

3 5 6 . 1 0 . 2 9 7 1 2 . 0 9 7 1 . 6 9 6 19.1T h i o x a n t h e n e3 1 8 . 3 O . O 3 0 3 4 . 5 9 2 1 0 . 8 8 7 1 3 7 . 13 3 1 . 8 0 . 0 5 1 7 3 . 9 2 1 8 . 6 2 6 1 2 0 . 0

3 3 8 . 5 0 . 0 6 7 1 3 . 6 0 4 7 . 5 4 2 1 0 9 . 33 4 9 . 7 0 . 1 0 8 4 2 . 9 6 2 5 . 6 4 9 9 0 . 73 5 4 . 8 0 . 1 3 3 5 2 . 7 2 1 4 . 8 6 6 7 8 . 93 6 8 . 5 0 . 2 1 1 7 2 . 3 6 4 3 . 2 8 9 3 9 . 2

^ y _C o e_ f f i c i e n t f o r t h r S e y e n _ S o l u t e s _ i n Cyc lnhexane

C. . A 0 W i l s o n ’s E q n . U N I Q U A C’2 ( c a l c . ) A Y ( c a l c . ) A

%Y2 ( c a l c . ) A

j l

6 . 0 5 4 5 . 9 2 6 2 . 1 5 . 9 2 9 2 . 1

5 . 5 7 2 0 . 3 5 . 5 9 9 0 . 8 5 . 6 0 1 0 . 8

5 . 2 3 8 1 . 3 5 . 3 5 7 3 . 6 5 . 3 5 9 3 . 64 . 8 3 3 5 . 0 5 . 0 5 3 0 . 7 5 . 0 5 3 0 . 74 . 3 4 9 6 . 3 4 . 6 6 3 0 . 5 4 , 6 6 1 0 . 43 . 9 6 1 1 0 . 5 4 . 3 3 3 2 . 1 4 . 3 2 7 2 . 2

1 2 . 1 1 5 - 1 2 . 2 8 3 1.4 1 2 . 2 0 1 0 . 71 0 . 4 2 3 0 . 5 1 0 . 2 3 3 2 . 3 1 0 . 2 7 1 1.98 . 5 7 4 7 . 7 7 . 9 5 6 0 . 1 8 . 0 8 5 1.55 . 6 6 5 1 7 . 9 4 . 8 3 3 0 . 6 4 . 8 6 3 1 . 2

2 . 9 7 3 2 2 . 7 2 . 5 4 2 4 . 9 2 . 3 7 7 1 . 92 . 4 6 3 1 7 . 4 2 . 1 6 3 3 . 2 1 . 9 8 5 5 . 3

4 . 5 9 2 - 4 . 6 3 1 0 . 9 4 . 6 2 7 0 . 8

3 . 9 6 8 0 . 9 3 . 9 2 5 0 . 1 3 . 9 3 8 0 . 43 . 6 3 3 0 . 8 3 . 5 6 9 1 . 0 3 . 5 8 2 0 . 6

3 . 0 2 1 2 . 0 2 . 9 1 7 1.5 2 . 9 1 8 1.52 . 7 4 6 0 . 9 2 . 6 3 7 3. 1 2 . 6 2 9 3 . 42. 139 9 . 5 2 . 4 6 9 4 . 4 2 . 4 2 0 2 . 4

>*tl>

Page 113: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE III (Continued)

Comparison o f Experimental and Cacluated A c t iv i ty C o e f f i c ie n t fo r the Seven S o lu tes in Cyclohexane

“ u = 0 W i l s o n ' s Eqn. U N I Q U A CT e m pK

x 2 ( e x p t . ) v 2 ( e x p t . ) Y , ( c a l c . ) A £ %

V j C c a l c . ) A c %

Y , ( c a l c . ) A £ %

Y2 ( c a 1 c . )

** [>

X a n t h e n e3 3 1 . 7 0 . 2 0 4 9 2 . 2 7 2 2 . 7 1 5 1 9 . 5 2 . 2 7 2 - 2 . 2 6 6 0 . 3 2 . 2 6 2 0 . 43 3 9 . 0 0 . 3 0 6 4 1 . 7 5 5 2 . 0 0 8 1 4 . 4 1 . 7 7 3 1 . 1 1 . 7 7 0 0 . 9 1 . 7 7 7 1 . 33 4 4 . 9 0 . 4 1 0 3 1 . 4 6 7 1 . 5 9 1 8 . 5 1 . 4 6 5 0 . 1 1 . 4 7 1 0 . 3 1 . 4 7 2 0 . 43 5 Q . 3 0 . 5 1 3 3 1 . 2 9 6 1 . 3 4 0 3 . 4 1 . 2 7 2 1 . 9 1 . 2 8 3 1 . 1 1 . 2 7 9 1 . 43 5 4 . 3 0 . 6 1 7 4 1 . 1 6 5 1 . 1 8 3 1 . 5 1 . 1 4 8 1 . 5 1 . 1 5 9 0 . 6 1 . 1 5 3 1 . 1

3 5 9 . 7 0 . 7 2 1 6 1 . 0 9 2 1 . 0 8 6 0 . 5 1 . 0 7 0 2 . 0 1 . 0 7 8 1 . 3 1 . 0 7 3 1 . 7

Page 114: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IV

Comparison o f Experimental and Cacluated A c t iv i ty C o e f f i c ie n t for the Seven Solutes in Thiophene

2 . . = 0 £. . * 0 W i I s o n ’s Eqn, U N I Q U A CT e m pK

x 2 ( e x p t . ) Y 2 ( e x p t . ) Y 2 ( c a 7 c . ) A%

V 2 ( c a 1 c . ) A%

Y 2 ( c a l c . ) A%

Y2 ( c a l c . ) A%

D i b e n z o f u r a n 3 1 4 . 2 0 . 4 2 2 0 1 . 0 5 4 1 . 0 4 9 0 . 5 1 . 0 5 4 1 . 0 5 2 0 . 2 1 . 0 5 1 0 . 33 1 9 . 3 0 . 4 7 5 7 1 . 0 4 4 1 . 0 3 7 0 . 6 1 . 0 4 1 0 . 3 1 . 0 4 6 0 . 2 1 . 0 4 7 0 . 33 2 2 . 3 0 . 5 0 8 3 1 . 0 4 0 1 . 0 3 1 0 . 9 1 . 0 3 4 0 . 6 1 . 0 4 2 0 . 2 1 . 0 4 3 0 . 33 3 2 . 8 0 . 6 3 4 7 1 . 0 3 1 1 . 0 1 4 1 . 6 1 . 0 1 6 1 . 5 1 . 0 2 7 0 . 4 1 . 0 2 7 0 . 43 3 7 . 0 0 . 6 9 6 0 1 . 0 2 0 1 . 0 0 9 1 . 1 1 . 0 1 0 1 . 0 1 . 0 2 0 0 . 0 1 . 0 1 9 0 . 1

3 4 1 . 1 0 . 7 5 8 5 1 . 0 1 2 1 . 0 0 5 0 . 6 1 . 0 0 6 0 . 6 1 . 0 1 3 0 . 1 1 . 0 1 2 0 . 0

D i b e n z o t h i o p h e n e 3 0 9 . 3 0 . 2 3 7 9 1 . 1 5 1 1 . 2 1 0 5 . 1 1 . 1 5 1 1 . 1 5 7 0 . 5 1 . 1 5 6 0 . 43 1 5 . 2 0 . 2 7 7 6 1 . 1 3 4 1 . 1 7 2 3 . 4 1 . 1 2 4 0 . 8 1 . 1 3 3 0 . 0 1 . 1 3 3 0 . 0

3 2 2 . 7 0 . 3 3 6 1 1 . 1 1 1 1 . 1 2 8 1 . 5 1 . 0 9 3 1 . 6 1 . 1 0 4 0 . 7 1 . 1 0 5 0 . 6

3 2 7 . 0 0 . 3 7 4 3 1 . 0 9 8 1 . 1 0 6 0 . 7 1 . 0 7 7 1 . 9 1 . 0 8 8 0 . 9 1 . 0 8 8 0 . 8

3 2 8 . 1 0 . 3 8 7 2 1 . 0 8 7 1 . 0 9 9 1 . 1 1 . 0 7 2 1 . 4 1 . 0 8 3 0 . 4 1 . 0 8 4 0 . 33 3 7 . 0 0 . 4 9 5 0 1 . 0 2 9 1 . 0 5 6 2 . 6 1 . 0 4 1 1 . 1 1 . 0 5 0 2 . 0 1 . 0 5 0 2 . 0

C a r b a z o l e3 1 3 . 7 0 . 0 1 0 7 1 . 5 4 0 1 . 7 2 9 1 2 . 3 1 . 5 4 0 - 1 . 5 4 7 0 . 4 1 . 5 4 6 0 . 43 3 7 . 1 0 . 0 2 0 4 1 . 6 4 4 1 . 6 3 5 0 . 5 1 . 4 7 4 1 0 . 4 1 . 6 3 1 0 . 8 1 . 6 3 3 0 . 6

3 4 5 . 6 0 . 0 2 5 4 1 . 6 7 4 1 . 6 0 2 4 . 3 1 . 4 5 0 1 3 . 4 1 . 6 5 7 1 . 0 1 . 6 5 7 1 . 0

3 4 9 . 5 0 . 0 2 8 7 1 . 6 4 4 1 . 5 8 5 3 . 6 1 . 4 3 7 1 2 . 5 1 . 6 6 7 1 . 4 1 . 6 6 6 1.4VOno

Page 115: Classical and Statistical Thermodynamics of Solid-Liquid

T A B L E IV ( C o n t i n u e d )C o m p a r i s o n o f E x p e r i m e n t a l a n d C a c l u a t e d A c t i v i t y C o e f f i c i e n t f o r t h e S e v e n S o l u t e s In T h i o p h e n e

T e m pK

x 2 ( e x p t . ) V 2 ( e x p t . ) = 0 e ij *0 W i l s o n 1s Eqn. U N I Q U A CV ? ( c a l c . ) A

%V 2 (c a l c . ) A

%Y 2 ( c a ! c . ) A

%Y 2 ( c a l c . ) A

%

A n t h r a c e n eZ 9 7 . 43 1 7 . 93 3 2 . 93 3 7 . 0 3 5 1 . 83 5 8 . 1

0 . 0 1 0 5 0 . 0 2 0 2

0 . 0 3 D 3 0 . 0 3 4 1 0 . 0 4 9 4 0 . 0 5 7 0

1 . 1 2 1

1 . 1 9 31 . 2 7 91 . 2 8 0 1 . 3 4 5 1 . 3 7 8

1 . 0 D 8

1 . 0 0 71 . 0 0 7 1 . 0 0 6 1 . 0 0 6 1 . 0 0 6

1 0 . 1

15. G2 1 . 32 1 . 4 2 5 . 2 2 7 . 0

1 . 1 2 1

1 . 1 0 81 . 0 9 91 . 0 9 61 . 0 8 61 . 0 8 2

7 . 11 4 . 11 4 . 4 1 9 . 32 1 . 5

1 . 1 0 91 . 2 0 81 . 2 7 41 . 2 9 11 . 3 4 71 . 3 6 8

1 . 1

1 . 2

0 . 40 . 8

0 . 1

0 . 7

1 . 1 0 51 . 2 1 0

1 . 2 7 71 . 2 9 31 . 3 4 61 . 3 6 4

1 . 41 . 5 0 . 2

1 . 0

0 . 0

1 . 0

A c r i d i n e3 0 2 . 13 0 4 . 13 1 4 . 2 3 2 5 . 0 3 3 1 . G 3 3 7 . 9

O . 1 7 9 7 0 . 1 9 7 6 0 . 2 4 3 7 0 . 2 9 4 4 0 . 3 5 0 3 0 . 3 8 8 5

1 . 2 0 61 . 1 4 51 . 1 5 0 1 . 1 8 3 1 . 1 3 31 . 1 5 1

1 . 0 7 21 . 0 6 61 . 0 5 31 . 0 4 11 . 0 3 11 . 0 2 6

1 1 . 1

6 . 98 . 5

1 2 . 0

9 . 01 0 . 9

1 . 2 0 61 . 1 8 91 . 1 4 91 . 1 1 41 . 0 8 61 . 0 7 1

3 . 8 0 . 2

5 . 9 4 . 1 7 . 0

1 . 1 7 4 1 . 1 7 2 1 . 1 7 1 1 . 1 6 3 1 . 1 4 9 1 . 1 3 9

2 . 72 . 41 . 8

1 . 71 . 4 1 . 1

1 . 1 7 21 . 1 7 41 . 1 7 4 1 . 1 6 4 1 . 1 4 8 1 . 1 3 4

2 . 8

2 . 5 •2 . 0

1 . 6

1 . 31 . 4

T h i o x a n t h e n e3 0 9 . 2 3 1 7 . 43 2 5 . 3 3 3 2 . 13 3 8 . 4 3 4 2 . 3

0 . 0 9 2 7 0 . 1 1 7 1 0 . 1 4 3 3 0 . 1 7 9 2 0 . 2 1 4 0 0 . 2 4 0 7

1 . 1 4 21 . 1 5 61 . 1 8 21 . 1 4 01 . 1 2 61 . 1 0 9

1 . 5 1 01 . 4 4 11 . 3 7 91 . 3 1 41 . 2 6 21 . 2 2 9

3 2 . 22 4 . 61 6 . 71 5 . 2 1 2 . 1

1 0 . 8

1 . 1 4 2 1 . 1 2 5 1 . 1 0 9 1 . 0 9 2 1 . 0 7 8 1 . 0 6 9

2 . 76 . 1

4 . 24 . 2 3 . 6

1 . 1 5 81 . 1 5 51 . 1 4 91 . 1 4 01 . 1 3 11 . 1 2 3

1 . 40 . 1

2 . 70 . 0

0 . 51 . 3

1 . 1 5 71 . 1 5 51 . 1 5 01 . 1 4 11 . 1 3 11 . 1 2 3

1 . 30 . 1

2 . 70 . 1

0 . 51 . 2

Page 116: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IV (Continued)

Comparison o f Experimental and CacTuated A c t iv i ty C o e f f i c ie n t for the Seven S o lu tes in Thiophene

W i l s o n ' s Eqn. U N i q U A CT e m pK

x 2 ( e x p t . ) 7 2 ( e x p t . ) V2 ( c a l c . ) A%

y 2 ( c a l c . ) A%

Y2 ( c a 1 c . ) A%

Yz ( c a l c . } A%

X a n t h e n e3 0 1 . 1 0 . 1 9 1 8 1 . 2 4 5 1 . 1 5 6 7 . 1 1 . 2 4 5 - 1 . 2 4 1 0 . 4 1 . 2 3 9 0 . 53 1 8 . 2 0 . 2 9 6 9 1 . 1 8 4 1 . 0 9 4 7 , 6 1 . 1 4 5 3 . 3 1 . 1 9 0 0 . 5 1 . 1 9 4 0 . 8

3 2 9 . 7 0 . 3 9 2 7 1 . 1 3 8 1 . 0 5 9 7 . 0 1 . 0 9 0 4 . 3 1 . 1 4 5 0 . 6 1. 1 4 6 0 . 73 3 9 . 8 0 . 4 9 0 9 1 . 1 1 2 1 . 0 3 5 7 . 0 1 . 0 5 3 5 . 3 1 . 1 0 4 0 . 8 1 . 1 0 1 1 . 0

3 4 7 . 5 0 . 5 9 3 1 1 . 0 6 5 1 . 0 1 9 4 . 3 1 . 0 2 9 3 . 4 1 . 0 6 8 0 . 2 1 . 0 6 3 0 . 2

3 5 5 . 6 0. 7 0 0 3 1 . 0 4 6 1 . 0 0 9 3 . 5 1 . 0 1 4 3. 1 1 . 0 3 7 O . B 1 . 0 3 3 1 . 2

Page 117: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE V

Comparison o f Experimental and Cacluated A c t iv i ty C o e f f i c ie n t for the Seven S o lu tes in Pyridine

£ ii = 0 £. . * 1 J 0 Wi 1 son * s Eqn. U N I Q U A C

T e m pK

X g ( e x p t . ) Y 2 ( e x p t . ) Y 2 ( c a l c . ) A %

Yj,(calc. ) A%

Y g t c a l c . ) A*

Y 2 ( c a l c . ) A%

D i b e n z o f u r a n3 2 3 . 73 2 6 . 23 3 1 . 23 3 6 . 33 4 0 . 8

0 . 5 0 8 3 0 . 5 4 4 6 0 . 6 1 6 1 0 . 6 8 1 2 0 . 7 5 8 2

1 . 0 7 11 . 0 5 21 . 0 2 91 . 0 2 81 . 0 0 7

1 . 0 0 2

1 . 0 0 2

1 . 0 0 1

1 . 0 0 1

1 . 0 0 0

6 . 44 . 82 . 72 . 70 . 6

1 . 0 7 11 . 0 5 81 . 0 3 71 . 0 2 31 . 0 1 2

0 . 50 . 8

0 , 50 . 6

1 . 0 6 91 . 0 5 41 . 0 3 31 . 0 2 0

1 . 0 1 0

0 . 2

0 . 2

0 . 50 . 8

0 . 4

1 . 0 6 91 . 0 5 51 . 0 3 31 . 0 2 0

1 . 0 1 0

0 . 2

0 . 2

0 . 40 . 8

0 . 3D i b e n z o t h i o p h e n e3 0 6 . 53 1 3 . 03 2 2 . 83 2 7 . 43 3 4 . 73 3 5 . 2

0 . 2 1 4 3 0 . 2 5 5 2 0 . 3 3 1 3 0 . 3 7 8 4 0 . 4 4 9 8 0 . 4 6 5 2

1 . 1 9 51 . 1 7 11 . 1 3 01 . 0 9 51 . 0 7 91 . 0 5 4

1 . 0 4 11 . 0 3 41 . 0 2 41 . 0 1 91 . 0 1 31 . 0 1 2

1 2 . 8

1 1 . 79 . 47 . 06 . 1

4 . 0

1 . 1 9 51 . 1 5 91 . 1 0 91 . 0 8 71 . 0 6 01 . 0 5 5

1 . 0

1 . 8

0 . 8

1 . 8

0 . 1

1 . 1 9 91 . 1 6 81 . 1 2 2

1 . 1 0 0

1 . 0 7 21 . 0 6 7

0 . 30 . 30 . 70 . 40 . 71 . 2

1 . 1 9 81 . 1 6 81 . 1 2 2

1 . 1 0 0

1 . 0 7 11 . 0 6 6

0 . 30 . 30 . 6

0 . 40 . 71 . 2

C a r b a z o l e3 0 1 . 53 1 8 . 13 4 5 . 5 3 7 0 . 3 4 0 0 . 74 3 9 . 2

0 . 0 9 7 70 . 1 1 4 80 . 1 4 9 00 . 1 9 5 90 . 2 6 2 40 . 3 8 3 3

0 . 1 1 1

0 . 1 6 50 . 2 8 40 . 4 0 50 . 5 8 70 . 8 1 9

1 . 1 3 91 . 1 2 61 . 1 0 61 . 0 8 81 . 0 6 81 . 0 4 3

9 2 5 . 75 8 0 . 7 2 8 9 . 11 6 8 . 7 8 1 . 8 2 7 . 3

0 . 1 1 1

0 . 1 3 5 0 . 1 8 2 0 . 2 4 1 0 . 3 3 1 0 . 4 9 4

1 8 . 5 3 6 . 1 4 0 . 44 3 . 63 9 . 6

0 . 1 2 0

0 . 1 7 60 . 2 8 80 . 4 1 90 . 5 7 40 . 7 6 2

8 . 0

6 . 71 . 53 . 42 . 36 . 9

0 . 1 0 0

0 . 1 6 00 . 2 8 40 . 4 2 80 . 5 9 40 . 7 8 4

9 . 63 . 2 0 . 1

5 . 61 . 2

4 . 3

Page 118: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE V (Continued)

Comparison o f Experimental and Cacluated A c t iv i ty C o e f f i c ie n t for the Seven S o lu tes in Pyridine

0 e . . *i.i 0 W i l s o n ' s Eqn. U N I Q U A CT e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) y , ( c a l c . ) A * %

y 2 ( c a l c . ) A X

y 2 ( c a t c . ) A%

y 2 ( c a l c . ) A%

A n t h r a c e n e3 1 3 . 53 2 6 . 73 3 7 . 43 4 4 . 5 3 5 3 . 1 3 5 9 . 0

0 . 0 1 6 70 . 0 2 4 20 . 0 3 2 60 . 0 3 9 70 . 0 5 3 00 . 0 5 8 5

1 . 2 7 01 . 3 2 21 . 3 5 61 . 3 6 91 . 2 9 91 . 3 7 4

1 . 2 3 01 . 2 1 31 . 1 9 81 . 1 8 81 . 1 7 31 . 1 6 6

3 . 28 . 2

1 1 . 6

1 3 . 2 9 . 7

1 5 . 2

1 . 2 7 01 . 2 4 91 . 2 3 21 . 2 2 0

1 . 2 0 2

1 . 1 9 4

5 . 5 9 . 1

1 0 . 9 7 . 4

1 3 . 1

1 . 2 8 71 . 3 1 51 . 3 3 41 . 3 4 41 . 3 5 21 . 3 5 8

1 . 30 . 51 . 6

1 . 8

4 . 11 . 1

1 . 2 8 41 . 3 1 61 . 3 3 61 . 3 4 61 . 3 5 11 . 3 5 6

1 . 1

0 . 41 . 51 . 74 . 11 . 3

A c r i d i n e3 0 1 . 73 0 9 . 33 2 2 . 9 3 2 8 . 5 3 3 9 . 13 3 9 . 9

0 . 1 6 1 50 . 2 0 1 40 . 2 7 9 10 . 3 4 0 00 . 4 1 0 10 . 4 3 8 4

1 . 3 3 11 . 2 5 61 . 1 9 71 . 0 9 81 . 1 1 51 . 0 5 9

1 . 0 0 0

1 . 0 0 0

1 . 0 0 0

1 . 0 0 0

1 . 0 0 0

1 . 0 0 0

2 4 . 82 0 . 41 6 . 5 9 . 0

1 0 . 35 . 6

1 . 3 3 11 . 2 6 81 . 1 7 91 . 1 3 21 . 0 9 11 . 0 7 9

0 . 91 . 6

3 . 02 . 2

1 . 8

1 . 3 2 91 . 2 6 41 . 1 7 41 . 1 2 81 . 0 8 71 . 0 7 5

0 . 1

0 . 71 . 0

2 . 72 . 6

1 . 5

1 . 3 2 91 . 2 6 51 . 1 7 41 . 1 2 81 . 0 8 71 . 0 7 5

0 . 20 , 71 . 92 . 72 . 6

1 . 5T h i o x a n t h e n e3 0 5 . 6 3 1 1 . 93 2 2 . 7 3 3 0 . 03 3 9 . 8 3 5 0 . 4

0 . 0 6 7 60 . 0 8 2 20 . 1 1 6 30 . 1 4 7 60 . 1 9 8 70 . 2 7 7 2

1 . 4 0 11 . 3 9 81 . 3 5 21 . 3 0 71 . 2 5 91 . 1 7 9

1 . 1 0 81 . 1 0 0

1 . 0 8 41 . 0 7 21 . 0 5 71 . 0 3 9

2 0 . 9 2 1 . 31 9 . 9 1 8 . 0 1 6 . 1 1 1 . 8

1 . 4 0 11 . 3 6 61 . 3 0 21 . 2 5 61 . 1 9 81 . 1 3 5

2 . 2

3 . 73 . 84 . 8 3 . 7

1 . 4 1 41 . 3 9 01 . 3 4 31 . 3 0 61 . 2 5 41 . 1 9 1

0 . 90 . 50 . 70 . 1

0 . 41 . 0

1 . 4 1 11 . 3 9 01 . 3 4 51 . 3 0 81 . 2 5 51 . 1 8 8

0 . 70 . 50 . 50 . 1

0 . 30 . 8

Page 119: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE V (Continued)

Comparison o f Experimental and Cacluated A c t iv i ty C o e f f i c ie n t for the Seven Solutes in Pyridine

i. . = ij 0 JL. . * 0 W i l s o n ' s Eqn. U N I Q U A CT e m pK

x ^ e x p t . ) V 2 ( e x p t . ) y „ ( c a l c . ) A * %

V 2 ( c a l c . ) A%

V2 ( c a l c . ) A%

Y 2 ( c a l c . ) A%

X a n t h e n e3 1 2 . 1 3 1 5 . 33 3 2 . 23 4 0 . 23 4 5 . 3 3 5 5 . 6

0 . 2 3 8 10 . 2 5 6 30 . 3 9 1 00 . 4 8 0 90 . 5 5 8 00 . 6 9 2 5

1 . 2 9 11 . 2 8 91 . 2 0 51 . 1 4 51 . 0 8 71 . 0 5 8

1 . 0 1 1

1 . 0 1 0

1 . 0 0 51 . 0 0 31 . 0 0 2

1 . 0 0 1

2 1 . 8

2 1 . 71 6 . 51 2 . 47 . 85 . 4

1 . 2 9 21 . 2 6 61 . 1 3 41 . 0 8 31 . 0 5 31 . 0 2 1

1 . 8

5 . 95 . 5 3 . 13 . 5

1 . 2 9 91 . 2 8 51 . 1 9 51 . 1 4 31 . 1 0 51 . 0 5 1

0 . 50 . 30 . 8

0 . 2

1 . 70 . 6

1 . 2 9 7 1 . 2 8 6 1 . 1 9 7 1 . 1 4 3 1 . 1 0 4 1 . 0 4 9

0 . 40 . 30 . 6

0 . 2

1 . 6

0 . 8

Page 120: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VI

(a ) Values o f the Binary Parameter, 2 1Z, needed fo r the Extended Regular Solut ion Theory. Thesevalues were obtained by f i t t i n g the low est mole fr a c t io n s o l u b i l i t y datapoint in the pureso lv en t to the equation.____________________________________________________________________________

S o l u t e ( 2 ) S o l v e n t (1)B e n z e n e C y c l o h e x a n e P y r i d i n e T h i o p h e n e

A n t h r a c e n e 2 1Z 1 . 1 0 3 0 E - 0 2 3 . 6 3 2 3 E - 0 2 6 . 5 0 4 9 E - 0 4 2 . 1 4 7 9 E - 0 3A c r i d i n e 8 . 2 8 9 1 E - 0 3 3 . 0 5 5 8 E - 0 2 1 . 0 8 8 8 E - 0 2 5 . 2 7 4 3 E - 0 3X a n t h e n e - 5 . 7 2 5 3 E - 0 3 - 9 . 5 2 6 4 E - 0 3 1 . 2 6 5 0 E - 0 2 3 . 3 1 4 2 E - 0 3T h i o x a n t h e n e 2 1 2 - 1 . 7 1 4 1 E - 0 2 - 2 . 6 5 5 3 E - 0 2 6 . 0 6 3 8 E - 0 3 - 8 . 7 9 3 3 E - 0 3B i p h e n y l 2 t 2 - 2 . 5 2 3 9 E - 0 4 1 . 0 6 5 3 E - 0 2 4 . 5 7 6 2 E - 0 5 - 4 . 1 9 5 0 E - 0 5D i b e n z o t h i o p h e n e 2 , 2 - 8 . 8 3 0 9 E - 0 3 - 9 . 9 8 2 5 E - 0 3 6 . 1 2 5 9 E - 0 3 - 2 . 7 0 8 5 E - 0 3D i b e n z o f u r a n - 4 . 4 4 6 3 E - 0 3 - 8 . 5 0 4 6 E - 0 3 1 . 1 6 0 3 E - 0 3 1 . 1 6 0 3 E - 0 2C a r b a z o l e £ L2 - 6 . 6 3 8 6 E - 0 3 2 . 5 0 3 8 E - 0 2 - 4 . 9 0 6 2 E 0 2 - 2 . 3 1 3 8 E - 0 3

( b ) V a l u e s o f t h e * C r o s s P a r a m e t e r 2,.,, n e e d e d f o r t h e E x t e n d e d R e g u l a r S o l u t i o n T h e o r y ,Solute(2)

B i p h e n y lD i b e n z o t h i o p h e n eD i b e n z o f u r a n

S o l v e n t S y s t e m

*■13

2 13

213

B e n z e n e ( l )T h i o p h e n e ( 3 )

0 . 0 0 3 2 2 40 . 0 0 3 4 0 60 . 0 0 3 3 7 7

B e n z e n e ( l ) C y c l o h e x a n e ( l ) C y c l o h e x a n e ( l ) T h i o p h e n e ( l ) P y r i d i n e C 3 ) T h i o p h e n e ( 3 ) P y r i d i n e ( 3 ) P y r i d i n e Q )- 0 . 0 0 8 0 1 4- 0 . 0 0 9 9 0 7- 0 . 0 0 8 4 9 7

0 . 0 0 9 7 8 7 0 . 0 1 0 3 3 2 0 . 0 1 0 6 2 4

0 . 0 1 1 1 50 . 0 0 9 5 0 70 . 0 1 1 6 9 9

- 0 . 0 0 0 5 7 4- 0 . 0 0 0 8 1 8- 0 . 0 0 0 6 8 3

Page 121: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VII a

Values o f (J /g m o l)

S o l u t e ( 2 )

F l u o r e n e

D i b e n z o t h i o p h e n e

D i b e n z o f u r a n

C a r b a z o l e

W ilson's Parameters, A!2 and A2 I , (J /gm o l) , and UNIQUAC Parameters, AI2 and A2 j ,, Calculated by F i t t in g The S o lu b i l i t y Data for Each S o l id /S in g le So lvent System

S o l v e n t ( 1 )B e n z e n e C y c l o h e x a n e T h i o p h e n e P y r i d i n e

^ 1 2 1 1 9 6 . 5 3 1 2 7 1 . 6 6 2 8 6 1 . 7 2 1 5 7 6 . 4 5* 2 1 - 3 0 8 . 2 2 3 4 6 7 . 4 3 - 2 5 0 3 . 6 5 - 9 5 5 . 6 6A j 2 - 5 1 3 . 5 0 1 9 9 3 . 3 7 - 1 0 3 8 . 6 7 - 7 4 1 . 2 2A 2i 9 4 8 . 7 2 - 8 8 0 . 6 5 1 5 5 7 . 8 6 1 0 7 3 . 3 3

* t 2 1 5 9 1 . 5 7 2 2 2 0 . 8 4 1 4 1 2 . 8 8 1 4 2 8 . 0 5* 2 1 6 9 . 0 4 3 3 8 6 . 3 2 - 6 7 4 . 8 4 - 5 8 6 . 0 2

Aj 2 - 6 5 6 . 4 3 5 6 1 . 2 7 - 7 3 2 . 2 4 - 6 0 1 . 8 4* 2 1 1 5 1 8 . 1 1 5 4 4 . 9 5 1 4 2 8 . 0 1 1 1 9 0 . 5 2

* 1 2 - 2 9 . 6 2 1 6 6 1 . 7 1 3 1 2 8 . 0 9 4 2 1 . 4 9* 2 1 6 1 3 5 . 6 3 2 3 9 4 . 3 7 - 2 4 6 7 . 5 8 2 3 2 7 . 2 8A j 2 7 4 8 . 4 9 - 1 3 . 8 5 - 1 3 1 7 . 3 6 6 4 3 . 5 0A 2 i - 5 6 . 5 8 8 9 7 . 5 6 2 1 5 3 . 0 8 2 4 . 0 7

* 1 2 3 7 0 1 2 . 1 3 ; 2 3 3 0 . 5 0 8 5 0 0 . 2 8 - 3 9 5 8 . 6 0* 2 1 - 1 5 0 7 . 2 0 6 9 0 7 . 7 4 - 2 8 1 5 . 3 6 2 9 3 8 8 . 6 5 '

A 1 2 - 1 5 0 6 . 3 6 1 1 9 9 . 2 7 - 1 4 1 8 . 5 7 4 3 5 3 . 9 0a 2 , 4 4 6 5 . 6 5 7 7 3 . 1 9 3 3 0 6 . 9 2 - 3 1 7 6 . 4 7

toto

Page 122: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VII a (Continued)

Values of Wilson's Parameters, X,2 and X2 ) , (J/gmol), and UNIQUAC Parameters, An and A2 t ,(J/gmol), Calculated by F itt ing The S o lub i l i ty Data for Each Solid/Single Solvent System

S o l u t e (2)B e n z e n e

S o l v e n t (1)C y c l o h e x a n e T h i o p h e n e P y r i d i n e

A n t h r a c e n e ^ 1 2X216 6 5 1 . 0 6

- 2 2 6 3 . 0 35 2 2 9 . 0 81 9 7 8 . 0 8

9 1 9 7 . 1 6- 3 8 0 2 . 6 4

5 2 3 3 . 6 6- 3 0 0 5 . 8 4A lz* 2 1

- 1 3 2 2 . 9 1 2 8 9 1 . 5 8 - 8 0 . 3 6 1 3 8 1 . 4 1- 1 6 5 1 . 0 03 4 7 0 . 0 4 - 1 4 1 3 . 5 9

2 3 7 9 . 3 0

A c r i d i n e * 1 2X2i

1 1 2 0 . 8 11 1 4 4 . 4 03 1 2 5 . 0 34 9 1 5 . 6 6 4 1 1 9 . 1 1-2 7 5 4 . 6 0

9 3 2 . 6 04 9 2 . 8 5ft 12A 2 1

5 2 . 1 06 4 1 . 7 2 2 1 5 8 . 4 8- 5 6 8 . 8 1

- 1 2 6 1 . 7 12 3 1 4 . 9 5 6 8 . 7 229 9 . 0 3

X a n t h e n e Xu 2 4 0 5 . 1 8 - 1 0 3 3 . 8 82 0 8 5 . 6 32 5 9 9 . 6 4 3 0 7 2 . 4 0- 1 9 5 8 . 3 9

3 2 5 6 . 0 0- 1 8 0 3 . 0 6A 1 2

a 2 1

- 8 9 8 . 1 0 1 7 4 2 . 2 0

2 9 0 . 2 05 5 5 . 5 9

- 1 0 8 5 . 4 2 2 0 5 5 . 2 9

- 1 2 1 5 . 9 72 1 8 1 . 3 8

T h i o x a n t h e n e Xl2*21

ftl2A2l

5 8 7 . 0 41 0 5 2 . 0 7- 6 1 . 5 5 5 6 4 . 7 5

1 8 6 3 . 6 7 2 8 5 5 . 8 51 0 2 1 . 1 9 - 1 6 7 . 9 8

2 9 1 0 . 4 8 - 2 2 2 0 . 8 5- 9 7 1 . 8 3 1 7 3 4 . 2 7

2 0 7 1 . 2 8- 1 0 1 9 , 6 0- 8 9 6 . 4 3 1 4 0 1 . 5 6

Page 123: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VII a (Continued)

V a l u e s o f W i l s o n ’ s P a r a m e t e r s , k t2 a n d A 2 i, ( J / g m o l ) , a n d U N I Q U A C P a r a m e t e r s , A , 2 a n d A 2 1 ,( J / q m o l ) . C a l c u l a t e d b y F i t t i n g T h e S o l u b i l i t y D a t a f o r E a c h S o l i d / S i n g l e S o l v e n t S y s t e m

S o l u t e ( 2 ) S o l v e n t (1)

B i p h e n y l 'B e n z e n e C v c l o h e x a n e T h i o p h e n e P y r i d i n e

^ 1 2 3 7 8 3 . 3 0 1 4 9 9 . 2 4 4 1 6 5 . 8 1 2 8 3 7 . 1 3\ 2 1 - 2 7 9 9 . 4 0 2 1 6 8 . 3 5 - 3 2 3 3 . 0 1 - 2 2 4 1 . 9 3a 1 2 - 1 4 4 4 . 1 8 5 5 0 . 6 8 - 1 3 5 5 . 0 4 - 1 0 9 8 . 0 8a 2 1 2 2 0 4 . 8 0 1 8 8 . 4 5 2 0 6 2 . 6 6 1 6 6 1 . 5 4

* D a t a f r o m p r e v i o u s p u b l i c a t i o n (1, 9, 11).

Page 124: Classical and Statistical Thermodynamics of Solid-Liquid

TftBLE VII b

Values o f The S o lven t-S o lven t Cross Parameters Obtained From Literature VLE Data (17)

S o l v e n t P a i r S y s t e m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _U N I Q U A C ( J / q m o l ) W I L S O N ' S EQN . ( J / g m o l )

B e n z e n e ( 1 ) - P y r i d i n e ( 3 ) Al3 = - 6 9 6 . 3 7 9 3 *13 = - 2 4 6 3 . 6 3 3 9ft31 = 7 2 1 . 3 0 4 2 *31 4 4 0 3 . 5 1 3 6

B e n z e n e ( 1 ) - T h i o p h e n e (3) ^13 = - 8 0 7 . 1 0 5 8 *13 = 1 3 2 5 . 7 3 7 8^3 1 = 1 1 1 6 . 9 3 7 5 *31 = - 6 9 7 . 8 5 5 9

C y c l o h e x a n e ( 1 ) - P y r i d i n e (3) fl13 = 2 6 0 1 . 3 8 9 1 *13 = 9 9 0 . 3 9 6 0A . H = - 6 7 4 . 9 5 2 5 *3 1 = 3 6 5 4 . 2 7 8 6

C y c l o h e x a n e ( 1 ) - T h i o p h e n e ( 3 ) *1 3 = 9 9 0 . 5 7 6 3 *13 = 6 8 1 . 7 2 4 6A 3! ss - 2 2 1 . 9 8 1 4 *31 - 1 2 3 4 . 9 2 3 1

T h i o p h e n e ( 1 ) - P y r i d i n e ( 3 ) *13 = 3 4 3 0 . 9 8 5 0 *13 = 2 1 3 3 . 3 1 3 1*31 = - 2 0 5 9 . 2 3 1 4 * 3 1 = 4 2 1 5 . 6 5 7 7

oro

Page 125: Classical and Statistical Thermodynamics of Solid-Liquid

103

s o l u b i l i t y r e s u l t s have been p r e v i o u s l y p u b l i s h e d ( 1 , 9, 1 1 ) , because

th e y a r e used l a t e r in t h e pape r . The p a ra m e te r s f o r f l u o r e n e a r e g iven

in t h e t a b l e s beca use i t i s a member o f one o f t h e he te roa tom f a m i l i e s

which w i l l be d i s c u s s e d l a t e r in t h e r e p o r t . To t h e b e s t o f o u r know­

l e d g e , a l l t h e s e b i n a r y p a r a m e te r s have , u n t i l now, been u n a v a i l a b l e in

t h e l i t e r a t u r e .

The S c a t c h a r d - H i 1 debrand t h e o r y p r e d i c t s t h e a c t i v i t y c o e f f i c i e n t s

o f t h e components o f a m ix tu r e us ing l i q u i d molar volumes and t h e d i f ­

f e r e n c e between t h e i r s o l u b i l i t y p a r a m e te r s . To c a l c u l a t e s o l u b i l i t y

p a r a m e t e r s , l i q u i d m ola r volumes and h e a t s o f v a p o r i z a t i o n a r e needed.

I t i s we l l known ( 1 2 ) t h a t t h e s e p r o p e r t i e s can be found a t any conven­

i e n t t e m p e r a t u r e , a s long as t h e same t e m p e r a t u r e i s used f o r a l l t h e

components. The common c h o i c e i s 298 K. Th is c h o i c e i s somewhat inc on -

v iv e n ie n t fo r so l i d - l i q u i d s o l u b i l i t y as i t req u ires f in d in g Ah and v

f o r t h e s o l u t e as a h y p o t h e t i c a l s u b -c o o le d l i q u i d . Choi and McLaughlin

( 1) have shown t h a t a more c o n v e n i e n t t e m p e r a t u r e t o choose i s t h e

s o l u t e m e l t i n g p o i n t . They c a l l t h i s method t h e f l o a t i n g datum p o i n t

method and i t e l i m i n a t e s t h e need f o r e x t r a p o l a t i n g l i q u i d p r o p e r t i e s t o

v £298 K f o r t h e s o l u t e . T h i s method has been used t o c a l c u l a t e Ah and v

f o r a l l sys tems i n v o l v i n g x a n t h e n e , t h i o x a n t h e n e , a c r i d i n e , d i b e n z o f u r ­

an , b ipheny l and d ib e n z o t h i o p h e n e , and t h e r e s u l t s f o r t h e l i q u i d molar o

volumes , v . . , and t h e s o l u b i l i t y p a r a m e t e r s , 6^ , a r e p r e s e n t e d i n Table

V I I I .

While t h e f l o a t i n g datum p o i n t method i s u s u a l l y s u p e r i o r t o u s in g

298 K, i t does have l i m i t a t i o n s . I f t h e m e l t i n g p o i n t o f t h e s o l u t e i s

v e ry h ig h , i t app ro ac h es t h e c r i t i c a l t e m p e r a t u r e o f t h e s o l v e n t . S ince

v SLAh goes t o z e ro a t t h e c r i t i c a l p o i n t and t h e change i n v w i th temper-

Page 126: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VIII

S o l u b i l i t y P a r a m e t e r s a n d M o l a r L i q u i d V o l u m e s o f t h e S o l i d s a n d L i q u i d s a t t h e M e l t i n g P o i n t s o f t h e S o l i d s j Sol ids_ _ _ _ _ _ _ _ _ _ _ P y r i d i n e _ _ _ _ _ _ _ _ _ _ T h i o p h e n e _ _ _ _ _ _ _ _ _ _ B e n z e n e _ _ _ _ _ C y c l o h e x a n e

( J / m 3 )^ x 1 0 4

( m 3 niol 1 ) x 1 0 ' 6

( J / m 3 )’* x 1 0 4

(ii)3 m o l x 1 0 " 6

( J / m 3 )**4x 1 0

C m3 m o l *) x 1 0 ' 6

( J / m 3 )'s X 1 0 4

( m 3 m o l 1 ) x 1 0 ' 6

( J / m 3 )** x 1 0 4

( m 3 m o l x 1 0 ' 6

B i p h e n y l 3 4 Z . 6 1 . 9 3 0 4 3 1 5 5 . 1 6 b 2 . 0 2 5 9 a 8 4 . 8 7 b 1 . 8 7 5 9 c 8 3 . 7 8 d 1 . 7 2 7 4 e 9 4 . 5 7 f 1 . 5 4 7 3 e 1 1 4 . 8 2ifA n t h r a c e n e 4 8 9 . 5 1 . 9 8 7 1 a 1 5 8 . 1 1 1,J 2 . 1 7 7 9 a 8 0 . 8 6 b 2 . 0 2 3 1 c 7 9 . 4 9 d 1 . 8 7 5 7 e 8 9 . 4 5 f 1 . 6 7 8 3 s 1 0 8 . 6 9

A c r i d i n e 3 8 4 . 2 1 . 8 9 4 6 h , J 1 7 2 . 1 2 9 1 . 9 0 3 4 a 8 8 . 6 4 b 1 . 7 5 1 0 c 8 8 . 4 9 d 1 . 6 1 1 9 e 1 0 0 .0 0 f 1 . 4 1 3 1 e 1 2 1 . 8 2X a n t h e n e 3 7 3 . 7 2 . 0 0 1 6 h ’j 1 6 1 . 7 0 1,J 1 , 9 3 6 G a 8 7 . 6 3 b 1 . 7 8 5 7 c 8 7 . 2 8 d 1 . 6 4 5 5 e 9 8 . 6 3 f 1 . 4 4 5 7 e 1 2 0 . 0 8T h i o x a n t h e n e 4 0 1 . 7 1 . 9 8 9 0 h ’j 1 7 3 . 2 5 1,J 1 . 8 4 9 2 3 9 0 . 3 2 b 1 . 6 9 3 3 c 9 0 . 5 0 d 1 . 5 5 9 0 e 1 0 2 . 2 7 f 1 . 3 5 8 9 e 1 2 4 . 7 2D i b e n z o t h i o p h e n e 3 7 1 . 4 2 . 0 5 5 0 h,J 1 6 4 . 2 0 9 1 . 9 3 5 3 s 8 7 . 6 4 b 1 . 7 8 0 4 c 8 7 . 0 2 d 1 . 6 3 6 3 e 9 8 . 3 4 f 1 . 4 6 1 4 e 1 1 9 . 7 1D i b e n z o f u r a n 3 5 5 . 7 2 . 0 4 1 0 h,J' 1 5 2 . 5 0 9 1 . 9 8 5 9 3 8 6 . 0 8 b 1 . 8 3 2 7 c 8 5 . 2 2 d 1 . 6 8 7 2 e 96. 3 0 f 1 . 5 0 9 7 e 1 1 7 . 1 1C a r b a z o l e ^ 5 1 9 . 2 2 . 3 4 5 2 h ” i 1 4 2 . 9 6 1,J' 2 . 1 7 7 9 3 8 0 . 8 6 b 2 . 0 2 3 1 c 7 9 . 4 9 d 1 . 8 7 5 7 e 8 9 . 4 5 f 1 . 6 7 8 3 e 1 0 8 . 6 9

Page 127: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE V I I I ( c o n t i n u e d )

Data Sources

a. Enthalpy of vaporization was evaluated by using the Clausius-Clapeyron equation with the Antoine equation constants given by Reid e t a l . (19).

b. Timmermans (20).c. Enthalpy of vaporization data from Advanced Chemistry S er ies , Vol. 15/22 (21).d. Int. Crit. Tables, Vol. 3 (22).e. Heat of vaporization data from Fig. 7B1*11 and 7B1-18 in API Data Book (23).f . Fig. 16-12, NGPSA Engineering Data Book (24). „g. Tsonopoulos, C ., e t a l . (25). Temperature corrected using Av /AT ~ 0.11 cm3/K, which i s reasonably

constant among the f iv e so lu tes for which data is ava ilab le .h. Carruth and Kobayashi (26). £i . Used Rackett eqn. (27) to correct v for temperature.j . Correlation of Roman e t a l . (18) used to predict c r i t i c a l constants needed for the correlations l i s t e d

in h and i above. The values used and obtained are l i s t e d in Table IX.k. For anthracene and carbazole, values are calcu lated a t 25 °C instead of the melting point.

Page 128: Classical and Statistical Thermodynamics of Solid-Liquid

106

a t u r e goes t o i n f i n i t y , t h i s i s an u n a c c e p ta b l e c h o ice f o r t h e t em pera ­

t u r e t o be used t o c a l c u l a t e t h e p r o p e r t i e s . S in ce t h e m e l t i n g p o i n t s

o f a n t h r a c e n e and c a r b a z o l e p u t them i n t o t h i s c a t e g o r y , t h e f l o a t i n g

datum p o i n t method was abandoned f o r t h e s e two s o l u t e s and 298 K waso

used i n s t e a d w i th t h e r e s u l t i n g v a l u e s f o r v . and 6 . b e in g p r e s e n t e d in

T ab le V I I I . A v a r i e t y o f methods were used t o c a l c u l a t e v£ and Ahv f o r

a l l o f t h e compounds, i n v o l v i n g d a t a where a v a i l a b l e and g e n e r a l i z e d

c o r r e l a t i o n s where n e c e s s a r y . In t h e i n t e r e s t o f s p a c e , t h e d e t a i l s of

t h e s e methods w i l l n o t be d i s c u s s e d , b u t t h e y a r e c i t e d i n Tab le V I I I .

Some o f t h e c o r r e l a t i o n s used r e q u i r e t h e c r i t i c a l c o n s t a n t s f o r t h e

compounds. When u n a v a i l a b l e , t h e s e were e s t i m a t e d by t h e c o r r e l a t i o n s

o f Roman e t a l . (18 ) These c o r r e l a t i o n s and t h e e s t i m a t e s o b t a i n e d a re

g ive n i n Tab le IX.

W i l s o n ' s e q u a t i o n a l s o r e q u i r e s l i q u i d molar volumes which were

o b t a i n e d f o r each sys tem a t t h e t e m p e r a t u r e s d i s c u s s e d above. UNIQUAC

u t i l i z e s c a l c u l a t e d s i z e and a r e a p a r a m e te r s (R and Q) which a r e ob­

t a i n e d by a group c o n t r i b u t i o n method ( 1 4 ) . They a r e p r e s e n t e d i n Tab le

X f o r t h e components used i n t h i s s tu d y .

Examinat ion o f T a b le s I I t h ro u g h V shows some g e n e ra l t r e n d s . As

would be e x p e c t e d , t h e p r e d i c t i o n s o f t h e S c a t c h a r d - H i l d e b r a n d t h e o ry

(column headed , £ . .=0) a r e t h e p o o r e s t ( r e l a t i v e l y ) o f t h e f o u r models ,■ J

due t o t h e l a c k o f any a d j u s t a b l e p a r a m e te r s t o be f i t t e d t o t h e d a t a ,

w i t h t h e p r e d i c t i o n s o f t h e n o n i d e a l i t i e s u s u a l l y l e s s t h a n t h o s e ex p e r ­

i m e n t a l l y o bse rved .

The r e s u l t s i n T a b le s I I t h ro u g h V show t h a t bo th W i l s o n ' s eq u a t io n

and UNIQUAC do an e x c e l l e n t j o b o f f i t t i n g t h e d a t a . With two a d j u s t ­

a b l e p a r a m e t e r s , t h i s i s n o t s u r p r i s i n g . N o n e th e l e s s , t h e r e s u l t s

Page 129: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IX

C o r r e l a t i o n V a l u e s U s e d f o r E s t i m a t i o n o f t h e C r i t i c a l C o n s t a n t sw i t h t h e C o r r e l a t i o n s o f R o m a n ei. al. ( 1 6 ) a n d V a l u e s o f t h e C r i t i c a l C o n s t a n t s

3T . / K S T / K V / ( ” ) ujb g c c g m o l

D i b e n z o t h i o p h e n e 6 0 5 . 1 5 1 . 1 9 8 7 1 5 1 9 . 4 9 3D i b e n z o f u r a n 5 5 7 . 5 8 1 . 1 6 8 1 7 4 5 2 . 4 3 4C a r b a z o l e 6 2 7 . 9 1 1 . 1 7 8 8 9 1 5 7 3 . 5 3 0A n t h r a c e n e 6 1 4 1 . 1 2 3 8 8 3 5 9 1 . 5 2 6J c r i d i n e 6 1 9 1 . 1 1 8 6 9 6 1 3 . 5 3 7X a n t h e n e 5 8 4 1 . 1 0 8 3 3 5 4 7 . 4 8 7T h i o x a n t h e n e 6 1 3 1 . 1 0 8 6 1 6 0 9 . 5 3 1

C o r r e l a t i o n s o f R o m a n e t al. ( 1 8 )

Page 130: Classical and Statistical Thermodynamics of Solid-Liquid

108

TABLE X

Values of R and Q Needed f o r UNIQUAC

S o lu t e s R £

Anthracene 6.5630 4.336

A c r id in e 6 .3744 4.332

Xanthene 6.4186 4.316

Thioxanthene 6.9064 4.616

Dibenzofuran 5.9990 4.648

Carbazo le 6.5190 4.972

Biphenyl 5.9380 4.168

S o lv e n t s

Benzene 3.1878 2.400

Cyclohexane 4.0460 3.240

Thiophene 2.8570 2.140

P y r i d i n e 3 .0 0 0 0 2 .3 9 6

Page 131: Classical and Statistical Thermodynamics of Solid-Liquid

i n d i c a t e both t h e a p p l i c a b i l i t y o f t h e two models over a l a r g e range of

composi t ion and t e m p e r a t u r e , and t h e i r a b i l i t y to p r e d i c t systems w i th

g r e a t l y d i f f e r i n g l e v e l s o f n o n i d e a l i t y :

Page 132: Classical and Statistical Thermodynamics of Solid-Liquid

110

V. SOLUBILITIES IN BINARY SOLVENT MIXTURES

The u s e f u l n e s s o f t h e b i n a ry i n t e r a c t i o n pa ra m e te r s o b ta in e d by

r e g r e s s i o n o f th e s o l u b i l i t y d a t a in th e pure s o l v e n t s (T ab les VI(a) and

V I I ( a ) ) can be t e s t e d by us ing th o s e paramete rs t o p r e d i c t s o l u b i l i t i e s

in m ix tu r e s c o n t a i n i n g more than two components. The s o l u b i l i t i e s of

b ip h e n y l , d ib e n zo th io p h e n e , and d ib enzofu ran have been de te rmined in

f i v e b in a ry m ix tu re s o f t h e s o l v e n t s . These r e s u l t s a r e p r e s e n te d in

Tab les XI th rough X II I . Along w i th th e exper imenta l d a t a and th e e x p e r ­

imenta l a c t i v i t y c o e f f i c i e n t s ( c a l c u l a t e d us ing e q u a t io n 1 ) , t h e p r e d i c ­

t i o n s o f t h e f o u r s o l u t i o n models and the d e v i a t i o n s o f t h e models from

t h e exper im en ta l d a t a have been p re s e n te d . As s t a t e d e a r l i e r , t h e d a t a

f o r b iphenyl in t h e pu re s o l v e n t s i s not p r e s e n t e d he re because i t has

been p u b l i s h e d p r e v i o u s l y ( 1 , 9, 2 J ) . The pa ram e te r s o b t a in e d by r e ­

g r e s s i o n o f t h a t d a t a a r e , however, l i s t e d in Tables V I(a ) and V I I (a ) .

Biphenyl has been in c lu d ed even though i t i s n o t in e i t h e r he teroa tom

fam i ly . This was done because t h e da ta on t h e s e s o l u t e s in b in a ry

m ix tu re s a r e very l i m i t e d . I n c l u s i o n of t h e b iphenyl r e s u l t s i n c r e a s e s

t h e s i z e o f our d a t a b a s e , which i s d e s i r a b l e , as t h e in fo rm a t io n i s

be ing used t o t e s t th e a b i l i t y o f the b i n a ry p a r a m e te r s t o p r e d i c t

mult icomponen t e q u i l i b r i a .

The r e s u l t s p r e s e n t e d in Tab les XI th rough XII I i n d i c a t e t h a t t h e

s u p e r i o r i t y o f t h e models having a d j u s t a b l e b i n a r y p a r a m e te r s which was

found f o r t h e p u re s o l v e n t c a s e i s s u b s t a n t i a l l y l e s s when th e models

a r e used t o p r e d i c t t h e s o l u b i l i t i e s in m u l t i p l e s o l v e n t s . All t h e

models a r e r e l a t i v e l y c l o s e t o g e t h e r in ave rage a b s o l u t e d e v i a t i o n

( S c a t c h a r d - H i ld e b r a n d , 3.6%; ex tended S c a t c h a rd -H i ld e b ra n d , 1.9%; Wil-

Page 133: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n ts o f Biphenylin the Five Binary Solvent Mixtures

T e m pK

7 0 ' m o l e

x 2 ( e x p t . ) Y 2 ( e x p t . ) Y 2 ( c a l c . ) A%

% B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 0 8 . 4 0 . 4 4 1 9 1 . 1 5 0 1 . 0 1 6 1 1 . 73 1 4 . 7 0 . 5 1 8 4 1 . 1 2 2 1 . 0 1 1 9 . 93 2 1 . 2 0 . 6 2 8 9 1 . 0 5 9 1 . 0 0 6 5 . 03 2 6 . 9 0 . 7 2 8 7 1 . 0 2 5 1 . 0 0 3 2 . 2

3 3 3 . 6 0 . 8 2 7 0 1 . 0 3 1 1 . 0 0 1 2 . 93 3 6 . 8 0 . 8 7 9 7 1 . 0 3 1 1 . 0 0 0 3 . 07 0 m o l e % T h i o p h e n e a n d 3 0 m o l e % P y r i d i n e3 0 4 . 9 0 . 4 4 8 3 1 . 0 5 1 1.000 4 . 83 0 8 . 3 0 . 4 9 9 0 1 . 0 1 7 1 . 0 0 0 1 . 6

3 1 7 . 6 0 . 6 0 4 6 1 . 0 2 2 1.000 2 . 2

3 2 4 . 2 0 . 6 9 5 7 1 . 0 1 7 1.000 1 . 73 3 1 . 4 0 . 8 0 S 1 1 . 0 1 3 1.000 . 1 . 33 3 4 . 3 0 . 8 5 1 2 1 . 0 1 5 1.000 1 . 57 0 m o l e % B e n z e n e a n d 3 0 m o l e % T h i o p h e n e3 0 4 . 2 0 . 4 4 8 3 1 . 0 3 4 1 . 0 2 9 0 . 53 0 8 . 7 0 . 5 1 1 7 1.000 1 . 0 2 1 2 . 1

3 1 7 . 1 0 . 6 0 3 3 1 . 0 1 4 1 . 0 1 2 0 . 2

3 2 3 . 5 0 . 6 8 8 2 1 . 0 1 4 1 . 0 0 7 0 . 73 2 9 . 1 0 . 7 8 1 6 0 . 9 9 9 1 . 0 0 3 0 . 43 3 5 . 1 0 . 8 6 2 6 1 . 0 1 7 1 . 0 0 1 1 . 6

l . . # 0n W i l s o n ' s Eqn. U N I Q U A C,(calc. ) A

%Y g C c a l c . ) A

%Y 2 ( c a 1 c . } A

%

1 . 0 3 9 9 . 7 1 . 0 1 0 1 2 . 1 1 . 0 4 1 9 . 41 . 0 2 6 8 . 6 1 . 0 2 1 9 . 0 1 . 0 3 9 7 . 41 . 0 1 3 4 . 3 1 . 0 2 5 3 . 2 1 . 0 2 8 2 . 91 . 0 0 6 1 . 8 1 . 0 2 1 0 . 4 1 . 0 1 7 0 . 8

1 . 0 0 2 2 . 8 1 . 0 1 2 1 . 8 1 . 0 0 8 2 . 31 . 0 0 1 2 . 9 1 . 0 0 7 2 . 3 1 . 0 0 4 2 . 6

1 . 0 1 1 3 . 7 0 . 9 2 1 1 2 . 4 1 . 0 1 6 3 . 41 . 0 0 9 0 . 8 0 . 9 3 7 7 . 9 1 . 0 2 6 0 . 8

1 . 0 0 5 1 . 7 0 . 9 6 5 5 . 6 1 . 0 3 0 0 . 8

1 . 0 0 2 1 . 4 0 . 9 8 2 3 . 5 1 . 0 2 4 0 . 71 . 0 0 1 1 . 2 0 . 9 9 4 1 . 9 1 . 0 1 2 0 . 1

1 . 0 0 0 1 . 5 0 . 9 9 7 1 . 8 1 . 0 0 8 0 . 7

1 . 0 2 3 1 . 1 1 . 0 1 6 1 . 7 1 . 0 1 6 1 . 71 . 0 1 6 1 . 6 1 . 0 2 0 2 . 0 1 . 0 2 1 2 . 1

1 . 0 1 0 0 . 4 1 . 0 2 1 0 . 7 1 . 0 2 1 0 . 71 . 0 0 5 0 . 8 1 . 0 1 8 0 . 4 1 . 0 1 7 0 . 2

1 . 0 0 2 0 . 4 1 . 0 1 2 1 . 2 1 . 0 1 0 1 . 0

1 . 0 0 1 1 . 6 1 . 0 0 6 1 . 1 1 . 0 0 4 1 . 3

O

Page 134: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI (Continued)

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n t s o f Biphenylin the Five Binary Solvent Mixtures

i.i * i i * 0 W i 1 s o n ' s Eqn, U N I Q U A CT e m pK

x2 ( e x p t . ) Y2 ( e x p t . ) Y - C c a l c . ) Ac %

Y - C c a l c . ) A c %

y _ ( c a l c . ) A*■ %

Y g t c a l c . ) A%

7 0 m o l e X C y c l o h e x a n e a n d 30 m o l e % T h i o p h e n e3 0 6 . 8 0 . 3 7 8 5 1 . 2 9 7 1 . 1 7 0 9 . 8 1 . 2 4 8 3 . 8 1 . 2 3 1 5 . 1 1 . 2 3 8 4 . 63 1 4 . 7 0 . 5 2 2 1 1 . 1 1 4 1 . 0 8 5 2 . 7 1 , 1 2 1 0 . 6 1 . 1 3 5 1 . 9 1 . 1 2 4 0 . 93 2 0 . 4 0 . 6 1 5 0 1 . 0 6 5 1 . 0 4 9 1 . 4 1 . 0 7 0 0 . 5 1 . 0 8 8 2 . 2 1 . 0 7 5 0 . 93 2 7 . 2 0 . 7 1 3 7 1 . 0 5 3 1 . 0 2 5 2 . 7 1 . 0 3 5 1 . 7 1 . 0 4 9 0 . 4 1 . 0 3 8 1 . 43 3 1 . 5 0 . 8 0 0 6 1 . 0 2 2 1 . 0 1 1 1 . 1 1 . 0 1 6 0 . 6 1 . 0 2 4 0 . 2 1 . 0 1 8 0 . 43 3 7 . 4 0 . 9 1 0 9 1 . 0 0 7 1 . 0 0 2 0 . 5 1 . 0 0 3 0 . 4 1 . 0 0 5 0 . 2 1 . 0 0 3 0 . 47 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 1 2 . 4 0. 5 0 2 9 1 . 1 0 2 1 . 0 7 2 2 . 7 1 . 1 1 9 1 . 6 1 . 1 0 9 0 . 6 1 . 1 0 0 0 . 2

3 1 7 . 6 0 . 5 7 4 4 1 . 0 7 7 1 . 0 4 9 2 . 6 1 . 0 8 0 0 . 3 1 . 0 7 5 0 . 1 1 . 0 6 8 0 . 8

3 2 2 . 1 0 . 6 4 7 5 1 . 0 4 8 1 . 0 3 1 1 . 7 1 . 0 5 1 0 . 2 1 . 0 4 9 0 . 1 1 . 0 4 4 0 . 43 2 6 . 3 0 . 7 1 6 8 1 . 0 3 1 1 . 0 1 9 1 . 2 1 . 0 3 0 0 . 1 1 . 0 3 0 0 . 1 1 . 0 2 6 0 . 53 3 2 . 4 0 . 8 2 3 2 1 . 0 1 2 1 . 0 0 7 0 . 6 l . O l l 0 . 2 1 . 0 1 1 0 . 1 1 . 0 0 9 0 . 33 3 4 . 5 0 . 8 5 8 3 1 . 0 1 2 1 . 0 0 4 0 . 7 1 . 0 0 7 0 . 5 1 . 0 0 7 0 . 5 1 . 0 0 6 0 . 6

3 3 6 . 4 0 . 8 9 4 8 1 . 0 0 7 1 . 0 0 2 0 . 5 1 . 0 0 4 0 . 3 1 . 0 0 4 0 . 3 1 . 0 0 3 0 . 4

Page 135: Classical and Statistical Thermodynamics of Solid-Liquid

TftBLE XII

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n t s o f Dibenzofuranin the Five Binary Solvent Mixtures

o ;

II i fJ * 0 W i l s o n ' s Eqn. U N I Q U A CT e m pK

x 2 ( e x p t . ) Y 2 ( e x p t . ) Y2( c a l c . ) A%

Y2(ca1c. ) A%

Y2( c a l c . ) A%

Y2(ca1c. ) A%

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e3 1 2 . 3 0 . 4 0 0 4 1 . 0 6 5 1 . 1 0 6 3 . 6 1 . 1 1 4 4 . 6 1 . 1 4 7 7 . 7 1 . 1 5 0 7 . 93 2 2 . 2 0 . 5 0 9 3 1 . 0 3 6 1 . 0 5 9 2 . 2 1 . 0 6 5 2 . 8 1 . 0 7 8 4 . 1 1 . 0 7 7 3 . 93 2 9 . 2 0 . 5 9 5 1 1 . 0 2 3 1 . 0 3 6 1 . 2 1 . 0 4 0 1 . 6 1 . 0 4 6 2 . 2 1 . 0 4 3 1 . 93 3 7 . 1 0 . 7 0 3 1 1 . 0 1 2 1 . 0 1 7 0 . 5 1 . 0 1 9 0 . 7 1 . 0 2 1 0 . 9 1 . 0 1 9 0 . 73 4 3 . 4 0 . 8 0 7 9 0 . 9 9 1 8 1 . 0 0 6 1 . 5 1 . 0 0 7 1 . 5 1 . 0 0 8 1 . 6 1 . 0 0 6 1 . 57 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % T h i o p h e n e3 1 8 . 4 0 . 3 6 3 3 1 . 3 4 0 1 . 4 3 8 7 . 3 1 . 3 1 8 1 . 6 1 . 3 0 7 2 . 5 1 . 3 0 4 2 . 73 2 6 . 4 0 . 4 8 3 7 1 . 1 9 0 1 . 2 3 9 4 . 1 1 . 1 7 7 1 . 1 1 . 1 8 7 0 . 2 1 . 1 7 8 1 . 0

3 2 9 . 6 0 . 5 4 0 2 1 . 1 3 6 1 . 1 7 6 3 . 4 1 . 1 3 1 0 . 5 1 . 1 4 4 0 . 7 1 . 1 3 4 0 . 2

3 3 4 . 0 0 . 6 1 7 0 1 . 0 6 6 1 . 1 1 1 Z. 3 1 . 0 8 3 0 . 2 1 . 0 9 6 1 . 0 1 . 0 8 7 0 . 2

3 4 1 . 4 0 . 7 4 3 6 1 . 0 3 8 1 . 0 4 3 0 . 5 1 . 0 3 3 0 . 5 1 . 0 4 1 0 . 3 1 . 0 3 6 0 . 2

3 4 7 . 4 0 . 8 6 2 9 0 . 9 9 9 6 1 . 0 1 1 1 . 2 1 . 0 0 8 0 . 9 1 . 0 1 1 1 . 2 1 . 0 0 9 1 . 0

7 0 m o l e % B e n z e n e a n d 3 0 m o l e % T h i o p h e n e3 0 3 . 3 0 . 3 0 6 9 1 . 1 3 3 1 . 2 2 1 7 . 8 1 . 1 6 0 2 . 5 1 . 1 6 1 2 . 5 1 . 1 4 0 0 . 6

3 1 2 . 7 0 . 3 9 1 9 1 . 0 9 8 1 . 1 4 6 4 . 4 1 . 1 0 7 0 . 8 1 . 1 2 8 2 . 7 1 . 1 1 3 1 . 43 2 4 . 2 0 . 5 1 7 9 1 . 0 6 2 1 . 0 7 6 1 . 3 1 . 0 5 6 0 . 6 1 . 0 8 2 1 . 9 1 . 0 7 3 1 . 1

3 2 9 . 6 0 . 5 9 1 0 1 . 0 3 9 1 . 0 4 9 1 . 0 1 . 0 3 7 0 . 2 1 . 0 6 0 2 . 1 1 . 0 5 3 1.43 3 9 . 8 0 . 7 3 5 6 1 . 0 1 8 1 . 0 1 7 0 . 1 1 . 0 1 3 0 . 5 1 . 0 2 6 0 . 8 1 . 0 2 2 0 . 43 4 4 . 5 0 . 8 1 3 0 1 . 0 0 6 1 . 0 0 8 0 . 2 1 . 0 0 6 0 . 0 1 . 0 1 3 0 . 7 1 . 0 1 1 0 . 5

Page 136: Classical and Statistical Thermodynamics of Solid-Liquid

i

TABLE XII ( C o n t i n u ed)

Comp a r i s o n o f t h e E xp er i me n t a l and P r e d i c t e d AcLiv i ty __ Co ef f i r i e n t s o f Dih e n z o f u r a n i n t h e F i v e Bi na r y S o l v e n t Hi jc lures

W i l s o n ' s F.gn. UNIQUACT e m p x 2 ( e x p t . ) y 2 C e x p t . ) y ( c a l c . ) A Y ( c a l c . ) A Y _ ( c a l c . ) A V 2 ( c a l c . ) AK X X % X

7 0 m o l e X C y c l o h e x a n e anil 3 0 m o le X P y r i d i n e3 0 9 . 7 0 . 3 1 5 3 1 . 2 7 6 1 . 4 5 9 1 4 . 3 1 . 3 4 7 5 . 5 1 . 3 2 0 3 . 4 1 . 2 9 5 1.43 1 8 . 0 0 . 4 0 2 7 1 . 1 9 9 1 . 3 0 1 8 . 5 1 . 2 3 0 2 . 6 1 . 2 1 4 1-3 1 . 2 1 7 1.53 2 5 . 0 0 . 4 9 2 5 1 . 1 3 5 1 . 1 9 1 4 . 9 1. 147 1 . 0 1 . 1 3 9 0 . 3 1.1 5 1 1 . 33 3 1 . 8 0 . 6 0 6 0 1 . 0 5 8 1 . 1 0 0 3 . 9 1 . 0 7 8 1 .9 1 .075 1 . 6 1 . 0 8 6 2 . 6

3 3 5 . 9 0 . 6 5 6 7 1 . 0 5 8 1 . 0 7 2 1. 3 1 .05 6 0 . 2 1 . 0 5 5 0 . 4 1 . 0 6 3 0 . 53 4 6 . 7 0 . 8 4 6 5 1 . 0 0 6 1 . 0 1 2 0 . 6 1 . 0 0 9 0 . 3 1 . 0 1 0 0 . 4 1 . 0 1 1 0 . 57 0 m o l e X T h i /phen e a n d 3 0 m o l e X P y r i d i n e2 9 9 . 9 0 . 2 7 5 8 1 . 1 6 4 1 . 0 5 9 9 . 0 1 . 1 3 6 2 . 4 0 . 8 7 3 2 5 . 0 0 . 9 8 6 1 5 . 33 1 2 . 6 0 . 4 0 8 3 1 . 0 5 2 1 . 0 3 1 1.9 1 . 0 7 2 1.9 0 . 9 4 7 1 0 . 0 1 . 0 8 2 2 . 93 2 1 . 1 0 . 4 9 2 5 1 .047 1 . 0 2 0 2 , 6 1 . 0 4 6 0 . 1 0 . 9 7 3 7.1 1 , 0 8 8 3 . 93 2 9 . 9 0 . 6 0 7 3 1 . 0 1 5 1 . 0 1 0 0 . 5 1 . D 2 3 0 . 8 0 . 9 9 2 2 - 3 1 . 0 6 8 5 . 23 3 8 . 0 0 . 7 1 5 1 1 . 0 1 2 1 . 0 0 5 0 . 7 1 . 0 1 1 0 . 1 0 . 9 9 9 1 .3 1 . 0 4 1 2 . 93 4 4 . 0 0 . 8 1 1 1 0 . 9 9 9 1 . 0 0 2 0 . 3 1 . 0 0 4 0 . 5 1 . 0 0 1 ' 0 . 2 1 .019 2 . 0

Page 137: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XIII

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n t s o f Oibenzothiophenein the Five Binary Solvent Mixtures

i . . = l.T 0 * 1 J * ° W i l s o n ’s E q n . U N I Q U A CT e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) V 2 ( c a l c . ) & %

y 2 ( c a 1 c . ) A%

y 2 ( c a l c . ) A%

y 2 ( c a l c . ) A%

7 0 m o l e % B en zen e and 30 m o l e %

3 0 B . 7 0 . 2 0 0 8 1 . 3 4 4T h i o p h e n e

1 . 5 6 3 1 6 . 3 1 . 3 2 8 1 . 2 1 . 3 5 2 0 . 6 1 . 3 3 4 0 . 73 2 3 . 2 O. 3 1 0 0 1 . 2 1 8 1 . 3 2 1 8 . 4 1 . 1 9 3 2 . 1 1 . 2 2 5 0 . 6 1 . 2 1 7 0 . 1

3 3 3 . 1 0 . 4 0 5 1 1 . 1 5 8 1 . 1 9 7 3 . 4 1 . 1 2 1 3 . 2 1 . 1 5 0 0 . 7 1 . 1 4 5 1 . 2

3 4 1 . 0 0 . 5 0 2 5 1 . 1 0 2 1 . 1 1 7 1 . 3 1 . 0 7 3 2 . 7 1 . 0 9 5 0 . 7 1 . 0 9 1 1 . 0

3 4 9 . 1 0 . 6 0 8 0 1 . 0 7 4 1 . 0 6 2 1 . 1 1 . 0 3 9 3 . 3 1 . 0 5 4 1 . 9 1 . 0 5 1 2 . 2

3 5 5 . 4 0 . 7 1 0 3 1 . 0 4 1 1 . 0 3 0 1 . 1 1 . 0 1 9 2 . 2 1 . 0 2 7 1 . 4 1 . 0 2 5 1 . 57 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l 3 2 2 . 3 0 . 1 6 1 7 2 . 2 B 9

e % T h i o p h e n e2 . 6 9 2 1 7 . 6 2 . 1 5 6 5 . 8 2 . 0 3 4 1 1 . 1 2 . 0 5 6 1 0 . 2

3 3 3 . 6 0 . 2 7 3 7 1 . 7 3 2 1 . 9 1 5 1 0 . 6 1 . 6 5 5 4 . 4 1 . 6 0 7 7 . 2 1 . 5 8 7 8 . 43 3 9 . 3 0 . 3 6 4 7 1 . 4 6 6 1 . 5 7 2 7 . 2 1 . 4 2 0 3 . 1 1 . 4 0 0 4 . 5 1 . 3 7 2 6 . 43 4 5 . 9 0 . 4 8 0 5 1 . 2 7 4 1 . 3 1 0 2 . 8 1 . 2 3 3 3 . 3 1 . 2 3 0 3 . 5 1 . 2 0 3 5 . 63 4 8 . 5 0 . 5 3 8 1 1 . 1 9 9 1 . 2 2 4 2 . 1 1 . 1 7 0 2 . 4 1 . 1 7 1 2 . 3 1 . 1 4 7 4 . 43 5 5 . 1 0 . 6 7 0 4 1 . 0 9 7 1 . 0 9 6 0 . 1 1 . 0 7 3 2 . 1 1 . 0 7 7 1 . 8 1 . 0 6 2 3 . 17 0 m o l e % B e n z e n e a n d 3 0 m o l e % P y r i d i n e 3 0 8 . 8 0 . 2 0 6 0 1 . 3 1 3 1 . 4 1 1 7 . 5 1 . 3 4 0 2 . 0 1 . 2 7 1 3 . 2 1 . 3 7 2 4 . 53 1 9 . 8 0 . 2 8 5 6 1 . 2 2 5 1 . 2 7 7 4 . 2 1 . 2 3 1 0 . 5 1 . 2 1 3 1 . 0 1 . 2 7 0 3 . 73 3 2 . 0 0 . 4 0 1 2 1 . 1 4 2 1 . 1 5 5 1 . 2 1 . 1 3 1 1 . 0 1 . 1 4 4 0 . 2 1 . 1 6 4 1 . 93 4 0 . 6 0 . 5 0 2 4 1 . D 9 3 1 . 0 9 1 0 . 2 1 . 0 7 7 1 . 5 1 . 0 9 2 0 . 3 1 . 0 6 0 1 . 1

3 4 8 . 0 0 . 5 9 6 4 1 . 0 7 1 1 . 0 5 2 1 . 8 1 . 0 4 4 2 . 5 1 . 0 6 2 0 . 8 1 . 1 0 1 0 . 73 5 5 . 9 0 . 7 2 3 7 1 . 0 3 2 1 . 0 2 1 1 . 1 1 . 0 1 8 1 . 4 1 . 0 2 8 0 . 3 1 . 0 2 5 0 . 7

Page 138: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XIII (Continued)

Comparison o f the Experimental and Predicted A c t iv i ty C o e f f i c ie n ts o f Oibenzothiophenei n t h e F i v e B i n a r y S o l v e n t M i x t u r e s

* i i = ° St. . t 0 i.l W i l s o n ' s Eqn. U N I Q U A CT e m pK

x 2 C e x p t . ) ? 2 ( e x p t . ) V 2 ( c a l c . ) A%

V 2 ( c a l c . ) 6

%y 2 ( c a l c . ) A

%V 2 ( c a 1 c . ) A

%

7 0 m o l e % C y c l o h e x a n e a n d 3 0 m o l e % P y r i d i n e3 1 9 . 83 3 0 . 53 3 9 . 23 4 5 . 03 5 2 . 0 3 5 7 . 7

0 . 2 1 4 1 0 . 3 1 7 4 0 . 4 2 3 1 0 . 5 1 5 0 0 . 6 3 2 9 0 . 7 3 3 6

1 . 6 3 41 . 3 9 71 . 2 6 11 . 1 6 71 . 0 9 31 . 0 5 4

2 . 0 5 61 . 6 1 81 . 3 5 91 . 2 1 91 . 1 0 71 . 0 5 D

2 5 . 81 5 . 8 7 . 7 4 . 4 1 . 3 0 . 4

1 . 7 9 31 . 4 7 71 . 2 8 21 . 1 7 41 . 0 8 61 . 0 4 0

9 . 85 . 71 . 6

0 . 6

0 . 71 . 3

1 . 6 2 01 . 3 9 01 . 2 4 11 . 1 5 51 . 0 8 01 . 0 3 9

0 . 90 . 51 . 6

1 . 1

1 . 2

1 . 4

1 . 4 8 91 . 3 3 71 . 2 1 51 . 1 3 81 . 0 7 01 . 0 3 3

8 . 9 4 . 3 3 . 7 2 . 5 2 . 1

1 . 97 0 m o l e % T h i o p h e n e a n d 3 0 m o l e % P y r i d i n e3 0 4 . 93 1 6 . 8 3 2 9 . 53 3 9 . 03 4 5 . 83 5 3 . 1

0 . 2 0 9 6 0 . 2 9 0 6 0 . 3 9 9 4 0 . 5 0 7 1 0 . 5 8 7 1 0 . 7 0 1 2

1 . 1 7 5 1 . 1 2 4

' 1 . 0 8 6 1 . 0 4 8 1 . 0 4 1 1 . 0 0 8

1 . 1 6 11 . 1 0 91 . 0 6 31 . 0 3 61 . 0 2 2

1 . 0 1 0

1 . 5 1 . 72 . 51 . 5 2 . 1

0 . 1

1 . 1 6 51 . 1 1 1

1 . 0 6 51 . 0 3 61 . 0 2 31 . 0 1 0

0 . 91 . 2

2 . 0

1 . 1

1 . 8

0 . 2

0 . 8 8 8

0 . 9 1 60 . 9 4 60 . 9 6 70 . 9 7 80 . 9 9 0

2 4 . 71 8 . 7 1 3 . 2

8 . 0

6 . 32 . 1

1 . 0 7 51 . 0 8 81 . 0 7 81 . 0 5 81 . 0 4 11 . 0 2 2

8 . 8

3 . 51 . 1

0 . 6

0 . 31 . 0

Page 139: Classical and Statistical Thermodynamics of Solid-Liquid

117

s o n ' s e q u a t i o n , 3.2%; and UNIQUAC, 2.4%). There i s only a minor s u p e r ­

i o r i t y f o r t h e models hav ing a d j u s t a b l e p a r am e te r s .

While t h e r e a r e not enough d a t a f o r t h e s e s o l u t e s in m ix tu res t o

c o n c l u s i v e l y s e t t l e t h e m a t t e r , t h e s e r e s u l t s i n d i c a t e t h a t r e g r e s s i o n

o f t h e d a t a f o r b i n a ry p a ram e te r s y i e l d s on ly minor improvement f o r

t h e s e s o l u t e s over t h e S c a t c h a rd -H i ld e b ra n d th e o ry when a p p l i e d t o

mult icomponen t e q u i l i b r i a . The r e l a t i v e o r d e r o f t h e ave rage d e v i a t i o n s

o f t h e models i s no t what was found p r e v i o u s l y ( 3 ) , though as s t a t e d

t h e r e , t h e advan tage o f any model over t h e o t h e r s was minimal w i th o t h e r

s o l u t e systems as w e l l .

The most s u r p r i s i n g a s p e c t o f t h e r e s u l t s i s t h e r e l a t i v e l y good

p r e d i c t i o n s o f S c a t c h a rd -H i ld e b ra n d th e o ry f o r t h e s e systems in both0

p u re and mixed s o l v e n t s . C o n s id e r in g t h a t v. and 6 . a r e c a l c u l a t e d f o r

some o f t h e s e s o l u t e s from c o r r e l a t i o n s r a t h e r than from exper im en ta l

d a t a , t h e p r e d i c t i o n s a r e q u i t e good.

Page 140: Classical and Statistical Thermodynamics of Solid-Liquid

118

VI. EFFECT OF HETEROATOM SUBSTITUTION ON SOLUBILITIES

These s o l u b i l i t y r e s u l t s r e p r e s e n t t h e e f f e c t o f he te roa tom s u b s t i ­

t u t i o n on s o l u b i l i t y f o r two f a m i l i e s o f compounds. F igu re 2 shows t h e

e x p e r im e n ta l d a t a f o r one f a m i ly ( f l u o r e n e , d ib e n z o f u r a n , d ib e n z o t h i o -

phene and c a r b a z o l e ) in benzene , p l o t t e d as -£n x ^ v e r s u s T /T. Due to

t h e w id e ly v a r y in g m e l t i n g p o i n t s o f t h e s o l u t e s and th e f a c t t h a t a l l

o f our d a t a a r e in a p p ro x im a te ly t h e same t e m p e r a t u r e r ange , t h e reduced

t e m p e r a t u r e s (T /T ) d i f f e r s u b s t a n t i a l l y . This i s dem ons t r a ted f o r t h e

f l u o r e n e an a lo g s in benzene in f i g u r e 2. To a f i r s t ap p ro x im a t io n , t h e

r e s u l t s can be s a i d t o be on t h e same s t r a i g h t l i n e so t h a t d e v i a t i o n s

from i d e a l i t y a r e s i m i l a r f o r t h e s e r i e s and t h e e f f e c t o f he te roa tom

s u b s t i t u t i o n i s n o t s i g n i f i c a n t . Th is means t h a t i f t h e s o l u b i l i t i e s o f

some o f t h e a ro m a t ic hydrocarbon members o f a f a m i ly a r e known, t h e £n

x«-T /T p l o t can be used t o e s t i m a t e t h e s o l u b i l i t y o f t h e o t h e r h e t e r o - 2 m J

atom members w i th r e a s o n a b l e c o n f id e n c e .

Because o f t h e d i f f e r e n t m e l t i n g p o i n t s and small d i f f e r e n c e s in

t h e e n t r o p i e s o f f u s i o n , i n t e r p r e t a t i o n o f a p l o t l i k e f i g u r e 2 f o r t h e

d e t a i l e d e f f e c t on s o l u b i l i t y o f h e t e ro a to m s u b s t i t u t i o n i s d i f f i c u l t .

A b e t t e r i n d i c a t i o n o f t h e e f f e c t i s g iv e n by p l o t t i n g t h e a c t i v i t y

c o e f f i c i e n t s p r e d i c t e d u s in g t h e s o l u t i o n models f o r t h e s e same systems.

These a r e shown in f i g u r e 3. The r e s u l t s p r e s e n t e d in f i g u r e s 2 and 3

a r e t y p i c a l o f t h e r e s u l t s . The a c t i v i t y c o e f f i c i e n t s in f i g u r e 3 a r e

c a l c u l a t e d u s in g UNIQUAC ( w i t h t h e p a r a m e te r s p r e s e n t e d in Tab le V i l a )

a t t h e a v e ra g e t e m p e r a t u r e o f t h e d a t a o f each system. I t shou ld be

s t r e s s e d t h a t f i g u r e 3 i s o f a c t i v i t y c o e f f i c i e n t s c a l c u l a t e d u s in g

f i t t e d d a t a , n o t t h e a c t u a l e x p e r im e n ta l v a l u e s . This was done so t h a t

Page 141: Classical and Statistical Thermodynamics of Solid-Liquid

0

□ Dibenzothiophene

A Dibenzofuran

- 2 O Fluorene

N3

- 4

5

» ■ ■ * * « ■ ■ i « * * ■ i ■-61.0 1.3 1.51.1 1.2 1.4 1.6 1.7 1.8

Tm/T

Figure 5 -2 : Solubility Versus Reduced Temperature for the First Heteroatom Family in Benzene.

Page 142: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s2.75

2.50 Carbozole2.25-

— Dibenzofuran2.00

— Fluorene75

1.25-

1.00Temperature = 340.0 K

.75.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

Mole Fraction BenzeneFigure 5 -3 : Predicted Activity Coefficients for the First

Heteroatom Family in Benzene

Page 143: Classical and Statistical Thermodynamics of Solid-Liquid

121

t h e d i f f e r e n t sys tems cou ld be compared over t h e e n t i r e range of compo­

s i t i o n s .

As f i g u r e 3 shows, i n s e r t i o n o f a he te roa tom oxygen o r s u l f u r i n t o

t h e r i n g causes o n ly a s l i g h t i n c r e a s e ( i f any) in t h e sys tem n o n i d e a l ­

i t y whereas i n s e r t i o n o f a n i t r o g e n i n t o t h e r i n g c a u s e s a somewhat

l a r g e r i n c r e a s e in n o n i d e a l i t y . As s t a t e d above , t h e s e r e s u l t s a r e

t y p i c a l o f t h e r e s u l t s f o r both f a m i l i e s in a l l t h e s o l v e n t s . The

h i g h e r n o n i d e a l i t i e s found in t h e sys tems w i th n i t r o g e n ana logs i s

p r o b a b ly due t o hydrogen bonding f o r c a r b a z o l e and t h e h i g h e r d i p o l e

moments o f bo th c a r b a z o l e and a c r i d i n e . C arbazo le i s a l s o known t o form

complexes w i th some o f t h e s e s o l v e n t s . Th is would a l s o h e lp t o e x p l a i n

t h e r e s u l t s o b t a in e d f o r th o s e systems ( 6 , 28 ) .

Page 144: Classical and Statistical Thermodynamics of Solid-Liquid

122

V I I . Summary

S o l i d - l i q u i d s o l u b i l i t i e s have beeh found f o r seven s o l u t e s in fo u r

s o l v e n t s . The exper imenta l d a t a have been r e g r e s s e d to o b t a in t h e

b i n a ry i n t e r a c t i o n param ete rs needed in a number o f common s o l u t i o n

models . The b i n a ry pa ram e te rs o b ta in e d have been l i s t e d in Tables VI(a)

and V I I ( a ) and have been used to p r e d i c t th e s o l u b i l i t i e s o f t h r e e

s o l u t e s in f i v e b in a ry s o l v e n t m ix tu re s . The r e s u l t s have been p r e ­

se n te d in Tables XI th rough XIII and d i s c u s s e d and show t h a t t h e average

a b s o l u t e d e v i a t i o n s f o r th e models , when used t o p r e d i c t t h e mult icompo­

n e n t s o l u b i l i t i e s , ranged from 1.9% f o r ex tended S c a tch a rd -H i ld eb ra n d

t h e o r y t o 3.6% f o r S ca tc h a rd -H i ld e b ra n d th e o ry . The a b i l i t y o f the

models t o p r e d i c t t h e mult icomponent e q u i l i b r i a was a c c e p t a b l e , though

n o t q u i t e as good as has been dem onst ra ted in p r e v io u s p a p e r s .

The e f f e c t o f i n s e r t i o n o f he te roa tom s i n t o t h e s t r u c t u r e s was

d i s c u s s e d . N i t rogen analogs show somewhat l a r g e r n o n i d e a l i t i e s in t h e s e

s o l v e n t s than t h e ca rbon , oxygen o r s u l f u r a n a l o g s , p o s s i b l y due t o

hydrogen bonding , complexing, and p o l a r i t y e f f e c t s .

Page 145: Classical and Statistical Thermodynamics of Solid-Liquid

123

LITERATURE CITED

(1 ) Choi, P. 8 . , McLaughlin, E . , Ind. Eng. Chem. Fund . , (1983) , 22, 46.

(2 ) Choi, P. B . , W i l l i am s , C. P . , Buehr ing , K. 6 . , McLaughlin, E . , J .

Chem. Eng.. D a ta , (1985) , 30, 403.

(3 ) Coon, J . E. , T r o t h , M., McLaughlin, E . , J. Chem. Eng. Data, (1987),

32, 233.

( 4 ) Domanska, U . , F lu id Phase E q u i l . , (1987) 35 ( 3 ) , 217.

(5 ) Acree , W. E. , R y t t in g , J . H. , J . Pharm. S c i . , (1983) , 72, 292.

(6 ) Acree, W. E . , Thermodynamic P r o p e r t i e s o f N o n e l e c t r o l y t e S o l u t i o n s ,

Academic: New York, (1984) , Chap. 10.

(7) Marthandan, M. V., Acree, W. E. , J . Chem. Eng. Data , (1987) , 32,

301.

(8 ) H a u l a i t - P i r s o n , M. , Huys, G. , V a n s t r a e l e n , E. , Ind. Eng. Chem.

R e s . , ( 1987 ) , 26, 447.

(9 ) McLaughlin, E . , Z a i n a l , H. A . , J . Chem. S o c . , (1959) , 863.

(10) McLaughlin, E . , Z a i n a l , H. A . , J . Chem. S o c . , (1960 ) , 2485.

(11) McLaughlin, E . , Z a i n a l , H. A . , J . Chem. S o c . , (1960 ) , 3854.

(12) H i ld e b ra n d , J . H . , P r a u s n i t z , J . M., S c o t t , R. L . , Regular and Re­

l a t e d S o l u t i o n s , Van N es t rand-R e inho ld : New York, (1970) .

(13 ) Wilson, G. M., J . Am. Chem. S o c . , ( 1964 ) , 86 , 127.

(14) Abrams, D. S . , P r a u s n i t z , J . M., AIChE J . , ( 1975 ) , 2 1 ( 1 ) , 116.

(15) P r a u s n i t z , J . M., L i c h t e n t h a l e r , R. N . , Alzedo, E. G . , Molecular

Thermodynamics o f F lu id Phase E q u i l i b r i a , P r e n t i c e - H a l l , Englewood

C l i f f s , NJ, ( 1 9 8 7 ) , Ed. 2 , Chap. 9.

(16) Spagh t , M. E. , Thomas, S. B . , P a rks , G. S . , J. Phys. Chem., (1932) ,

36, 882.

Page 146: Classical and Statistical Thermodynamics of Solid-Liquid

(17 ) Gmehling, 0 . , Onken, U. , A r l t , W. , Chemistry Data S e r i e s , DECHEMA:

F r a n k f u r t , (1980) .

(18 ) Roman, C. E. , Lu thor , J . E. , and Wetze l , D. M. , Energy P ro g re s s ,

December, 1986.

(19) Reid, R. C . , P r a u s n i t z , J . M. , and Sherwood, T. K. , The P r o p e r t i e s

of Gases and L i q u i d s , McGraw-Hil l, New York, (1977) .

(20 ) Timmermans, J . , Physico-Chemical Cons tan ts o f Pure Organic Com­

pounds , Vol. I and I I , E l s e v i e r P u b l i s h i n g Co. , New York (1950/

1965).

(21) Advances in Chemistry S e r i e s , Vol. 15 and 22, Phys ica l P r o p e r t i e s

o f Compounds, Am. Chem. S o c . , Washington, D.C. (1955).

(22 ) I n t e r n a t i o n a l C r i t i c a l T a b le s , N a t iona l Academy o f S c ie n c e , (1926) .

(23 ) API Technica l Data Book, API, J u l y 1968.

(24) NGPSA Data Book, NGPSA, (1972).

(25 ) Tsonopoulos , C. , Heidman, J . , Hwang, S. C. , Thermodynamic and

T r a n s p o r t P r o p e r t i e s o f Coal L iq u id s , John Wiley and Sons, (1986).

(26 ) C a r r u th , G. F. , Kobayashi , R. , Ind. Eng. Chem. Fund . , 11 , (1972) ,

509.

(2 7 ) R a c k e t t , H. G . , J . Chem. Eng. Data , 15, (1970 ) , 514.

(28 ) McCargar, J . W., Acree, W. E . , Phys. Chem. L i q . , 17 , (1987 ) , 123.

Page 147: Classical and Statistical Thermodynamics of Solid-Liquid

125

NOMENCLATURE

Symbol D e s c r i p t i o nA . . UNIQUAC b i n a ry p a ra m e te r ( J /gm o l ) .

* J

ACp Heat C apac i ty o f l i q u i d i - Heati j C apac i ty o f s o l i d i measured a t t h e

m m e l t in g p o i n t o f i (J /gmol °K)

Ah? Enthalpy change o f a s o l i d - s o l i d phaset r a n s i t i o n f o r component i ( J /gm ol ) .

A h t Heat o f f u s io n o f component i ( J /gm ol ) .

AhY Heat of v a p o r i z a t i o n o f component i( J /g m o l ) .

H . . Extended Regular S o lu t i o n Model b in a ryJ param ete r .

P P r e s s u r e (atm)

P C r i t i c a l P r e s s u r e (a tm) ,s a t

P. Vapor P re s s u re of i (atm) .

Q.j Pure component p a ram e te r in UNIQUAC.

R.j Pure component p a ram e te r in UNIQUAC.

R Gas Cons tan t .

Sg S p e c i f i c g r a v i t y a t 60 °F.f

As. Entropy o f f u s i o n o f i measured a t t h em e l t i n g - p o i n t o f i (J /gmol °K).

As? Entropy change o f a s o l i d - s o l i d phaset r a n s i t i o n o f i (J /gmol °K).

T Tem perature (K).

Tfa Normal B o i l i n g Temperature (K).

Tc C r i t i c a l Temperature (K).

Tm M e l t i n g - p o i n t Temperature (K).

Av.. Molar volume o f l i q u i d i - molarvolume o f s o l i d i (m3/gm ol) .

Page 148: Classical and Statistical Thermodynamics of Solid-Liquid

126

vc C r i t i c a l volume (m3/gmol) .

v* Molar volume o f l i q u i d i (m3/gmol) .

AuV I n t e r n a l Energy o f v a p o r i z a t i o n o f i( J /g m o l ) .

x . Mole f r a c t i o n o f 1.

Zc C r i t i c a l c o m p r e s s i b i l i t y .

( y2 ( exp* - ) - y2 ( c a l c . ) ) / y 2 ( e x p t . ) x 100

<5. S o l u b i l i t y Paramete r o f I

y . A c t i v i t y C o e f f i c i e n t o f i .

A Defined by Eqn. 2.

A . . W i l s o n ' s Eqn. Binary Paramete r1J ( J /gm ol ) .

p.. D ens i ty o f component i (g/cm3 ).

iu. A c e n t r i c f a c t o r o f i .

ACKNOWLEDGEMENTS

We g r a t e f u l l y acknowledge s u p p o r t f o r t h i s work from t h e Department o f Energy th ro u g h Gran t #DE- FG22-84PC70784 and th e N at iona l Science Foundat ion th rough Gran t #CPE83-14224. J . E. C. a l s o th a n k s t h e Shel l Companies Founda tion f o r a f e l l o w s h i p and W. B. S. thanks t h e government o f I n d o n e s ia f o r a f e l l o w s h i p .

Page 149: Classical and Statistical Thermodynamics of Solid-Liquid

127

b. FURTHER DISCUSSION OF THE EFFECT OF HETEROATOM

SUBSTITUTION ON THE SOLUBILITY IN A GIVEN SOLVENT.

One o f the o b j e c t i v e s of t h i s work was to determine what e f f e c t ( i f

any) on s o l u b i l i t y was observed when s e r i e s o f compounds were s tu d ie d

t h a t d i f f e r e d only by the in c lu s io n of a d i f f e r e n t heteroa tom in to the

s t r u c t u r e . Two such f a m i l i e s of molecules were s tu d ie d . The f i r s t s e r i e s

was f l u o r e n e , d ibenzo fu ran , d ibenzo th iophene , and c a rb a z o le . The second

was a n th ra cen e , a c r i d i n e , xan thene , and th io x a n th e n e . The s t r u c t u r e s of

th e s e molecu les are given in Appendix 1, along with the r e s t of the com­

pounds i n v e s t i g a t e d .

One obvious e f f e c t of changing he teroatoms on s o l u b i l i t y i s due to

th e change in melt ing p o in t t h a t i s observed . As equa t ion 1 c l e a r l y

shows, me l t ing p o in t tem pera tu re i s the most im por tan t paramete r in de­

te rm in ing th e s o l u b i l i t y of a s o l i d in a l i q u i d . Since ca rb a z o le and d i ­

benzofuran ( f o r example) melt a t 521 K and 356 K, r e s p e c t i v e l y , they

have w ide ly d i f f e r i n g s o l u b i l i t i e s in a given s o lv e n t . P l o t t i n g s o l u b i l ­

i t y versus reduced t e m p era tu re , Tm/T, e l i m i n a t e s t h a t comparison problem

bu t i t in t ro d u c e s a n o th e r . Since a l l o f our experiments a re done over

approx im ate ly the same te m pera tu re r anges , th e reduced tem pera tu res

being s tu d ie d can vary s u b s t a n t i a l l y . This i s shown in f i g u r e 5-4 using

th e second heteroatom s e r i e s in benzene. The d i f f e r e n t ranges of the

d a t a in Tm/T make comparison o f the r e l a t i v e d i f f e r e n c e s in n o n id e a l i t y

Page 150: Classical and Statistical Thermodynamics of Solid-Liquid

Log

of So

lute

Mole

frac

tion -f- Thioxanthene

-©- Acridine

Anthracene

Xanthene

- 3-

- 5 Tr1.00 1.10 1.20 1.30 1.40 1.50 1.60

Reduced Temperature (Tm/T)Figure 5 -4 : Solubility Versus Reduced Temperature for the

Second Heteroatom Family in Benzene.

Page 151: Classical and Statistical Thermodynamics of Solid-Liquid

129

d i f f i c u l t . This i s compounded by the f a c t t h a t the d i f f e r e n t members of

a s e r i e s have somewhat d i f f e r e n t e n t r o p i e s of fu s io n , which i s the o the r

im por tan t c o r r e l a t i n g paramete r . These e f f e c t s combine to make a n a l y s i s

of a p l o t l i k e f i g u r e 5-4 very d i f f i c u l t .

In an a t t em p t to compare the e f f e c t of heteroatom s u b s t i t u t i o n on the

l i q u i d phase n o n i d e a l i t i e s , and hence on the s o l u b i l i t i e s , the a c t i v i t y

c o e f f i c i e n t of the s o l u t e has been p l o t t e d a g a i n s t mole f r a c t i o n fo r

each s e r i e s o f heteroatom ana logs in each s o lv e n t . This was done using

th e UNIQUAC equa t ion and the " b e s t - f i t " paramete rs to each s e t o f d a t a .

Since the paramete rs a re f i t t e d over a range of t e m p e ra tu re s , an average

value (340 K) has been chosen, a l lowing the systems to be compared a t

the same t e m p era tu re . This i s a minor p o in t and has l i t t l e e f f e c t on the

p r e d i c t e d v a lu e s . We should emphasize t h a t the twelve p l o t s showing

th e s e comparisons are o f p r e d ic t e d v a lues f o r the a c t i v i t y c o e f f i c i e n t s ,

no t the exper imen tal v a lu e s . This was done, not to smooth the r e s u l t s ,

bu t r a t h e r to al low th e a c t i v i t y c o e f f i c i e n t s to be compared over the

whole range of composi t ion , i n s t e a d of l i m i t i n g the comparisons to the

range of composi t ions of the d a t a . In th e composit ion range of the d a t a ,

a l l of the p r e d i c t e d v a lues a re very good f i t s to the d a t a . Outs ide of

t h e range of th e d a t a , f u r t h e r d i s c u s s io n i s w arran ted .

The twelve p l o t s ( f i g u r e s 5 -3 , 5-5 t o 5-15) have been examined fo r

t r e n d s . I t ' i s r e l a t i v e l y sa fe to say t h a t s u b s t i t u t i o n o f oxygen o r s u l ­

f u r in t o the r ing s t r u c t u r e o f th e s e types o f compounds causes only a

s l i g h t ( i f any) i n c re a s e in th e system n o n i d e a l i t y . I n s e r t i o n of a n i ­

t r o g e n , on th e o th e r hand, u s u a l l y caused a s u b s t a n t i a l i n c re a s e in

Page 152: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s24- 22-

20-

18- 16- 14-

12-

10-

8-

6-

4- 2

0

— Carbazole

Dlbenzothiophene

— Dibenzofuran

— Fluorene

Temperature = 340.0 K

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Cyclohexane

Figure 5 -5 : Solute Activity Coefficients of the FirstHeteroatom Family In Cyclohexane, Using UNIQUAC.

Page 153: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s2.00

— Carbazole1.75

— Dfbenzofuran1.50— Fluorene

1.00

Temperature = 340.0 K0.75

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Thiophene

Figure 5 -6 : Solute Activity Coefficients for the FirstHeteroatom Family in Thiophene, Using UNIQUAC.

Page 154: Classical and Statistical Thermodynamics of Solid-Liquid

3.002.75

j .2 .5 0

• 2.25 oC 2.00

£•1.50 1 1.25 * 1.00

igO.75 w 0.50

0.25 0.00

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Pyridine

Figure 5 -7 : Solute Activity Coefficients for the FirstHeteroatom Family in Pyridine, Using UNIQUAC.

Carbazole

Dlbenzothlophene

— Dibenzofuran

— Fluorene

Temperature = 340.0 K

Page 155: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s8.007.507.006.506.005.50 5.004.50

Carbozole

— Dlbenzofuran

— Fluorene3.503.002.502.001.50 1.00 0.50 0.00

Temperature = 340.0 K

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Tetralln

Figure 5 -8 : Solute Activity Coefficients for the FirstHeteroatom Family in Tefralin, Using UNIQUAC.

Page 156: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s — Corbozole

— Dlbenzofuran

— Fluorene

Temperature = 340.0 K

ntamr

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Decalln

Figure 5 -9 : Solute Activity Coefficients for the FirstHeteroatom Family in Decalin, Using UNIQUAC.

Page 157: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s2.50

2.25 — Thfoxonthene2.00-

1.75- — Acrldtne

— Anthracene

1.25

1.00

0.75 Temperature = 340.0 K

0.50.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

Mole Fraction BenzeneFigure 5 -1 0 : Solute Activity Coefficients for the Second

Heteroatom Family in Benzene, Using UNIQUAC.

Page 158: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s

13

11- — Thtoxanthene

— Acrldlne

--- Anthracene

Temperature = 340.0 K

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Cyclohexane

Figure 5 -1 1 : Solute Activity Coefficients for the SecondHeteroafom Family in Cyclohexane, Using UNIQUAC.

Page 159: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s1.50

1.40- — Thloxonthene

Xanthene1.30-

— Acrfdlne

1.20- — Anthracene

1.10-

1.00

Temperature = 340.0 K0.90

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Thiophene

Figure 5 -1 2 : Solute Activity Coefficients for the SecondHeteroatom Family in Thiophene, Using UNIQUAC.

Page 160: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s1.80

1.70Thloxonthene

1.60

1.50— Acrfdlne1.40— Anthracene

1.20

1.10

1.00

0.90 Temperature = 340.0 K0.80

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Pyridine

Figure 5 -1 3 : Solute Activity Coefficients for the SecondHeteroatom Family in Pyridine, Using UNIQUAC.

Page 161: Classical and Statistical Thermodynamics of Solid-Liquid

— Thioxanthene

- XantheneC 6 - — Acridine

— Anthracene> 4 -

MJILIJ!

Temperature = 340.0 K

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Traction Decalln

Figure 5 -1 4 : Solute Activity Coefficients for the SecondHeteroatom Family in Decalin, Using UNBQUAC.

Page 162: Classical and Statistical Thermodynamics of Solid-Liquid

Solut

e Ac

tivity

Co

effic

ient

s1.80

1.70-— Thioxanthene

1.60-

1.50-— Acridlne1.40-

— Anthracene.30-

1.20-

.10-

1.00

0.90- Temperature = 340.0 K0.80

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00Mole Fraction Tetralin

Figure 5 -15 : Solute Activity Coefficients for the SecondHeteroatom Family in Tetralin, Using UNIQUAC.

Page 163: Classical and Statistical Thermodynamics of Solid-Liquid

141

th e observed n o n i d e a l i t i e s . Eight of the twelve f i g u r e s showed h ighe r

n o n i d e a l i t i e s f o r the n i t rogen analog than fo r the o t h e r s . Most of the

i n c r e a s e s were s u b s t a n t i a l enough t h a t t h e r e i s no doubt about t h e i r va­

l i d i t y o r r e l i a b i l i t y .

The fo l low ing a re reasons why n i t rogen might be d i f f e r e n t from the

o t h e r s . Based on the f a c t t h a t ca rb a z o le melt s a t 521 K, a much h igher

tem pera tu re than i t s m olecu la r weight would j u s t i f y , th e presumption was

made t h a t i t undergoes r a t h e r s t rong hydrogen bonding to i t s e l f . Break­

ing of t h i s arrangement by a non-hydrogen bonding so lv e n t would exp la in

why l a rg e n o n i d e a l i t i e s occur with t h i s s o l u t e . U n fo r tu n a te ly , i t would

not e x p la in why a c r i d i n e a l s o showed h ighe r n o n i d e a l i t i e s as i t does not

hydrogen bond. I t s n i t ro g en i s in a f u l l y a romatic r in g and t h e r e i s no

hydrogen on the n i t r o g e n . I t a l s o does not exp la in the anomalous behav­

i o r of c a rb a zo le in p y r id in e because p y r id in e does not hydrogen bond e i ­

t h e r . T h e re fo re , we conclude t h a t while hydrogen bonding may c o n t r i b u t e

t o th e l a rg e n o n i d e a l i t i e s found in th e ca rb a z o le systems, i t i s not the

only reason f o r th e genera l t r e n d observed with the n i t r o g e n - r i n g com­

pounds.

The next c o n s i d e r a t i o n involved th e p o l a r i t y of th e compounds. Dipole

moments a re a v a i l a b l e f o r only a few of th e s e compounds (Smith (1955))

b u t , based on t r e n d s observed f o r s i m i l a r compounds, the d ip o l e moments

of a l l of th e compounds being d i s c u s s e d have been e s t im a te d by e x t r a p o ­

l a t i o n from th e known v a lu es . They a r e p r e s e n te d in Table 5-14. The ex­

t r a p o l a t i o n s a r e rough a t b e s t , b u t I t h i n k they are q u a l i t a t i v e l y

c o r r e c t .

Page 164: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE 5 - 1 4

Dipole Moments f o r th e Heteroatom' S o lu te s and the S o l v e n t s *

Compound m / 1 0 " 1 8 * *

Benzene 0

Cyclohexane 0

Decal in 0

T e t r a l i n ( = 0 )

Thiopene 0.54

P y r id in e 2 .23

Fluorene (SO)

Dibenzoth iophene 0.83

Dibenzofuran (0 .9 5 )

Carbazole ( 2 .3 )

Anthracene 0

Thioxanthene ( 0 .7 )

Xanthene ( 0 .8 )

A cr id in e ( 2 . 0 )

*A11 exper im en ta l va lues from S m i t h ( 1 9 5 5 ) .

* * P a re n th e se s i n d i c a t e e s t i m a t e d v a lu e s .

Page 165: Classical and Statistical Thermodynamics of Solid-Liquid

The f i r s t obse rva t ion from Table 5-14 i s t h a t th e s e m a t e r i a l s a re r e ­

l a t i v e l y nonpola r . The second o b se rva t ion i s t h a t th e n i t rogen compounds

a re s i g n i f i c a n t l y more p o la r than th e o th e r heteroatom ana logs . I t i s

t h e r e f o r e very l i k e l y t h a t the observed t r e n d s in n o n i d e a l i t i e s a re a

r e s u l t of the p o l a r i t y of the molecules invo lved . That would exp la in

why a c r i d i n e and ca rbazo le e x h i b i t s i m i l a r behavior even though one hy­

drogen bonds and the o th e r does no t . I t might a l s o begin to exp la in the

nega t ive d e v i a t i o n s in th e c a rb a z o le - p y r i d in e system, i f some s o r t of

c h a r g e - t r a n s f e r complex i s being formed in the l i q u i d . While none of

t h i s can be i n v e s t i g a t e d f u r t h e r u n t i l the d ip o l e moments of a l l of

t h e s e compounds are de term ined , i t i s a beginning towards unders tand ing

what i s o ccu r r ing . I t i s a l s o a s t rong i n d i c a t i o n t h a t ignor ing l i q u i d

phase n o n i d e a l i t i e s in systems w i th s o lu t e s c o n ta in in g a n i t ro g en in the

r in g s t r u c t u r e i s very s i m p l i s t i c and i s l i k e l y t o lead to very poor

p r e d i c t i o n s of the s o l u b i l i t y l i m i t s .

In a r e c e n t s e r i e s o f papers (Krevor and P ra u s n i t z (1986, 1986), Kre-

vor , Lam and P ra u s n i t z (1986) ) , VLE da ta were ob ta ined f o r systems s imi­

l a r to th e s e and the e f f e c t o f a heteroatom on the l i q u i d phase

n o n i d e a l i t i e s was d i s c u s s e d . In those p ap e r s , the a c t i v i t y c o e f f i c i e n t s

were shown to vary in the fo l lowing order :

^ n i t r o g e n (n o n b a s ic ) > ^ n i t r o g e n ( b a s i c ) > ^ s u l f u r > ^oxygen

Page 166: Classical and Statistical Thermodynamics of Solid-Liquid

144

For our work, d i f f e r e n t i a t i o n was not q u i t e as apparen t but g e n e ra l ly

fo l lowed the t r e n d below:

^n itrogen (nonbasic ) > ^nitrogen ( b a s ic ) > ^ su lfu r ~ ^oxygen " ^carbon

This i s very good agreement c o n s id e r in g t h a t two comple te ly d i f f e r e n t

methods were employed and t h a t our n i t ro g e n compounds were ca rbazo le

( d ib e n z o p y r ro le ) and a c r i d i n e (d ib en z o p y r id in e ) while t h e i r s were py r ­

r o l e and p y r id in e .

Page 167: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 5B

Krevor, D.H. and P r a u s n i t z , J .M . , J . Chem, Eng. Data, (1986) , 31, 349.

Krevor, D.H. and P r a u s n i t z , J .M . , J . Chem. Eng. Data, (1986) , 31, 353.

Krevor, D.H., Lam, F.W. and P r a u s n i t z , J .M . , J . Chem. Eng. Data, (1986),31, 357.

Smith, C .P . , D i e l e c t r i c Behavior and S t r u c t u r e , (1955) , McGraw-Hill, New York.

- 145 -

Page 168: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 6

A COMPARISON OF SOLID-LIQUID EQUILIBRIUM WITH VAPOR-LIQUID

EQUILIBRIUM FOR PREDICTION OF ACTIVITY COEFFICIENTS IN

SYSTEMS CONTAINING POLYNUCLEAR AROMATICS

Manuscript accepted f o r p u b l i c a t i o n in F lu id Phase

E q u i l i b r i a , (1988) .

Page 169: Classical and Statistical Thermodynamics of Solid-Liquid

L46A

1 0 / 7 / 8 8

Attn: Fluid Phase Equilibria Elsevier Science Publishers Physical Sciences and Engineering Division P.O. Box 2111000 AE Amsterdam, Netherlands Dear Sirs:

I am writing to you in connection with a paper that I coauthored recently in your journal. The paper is:

"Comparison of Solid^-Liquid Equilibrium and Vapor-Liquid Equilibrium for Prediction of Activity Coefficients in Systems Containing Polynuclear Aromatics."

by J. E. Coon, J. E. Auwaerter, and E. McLaughlinI apologize but I have not been able to locate the

manuscript number. The paper has been accepted for publication this year.

The purpose of this letter is to requestT’a letter from you allowing this paper to be included in my Ph.D. dissertation as a chapter. My college requires the letteri>ec£Use the dissertation will be microfilmed by University Microfilms“The.. They will distribute it on a By Request Only basis to other researchers. The letter in no way affects your copyright to the paper.

The letter should specifically state the conditions I have given in the above paragraph.

As I am scheduled to graduate in December of this year and must have my dissertation (letters included) in by November 25, 1988, X request that respond to thisletter as quickly as possible. Thank you in advance for your timely response.

m$OB'<

John E. Coon

Sincerely

Page 170: Classical and Statistical Thermodynamics of Solid-Liquid

A COMPARISON OF SOLID-LIQUID EQUILIBRIUM

WITH VAPOR-LIQUID EQUILIBRIUM FOR PREDICTION

OF ACTIVITY COEFFICIENTS IN SYSTEMS

CONTAINING POLYNUCLEAR AROMATICS

John E. Coon

John E. Auwaerter

Edward McLaughlin*

Department of Chemical Engineering

Louisiana S ta te Universi ty

Baton Rouge, LA 70803

* Author fo r Correspondence

s

Page 171: Classical and Statistical Thermodynamics of Solid-Liquid

1 4 8

ABSTRACT

This study compares a c t i v i t y c o e f f i c i e n t s from conventional vapor-

l i q u id e q u i l i b r i a experiments to those from s o l i d - l i q u i d s o l u b i l i t i e s

f o r a number of systems c o n s i s t i n g of polynuclear aromatic compounds.

The s o l u b i l i t y s tud ie s involved twelve polynuclear aromatic hydro­

carbons which have been s tud ied from ambient temperature to near the

melting po in t of the s o lu te s with t e t r a l i n and deca lin (an isomeric

mixture of c i s - and t r a n s - deca l in ) as so lven ts . S o l u b i l i t i e s of seven

of the same so lu te s in a 50%-50% mixture of t e t r a l i n and deca l in , t y p i ­

cal hydrogen donor so lven ts , have a l so been measured.

The r e s u l t s have been c o r r e l a t e d using the c l a s s i c a l equation fo r

s o l i d - l i q u i d s o l u b i l i t y to ob ta in the experimental a c t i v i t y c o e f f i c i e n t s

o f the so lu te s in the so lven ts or so lven t mixtures and the binary i n t e r ­

ac t ion parameters necessary f o r th ree well known so lu t ion models. These

parameters have been used to p r e d i c t the s o l u b i l i t i e s of the so lu te s in

the th ree component systems.

The VLE data were measured fo r four of the same b inary systems

covered in the s o l u b i l i t y s tud ie s . These data were analyzed to ob ta in

the experimental a c t i v i t y c o e f f i c i e n t s , which were compared to those

obtained from the s o l u b i l i t y s tu d ie s . The r e s u l t s of the two methods

a re d iscussed , p a r t i c u l a r l y the u n c e r t a in t i e s assoc ia ted with the binary

parameters obtained from each kind o f data. Conclusions concerning the

two methods are given, along with some ideas fo r fu tu re work.

Page 172: Classical and Statistical Thermodynamics of Solid-Liquid

INTRODUCTION

Vapor-liquid equilibrium experiments have trad it iona lly been used

to obtain information on a c t iv i ty c o e f f ic ie n ts in the liquid phase and a

substantial body of data (Chu e t a l . (1956), Hal a e t a l . (1967), Wich-

t e r l e e t a l . (1973), Gmehling e t a l . (1980)) has been accumulated in

th is area on the solution behavior of a large number of components.

Using various solution models, with binary parameters regressed from

these binary VLE data, the so lu tion behavior of multicomponent mixtures

are routinely predicted and used in every facet of chemical engineering.

Examination of the databases mentioned above shows that very l i t t l e data

have been accumulated for systems containing polynuclear aromatic hydro­

carbons or th e ir heteroatom-substituted analogs. As petroleum industry

trends are towards heavier feedstocks and coal-derived liqu ids, the need

for these types of systems in the thermodynamic database i s increasing.

The reasons why more systems of th is type have not been examined are

probably a combination of the h is to r ica l lack of sp ec if ic need for the

data and the d i f f ic u l t y in obtaining i t . As ju st noted, we believe the

f i r s t reason to be obsolete. The second reason i s a formidable problem

and i s the subject of th is paper. In th is work, a c t iv i ty co e ff ic ien t

data obtained through the trad itional method o f VLE w ill be compared

with sim ilar data obtained through so l id - l iq u id equilibrium experiments,

a method believed to be le ss d i f f i c u l t and more accurate for these types

of systems.

Page 173: Classical and Statistical Thermodynamics of Solid-Liquid

The next sec t ion i s a di scuss ion of the experimental procedures

used to obta in a c t i v i t y co e f f i c i e n t s by each method. This w il l be

followed by a b r i e f discussion of the th e o re t i c a l bas is fo r each method

and a d iscuss ion of the spec i f i c p ro p e r t i e s t h a t are needed to analyze

the da ta obtained with each method. The next sec t ion w i l l p resen t our

VLE r e s u l t s , our s o l u b i l i t y r e s u l t s , and a d iscuss ion of t h e i r v a l i d i t y .

This i s followed by a comparison of these r e s u l t s with the VLE r e s u l t s .

The l a s t sec t ion discusses our conclusions and presents our recommenda­

t i o n s for fu tu re e f f o r t s in t h i s area.

Page 174: Classical and Statistical Thermodynamics of Solid-Liquid

151

LIQUID PHASE ACTIVITY COEFFICIENTS FROM EXPERIMENTAL DATA

VAPOR-LIQUID EQUILIBRIUM: Experimental procedures

The vapor - l iqu id equi l ibr ium experiments in t h i s study were pe r ­

formed using a Stage-Mueller s t i l l b u i l t in West Germany by Fischer

Labor-und-verfahrenstechnik. This i s a dynamic equil ibrium s t i l l with

r e c i r c u l a t i o n of both l iq u id and vapor streams. The equi l ibrium ce i l

c o n s i s t s of a C o t t r e l l pump and a disengaging area , a l l surrounded by a

s i l v e r e d vacuum ja c k e t . The vapor stream Is t o t a l l y condensed, allowing

sampling of i t as a l i q u id , a procedure t h a t avoids many of the t r a d i ­

t i o n a l problems assoc ia ted with tak ing vapor phase samples. The s t i l l

i s c o n t ro l l e d by means of a p ressu re c o n t r o l l e r , coupled with a ni trogen

supply and a vacuum pump. Simultaneous sampling of the l iqu id and vapor

streams i s accomplished using so len o id -ac t iv a ted valves in the s t i l l .

Pressure i s measured using a d i g i t a l p ressure gauge manufactured by

Druck Inc. t h a t i s accura te to ±0.04% of the reading which i s ±0.3 mmHg

a t our h ig hes t pressures . Temperature i s measured using a high p r e c i ­

s ion plat inum r e s i s t a n c e thermometer in conjunction with a Hewlett-Pack­

ard 5 1/2 d i g i t d i g i t a l multimeter (model 34688). Resolut ion is 0.003 K

and accuracy i s est imated a t ±0.1 K. The l iq u id and vapor samples are

analyzed using an HP 5890 G.C. with on-column i n j e c t i o n , an F.I .D.

d e t e c to r , and an HP megabore g la s s c a p i l l a r y column. The systems are

c a l i b r a t e d using ex ternal s tandards covering the e n t i r e composition

range being inve s t iga ted . A closed cooling system is used which al lows

Page 175: Classical and Statistical Thermodynamics of Solid-Liquid

152

cont ro l of the temperatures in the condensers. This modificat ion to the

s t i l l i s c r i t i c a l when running systems such as ours to prevent losses of

the more v o l a t i l e component to the vacuum system while s imultaneously

preven t ing f reezing of the heavier component in the condensers. Similar

vers ions of t h i s s t i l l have been used in a number of s tud ies over the

pas t s ix years (Gutsche and Knapp (1982), Eng and Sandler (1982), Will-

man and Teja (1985), and Krevor and Prausnitz (1986)).

Using the equipment discussed above, p ressu re , temperature, l i qu id

phase mole f r a c t io n and vapor phase mole f r a c t io n measurements can be

taken a t various condi t ions . For each binary system, P vs. , y^ data

have been taken along th ree temperature isotherms. The raw data are

then regressed using some common s o lu t io n models (Van Laar 's equation

(Smith and Van Ness (1987)) , NRTL (Renon and Prausn itz (1968)) , Wilson's

equation (Wilson (1964)) , and UNIQUAC (Abrams and Prausnitz (1975)) to

f in d the needed binary in t e r a c t io n parameters for the models. The

reg ress ions are done using an ob jec t ive funct ion based on the method of

maximum l ike l ihood (Van Ness e t a l . (1978)). This method, by weighting

each v a r ia b le based on the es t imated e r ro r s in measurement of t h a t

v a r i a b l e , uses a l l of the data co l l e c t e d (unlike the o lder method of

Barker (1953)), even though some of i t i s redundant. The r e l a t i v e

meri ts of each method as they p e r t a in to our r e s u l t s w il l be b r i e f l y

di scussed in the s ec t ion presenting the VLE r e s u l t s .

SOLID-LIQUID EQUILIBRIUM: Experimental procedures

The procedures used to f ind the s o l u b i l i t y of a so l id in a l iq u id

have been published previously (McLaughlin and Zainal (1959, 1960,

Page 176: Classical and Statistical Thermodynamics of Solid-Liquid

153

1960), Choi and McLaughlin (1983), Choi e t a l . (1985), and Coon e t al .

(1987, 1987)). The experiments requ i re only a w e l l -con t ro l led tempera­

tu r e ba th , a high p rec is ion ana ly t ica l balance , and a motor to keep the

sample tu rn ing cons tan t ly .

A weighed amount of the s o l id and a weighed amount of the l iqu id

are sea led in a g lass tube under an i n e r t atmosphere. The sample is

then placed in the temperature bath and slowly heated (approximately 0.2

to 0.4 K /h r . ) while the sample is kept tu rn ing . This ensures t h a t the

s o l id and l i q u id are always kept in con tac t with each other . As i t is

heated, the sample i s watched through a window in the bath. The temper­

a tu re a t which the l a s t t r a c e of the s o l i d disappears i s recorded. This

rep re s en t s the s a tu r a t io n temperature fo r t h a t composition. By running

a number of composit ions, the whole l i qu idus l i n e can be determined.

These da ta are then analyzed in a manner d iscussed in the next sect ion

to f ind the a c t i v i t y c o e f f i c i e n t of the so lu te in the solvent (or s o l ­

vent mixture) . This experimental technique i s simple and highly repro­

ducible.

Page 177: Classical and Statistical Thermodynamics of Solid-Liquid

154

THEORY AND ANALYSIS

VAPOR-LIQUID EQUILIBRIUM

The th e o re t i c a l bas is fo r VLE i s well e s tab l i s h ed and can be found

in any standard textbook (P rausnitz e t a l . (1987), Smith and Van Ness

(1987)). For t h a t reason, only the app l ica t ion of the method of maximum

like l ihood to the ana lys i s of VLE data wil l be discussed. The method

(Van Ness e t a l . (1978)) uses a l l of the data (P, T, x . , and y . ) ob ta in ­

ed in the experiments and f inds the bes t values of the ad jus tab le para­

meters by minimizing the following ob jec t ive function:

. CP, -p , >2 (y, -y, >2_ J r expt . calc. . expt. ca lc .

S - 1 L o------------- --------— 2---------------i = 1 ° v

p . y Cl)(x, -x . >2 CT. -T. )Z

expt . ca lc . expt. ca lc . n„ 2 2 J °x T

where the weighting fa c to r s were taken to be:

a - 1 .0 mm Hg P

oT = 0.05 K

ox = 0 .001

oy = 0.003

The est imated standard dev ia t ions f o r each va r ia b le measurement are

comparable to typica l values as given in Prausnitz e t a l . (1980). The

Page 178: Classical and Statistical Thermodynamics of Solid-Liquid

155

programs used fo r the VLE data an a ly s i s a re a s l i g h t modernizat ion of

the programs given in P rausn i tz e t a l . (1980).

A number of pure component parameters a re needed to analyze the VLE

data. The vapor p ressures of the pure components are needed a t the

temperature of i n t e r e s t and have been measured ( i n the same apparatus as

was used fo r the b ina ry mixture) f o r the components t h a t are l i q u id a t

room temperature. For the o the r components, va lues of vapor p ressure

were ob ta ined from the l i t e r a t u r e . These vapor p res su res w il l be d i s ­

cussed f u r t h e r in the Results and Discussion s e c t io n . Liquid molar

volumes a re needed f o r a l l the components a t the temperature of i n t e r ­

e s t , and when a v a i l a b l e , the l i t e r a t u r e values were used. When not

a v a i l a b l e , they were es t imated using c o r r e l a t i o n s found in the l i t e r a ­

tu r e . The c o r r e l a t i o n s used are c i t e d in a l a t e r s e c t io n .

SOLID-LIQUID EQUILIBRIUM

While s o l i d - l i q u i d e q u i l i b r i a da ta have been p re d ic te d using a

number of methods over the p a s t f i f t e e n yea rs (Morimi and Nakanishi

(1977), Gmehling e t a l . (1978), Masuoka e t a l . (1979), and Unno (1979)) ,

the experimental s o l u b i l i t y da ta have not been used fo r the determina­

t i o n of l i q u id phase n o n id e a l i t i e s u n t i l r e l a t i v e l y r e c e n t ly (Choi and

McLaughlin (1983), Choi e t a l . (1985), Coon e t a l . (1987, 1987)). The

equa t ion used has been known fo r many yea r s and i s given in t h e l i t e r a ­

t u r e in many e q u iv a le n t forms. For our d i s c u s s io n , i t i s useful to

p r e s e n t the most genera l form of the equat ion:

Page 179: Classical and Statistical Thermodynamics of Solid-Liquid

f ACwhere As^., , Av.., and -y. a re the molar entropy o f fus ion of the

s o l u t e , the d i f f e r e n c e between i t s s o l id and l iq u id hea t c a p a c i t i e s , the

d i f f e r e n c e between i t s s o l i d and l i q u id molar volumes, ( a l l eva lua ted a t

i t s t r i p l e po in t ) and th e s o lu te l iqu id -phase a c t i v i t y c o e f f i c i e n t ,

r e s p e c t iv e l y . The t r i p l e p o i n t has been replaced in equat ion 2 by the

s o lu t e melt ing p o in t , T , a s im p l i f i c a t io n t h a t in t roduces n e g l ig ib l e

e r r o r i n t o the a n a ly s i s . The l a s t term, A, in equation 2 r e p re s e n t s the

e f f e c t on the s o lu t e s o l u b i l i t y of a s o l i d - s o l i d lambda phase t r a n s i t i o n

in the s o lu t e (Choi and McLaughlin (1983)) . I t i s zero i f the tempera­

t u r e i s above the t r a n s i t i o n temperature bu t fo r temperatures below the

lambda t r a n s i t i o n i t i s given by:

RT R

P Pwhere As^ and Ah^ a r e the entropy and en tha lpy changes of th e lambda

t r a n s i t i o n , r e s p e c t iv e l y . Exce l len t d iscuss ions o f th e d e r i v a t io n of

equa t ion 2 are a v a i l a b l e in t h e l i t e r a t u r e (Acree (1986) , P ra u s n i t z e t

a l . (1987)) .

For our s o l u t e s , only phenanthrene i s known to undergo a s o l i d -

s o l i d lambda t r a n s i t i o n . The enthalpy and entropy changes f o r i t s

t r a n s i t i o n a re given in Table I , bu t fo r the r e s t o f the s o l u t e s , lambda

Page 180: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE 1

Thermodynamic P roperties for the Solutes Necessary for A nalysis o f the Data to Find A c t iv i ty C o e f f i c ie n t s .

S o l u t e T m < T mA S *

T mA C p

fT mA H ?

7T mA S P

T mK J / q m o l J / q m o l K J / q m o l K J / q m o l J / q m o l K

B i p h e n y l( l i t e r a t u r e )( o u r s ) 3 4 2 . 6

16 , 7 4 7 ? j j1 6 , 8 0 0

48. S B 4 9 . 1 5

2 9H>> - -

A c e n a p h t h e n e 3 6 6 . 5 2 1 , 4 7 6 fc) 5 8 . 5 7 1 4 . 9 ( c > - -N a p h t h a l e n e 3 5 2 . 8 1 8 , 2 3 8 ^ 5 1 . 6 2 8 . 9 ( b ) - -P h e n a n t h r e n e 3 7 2 . 8 1 6 , 4 7 4 ^ 4 4 . 2 5 1 2 .6 (c ) 1 . 3 0 (c) 3 . 8 5 ^F l u o r e n e 3 8 7 . 6 1 9 , 5 9 1 (c) 5 0 . 4 9 1 . 4 < C > - -D i b e n z o t h i o p h e n e 3 7 1 . 4 2 1 ,0 0 0 ( d ) 5 6 . 4 2 3 1 . 4 ^ - -D i b e n z o f u r a n 3 5 5 . 7 1 8 , 6 0 0 f d } 5 1 . 5 9 9 . 6<d> - -C a r b a z o l e 5 1 9 . 2 2 7 , 2 0 0 ( f ) 5 2 . 3 9 2 . 2 ( d ) - -X a n t h e n e 3 7 3 . 7 1 9 , 2 0 0 ( d ) 5 1 . 2 6 1 8 . 0 (d) - -A c r i d i n e 3 8 4 . 2 1 9 , 7 0 0 (d) 5 1 . 3 7 3 9 . 8 (dl - -A n t h r a c e n e 4 8 9 . 5 2 8 , 6 0 0 ( d 5 5 8 . 4 4 5 . 3 « d > - -T h i o x a n t h e n e 4 0 1 . 7 2 6 , 1 0 0 ( d ) 6 4 . 8 7 1 9 . 4 ( d * - -( a ) I n t e r n a t i o n a l C r i t i c a l T ab le s . (1926)(b ) According to Timmermans. (1965)( c ) According to Finke e t a l . (1977)(d ) According to Coon e t a l . (1987)( e ) E s tim ated from P erry (1985)( f A r rn r r i tn n 1- n Parinmclra anri RarinmclM

Page 181: Classical and Statistical Thermodynamics of Solid-Liquid

158

equals zero. The Poynting cor rec t ion is neg l ig ib le a t the low pressures

used in t h i s work. To f ind the l iqu id-phase a c t i v i t y c o e f f i c i e n t of the

s o lu te in the solvent (o r so lvent mixture) , only T , Asf , and AC arem pneeded. Because these data are not ava i lab le in the l i t e r a t u r e fo r some

of the so lu te s being inve s t iga ted , the needed values have been d e t e r ­

mined experimental ly. The values determined have been published prev­

io us ly (Coon e t a l . (1987)) but they have been reproduced here (Table I)

fo r the convenience of the reader. A b r i e f di scuss ion of the procedures

used in t h e i r determination i s ava i lab le in the previous work. Note

t h a t l i t e r a t u r e values and our values fo r biphenyl have been given for

comparison purposes.

Once the thermodynamic p roper t ie s of the so lu te s are av a i l a b l e ,

ana ly s i s of the s o l id - l i q u id s o l u b i l i t y data can be accomplished. As

mentioned e a r l i e r , the experimental procedures used in t h i s study to

f ind the s o l u b i l i t y data have been discussed in our previous papers.

The experiments co n s i s t of determining the temperature a t which the l a s t

t r a c e of a known quan t i ty of the so l id so lu te disappears while being

heated very slowly in a known quan t i ty of so lven t . The temperature

obta ined rep resen ts the l iquidus l i n e a t t h a t composition. The whole

l iqu idus l i n e can be obtained by running samples a t various composi­

t i o n s . The technique i s both f a s t and highly accura te . The e r ro r s in

composition are le ss than +0.0003 in so lu te mole f r ac t io n and ±0.1 K

based on the accuracy of our temperature measurements. These e r ro r s

have an i n s i g n i f i c a n t e f f e c t on the a c t i v i t y c o e f f i c i e n t s obtained. A

s l i g h t l y l a r g e r e r ro r (and s i g n i f i c a n t l y more d i f f i c u l t to es t imate) is

the human e r r o r in determining the endpoint v i su a l ly . Tests ind ica te

t h a t the endpoint can be determined to +1.0 K a l l of the t ime, usually

Page 182: Classical and Statistical Thermodynamics of Solid-Liquid

159

being much c lo se r than t h a t . This s i z e e r r o r s t i l l has only a minimal

e f f e c t on the a c t i v i t y c o e f f i c i e n t s ob ta ined . This i n s e n s i t i v i t y to

experimental e r ro r and the r e l a t i v e ease of performing the experiments

make t h i s method of producing l i q u id -p h a s e d a t a very a t t r a c t i v e .

The experimental a c t i v i t y c o e f f i c i e n t s obta ined by t h i s procedure

are compared to the p re d ic t io n s o f four s o l u t i o n models (Sca tchard -Hi l -

debrand (Hildebrand e t a l . (1970)) , extended Sca tchard-Hi ldebrand,

W i lson 's equation, and UNIQUAC). These fou r models were chosen fo r the

s o l i d - l i q u i d data a n a ly s i s to mainta in c o n t in u i t y with our e a r l i e r

papers . The four models chosen f o r th e VLE an a ly s i s were chosen t o be

c o n s i s t e n t with the DECHEMA da tabase (Gmehling e t a l . (1980)) . The two

models t h a t are used with both types o f da ta (UNIQUAC and Wilson's

equa t ion ) w i l l be used fo r the comparisons.

To use the s o lu t io n models to p r e d i c t a c t i v i t y c o e f f i c i e n t s , c e r ­

t a i n pure component p ro p e r t i e s a r e needed. Liquid molar volumes have

been es t imated where needed and the c o r r e l a t i o n s used a re c i t e d in a

l a t e r t a b l e . To p r e d i c t the a c t i v i t y c o e f f i c i e n t s using Scatchard-Hi l-

debrand theory , hea ts of v ap o r iz a t i o n a re a l s o needed a t the system

tempera ture . These values were again taken from the l i t e r a t u r e where

a v a i l a b l e and were es t imated from c o r r e l a t i o n s ( to be c i t e d l a t e r ) when

they were not ava i lab le .

To use the s o lu t ion models to p r e d i c t a c t i v i t y c o e f f i c i e n t s , c e r ­

t a i n pure component p ro p e r t i e s a r e needed. Liquid molar volumes have

been es t imated where needed, and the c o r r e l a t i o n s used a re c i t e d in a

l a t e r t a b l e . To p r e d i c t the a c t i v i t y c o e f f i c i e n t s using Scatchard-Hi l-

debrand theo ry , heats of v ap o r iz a t i o n a re a l s o needed a t the system

tempera ture . These values were again taken from the l i t e r a t u r e where

Page 183: Classical and Statistical Thermodynamics of Solid-Liquid

160

a v a i l a b l e and were es t imated from c o r r e l a t i o n s ( to be c i ted l a t e r ) when

they were not ava i lab le .

The chemicals used in our s tudy were purchased and pu r i f i ed by a

number of methods, and for the convenience of the reader, Appendix 1

gives the s t r u c t u r a l formulas of the twelve so lu te s invest iga ted . The

r e s u l t s of our analyses of t h e i r p u r i t y are given in Appendix 2. The

carbazo le ( s t a t e d p u r i t y 99+%) was used as purchased, though the s t a t e d

p u r i t y is suspect , based on comparisons of our data for AH to the

l i t e r a t u r e values l i s t e d in Table I. Our at tempts a t fu r the r p u r i f i c a ­

t i o n ( r e c r y s t a l l i z a t i o n under vacuum from toluene) were unsuccessful.

The thioxanthene i s not a v a i lab le commercially so i t was synthesized by

Dr, E. J . Eisenbraun a t Oklahoma S ta te Univers i ty. His s ta t ed p u r i ty

(99+%) agrees with our ana ly s i s . The p u r i t i e s shown in Appendix 2 were

obtained by gas chromatographic ana ly s i s and rep resen t area percents .

No a t tempt has been made to id e n t i fy the impur i t ies so these values

should be considered es t imates .

Page 184: Classical and Statistical Thermodynamics of Solid-Liquid

VAPOR-LIQUID EQUILIBRIUM RESULTS AND DISCUSSION

161

The VLE data have been found fo r four systems a t t h r e e temperatures

each. The systems are: t e t r a l i n - b i p h e n y l , t e t r a l i n - f l u o r e n e , t e t r a l i n -

dibenzofuran , and t e t r a l in -d ib en zo th io p h en e ; each determined a t 423.15,

433 .15, and 453.15 K. The data fo r these systems have been presented in

Table I I .

The da ta above were t e s t e d fo r thermodynamic cons is tency using th e

method of Fredenslund (as d iscussed in Gmehling e t a l . (1980)). This

t e s t uses a Legendre Polynomial f o r the Gibbs excess f r e e energy func­

t i o n and app l ie s the method of Barker (1953) to determine the b e s t f i t

o f the polynomial to the data. The experimental y . ' s and the y . ' s

c a l c u l a t e d using the " b es t f i t " f o r the a c t i v i t y c o e f f i c i e n t s a re com­

pared , and the da ta are considered to be c o n s i s t e n t i f the average

ab s o lu te dev ia t ion of the y - ' s i s l e s s than 0.01. While the value i s

a r b i t r a r y , t h a t choice stems from cons iderab le experience in t h i s type

o f da ta an a ly s i s . Even though Fredenslund recommends using a 5 -p a ra ­

meter polynomial , a 3-parameter Legendre polynomial was chosen f o r our

t e s t s because of t h e l im i ted number of data p o in t s in some of our sys ­

tems. Test runs , however, on some of our data using 5 parameters showed

l i t t l e e f f e c t on the r e s u l t s . When t h i s method was app l ied to our d a t a ,

s u b s t a n t i a l sys tematic dev ia t ions in the c a l c u la te d y^*s were observed

f o r the dibenzofuran systems and smal le r sys tematic dev ia t ions were

observed f o r the o the r systems. I n v e s t i g a t io n of t h i s problem ( in c lu d ­

ing completely redoing the t e t r a l i n - d ib e n z o f u r a n systems) has led to the

conclus ion t h a t the problem l i e s in the l i t e r a t u r e values fo r the vapor

Page 185: Classical and Statistical Thermodynamics of Solid-Liquid

P/mmHg

P/mmHg

88.0 108.7 123.1 H I . 3 154.4 160.6 161. 7

T = 1 5 0 ” C

T/"C

50.1 150.0 0.129464.4 150.0 0,241880.0 150.0 0.329392.9 150.0 0.4389109.8 150.0 0.5877123.4 150.0 0.6701134.9 150.0 0.7817158.9 150.0 0.6023154.2 150.0 0.9346159.8 150.0 0.9804162.3 150.0 0.9923

T = 150'C

T/"C

150.0150.0150.0150.0150.0150.0150.0

0.43440.6267 0.7303 0.0604 0.3503 0.991B 0.3353

TABLE II

a) Vapor-Llquld Equilibrium Data for the T e t r a H n (1J-Btph<;nvl(Z) System

T = ISO^C

P/rrunHg T/°C

0.3378 80.7 160.0 0.15510.5310 97.0 160.0 0.25480.6842 119.7 160.0 0.37710,7666 136.0 160.0 0.49400.8445 154.3 160.0 0.59440.0965 169.9 160.0 0.69230.9327 185.3 160.0 0.80100.9678 202.2 160.0 0.88390.9824 208.6 160.0 0.93270.9942 217.8 160.0 0.98230.9974 220.0 160.0 0,9922

0.43300.57890.72290.78B30.B45B0.S9160.92990.96810.98200.99500.9974

b) Vapar-Liquid Equilibrium Oata for the Tetralinf1)-FIuorene(2> System

T = 160®C

0.9359 0.963B 0.9785 0.9890 0.9954 0.9991 0.9996

P/mmHg

100.5130.2169.3193.1 210.0 217.9219.2

T/'C

160.25159.87159.97160.08160.05 160.00160.05

0.41260.55620.74180.86240.95370.99220.9955

180“C

0.9050 198.0 179.82 0.0.9444 237.4 180.06 O.u0.9784 296.9 179.98 0.75.0.9869 344.9s 179.98 0.89520.9962 370.1 ISO.00 0.96470.9990 383.0 180.03 0.99300.9994 384.5 180.04 0.9952

P/mmHg T/DC *1 y l

160.0 180.0 0.1870 0.4689186.3 180.0 0.2892 0.6029219.3 180.0 0.4191 0.7253248. 3 180.0 0.5230 0.7909277.5 180.0 0.6086 0.8450303.5 1B0.0 0.7065 0.8939329.5 1B0.0 0.8035 0.9336357.3 180.0 0. 8924 0.9664367.6 180.0 0.9381 0.9842382.0 1B0.0 0.9024 0.9948386.6 180.0 0.9922 0.9967

Sys tem

T = 180"C

P/mmHg T/°C *1 y l

1.9072 1.9461 1.9 7.18 >.9895 0.9959 0.9990 0.9995

O 'ro

Page 186: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE II (Contfnued)— Vapor-Liquid Equilibrium Data for the T e t r a H n ( 1 - Oih e n z o f u r a n ^ System

T = 150“C T E 160ccT = 1B0*C

P/mmHg T/°C *1 y l P/mmHg T/°CX1 y l P/mmHg T/“C X 1 *1

45.357.4 6B.7 77.Z 94.8110.6124.4139.3 150.9157.4

149.92149.93149.92149.97149.97149.93 150.06 150.00150.02150.02

0.20360.26920.34620.40630.52310.62650./2190.83470.91900.9626

0.7355 0. 7946 0.8487 0.8741 0.9135 0.9394 0.9628 0.9801 0.9899 0.9954

72.280.098.8

115.6132.9150.8170.8189.2204.9213.2

159.97160.01158.32160.01159.93160.00160.03160.03160.04 160.03

0.2340 n 2793 0.9996 0.4748 0.5517 0.6356 0.73B8 0.8394 0.9213 0.9663

0.7495 0.7882 0.8704 0.8903 0.9171 0.9385 0.9660 0.9795 0.9900 0.9948

134.5 160.2193.6217.9242.9270.2 305.4 334.1361.6374.3

180.08 180.06 179.9B 179.90 180.02 180.01 180.02 179.99180.03180.03

0.2635 0.3180 0.4161 0.5011 0.4704 0.6484 0.7432 0.B454 0.9336 0.9657

0.74690.81400.85510.89440.91520.93750.96140.97650.99000.9906

di. Vapor-Llquld Equilibrium Data for the T e t r a H n ^ ^ - ■OibenzothfoDhene^ SuslT = 150°C T = 160°C t = 1B0°C

P/mmHg T/°C 'l y l P/nrnHg T/°C X1 *1 P/mmHg T/°C X1 y l

62.795.7

113.3 122.6146.3156.3162.4

150.11150.02149.94150.08150.08 150.01 150.00

0.33910.50960.57200.68210.93990.96060.9897

D.9602 0.9815 O.9B50 0.9B59 0.9933 0.9961 0.9998

29.9108.0126.8159.6170.8196.9210.7 218.0

160.24160.20160.11160.02160.04 160.02 160.01160.04

0.1089 0.4299 0.5266 0.6637 0.7228 0.8515 0.9578 0.9896

0.83510.96950.97820.98690.98710.99370.99810.9994

89.9104.4 117.7 206.6 234.6283.0314.0351.4370.0382.1

179.73179.60180.51179.99179.99 1B0. 03 180.13 180.10 179.88 180.04

0.22550.25560.27750.47800.57000.66590.73050.86350.96240.9897

0.894 3 0.9083 0.9212 0.9713 0.9757 0.9855 0.9930 0.9930 0.9982 0.9995

Page 187: Classical and Statistical Thermodynamics of Solid-Liquid

164

pre s s u re s f o r the le s s v o l a t i l e components and a l so i s due to the high

s e n s i t i v i t y of th e ca l c u la te d y . ' s to the se values. Table I I I i s a

comparison o f the l i t e r a t u r e vapor p res su res (Reid e t a l . (1977), Sivar-

aman and Kobayashi (1982)) of these components, the values determined by

ad j u s t i n g th e vapor p ressures to f i t our d a t a , and the p r ed ic t io n s of

two c o r r e l a t i o n s fo r vapor p ressu re . The c o r r e l a t i o n s used are the

Maxwell-Bonnel1 c o r r e l a t i o n (Tsonopoulos e t a l . (1986)) and the Lee-Kes-

l e r c o r r e l a t i o n (Reid e t a l . (1977)) . As Table I I I shows, the l i t e r a ­

t u r e va lues fo r dibenzofuran are much l a r g e r than our b e s t f i t s or the

p r e d i c t i o n s of the c o r r e l a t i o n s .

In a l l c a s e s , the l i t e r a t u r e values f o r t h e t e t r a l i n vapor pressure

were used. These values agree very well with the values obtained using

our appara tus . For biphenyl , f luo rene , and dibenzothiophene, the f i t t e d

values and th e l i t e r a t u r e values are probably w ith in the accuracy of the

experimental values so the agreement i s considered acceptab le . For

d ibenzofuran , the disagreement i s s u b s t a n t i a l . While t h i s d i f fe rence

cannot be exp la ined , i t s e f f e c t on the da ta an a ly s i s can be a s ce r t a ined .

Figure 1 i s a p l o t of P versus x^, y^ f o r the t e t r a l i n -d ib e n z o fu ra n

system a t 423.15 K. The l i n e s r e p r e s e n t the p r e d ic t io n s using the

l i t e r a t u r e and th e f i t t e d values fo r the vapor p ressu re of dibenzofuran.

F igure 1 shows very convincingly why the l i t e r a t u r e vapor p ressures are

be l iev ed to be in e r r o r .

Based on t h i s an a ly s i s of the r e l i a b i l i t y of the vapor pressure

d a t a , i t was decided t h a t th e da ta a n a l y s i s would use the f i t t e d values

f o r vapor p re s s u re fo r a l l o f the systems. Table IV con ta ins the r e ­

s u l t s of the thermodynamic cons is tency t e s t when the f i t t e d values are

used. As Table IV shows, a l l of the da ta a re cons idered c o n s i s t e n t when

the f i t t e d vapor p ressu res a re used.

Page 188: Classical and Statistical Thermodynamics of Solid-Liquid

PRES

SUR

E/m

m

Hg

165

180

! 6 0

140

120

1008 0

6 0

4 0

20

MOLE FRACTION TETRALIN

Figure 1. Pressure vs. x^, y^ fo r the T e t r a l i n (1) - Dibenzofuran (2)

system a t 423.15 K. The l i n e s through the da ta ind ica te the

f i t obtained with our bes t es t imate of the dibenzofuran vapor

p ressure (16 nun Hg). The o the r l ines ind ica te the curve

expected using the l i t e r a t u r e value (26.4 mm Hg).

Page 189: Classical and Statistical Thermodynamics of Solid-Liquid

166

TABLE II I (a)

Comparison o f L i t e r a tu r e and F i t t e d Values f o r Vapor P re s su re

f o r th e Less V o l a t i l e Components

r»sat,__

L i t e r a tu r e F i t t e d C o r re l a t i o n P re d i c t i o n sCompound T/K Value Val ue Maxweli-Bonnel 1 Lee-Kest

Dibenzofuran 423.15 2 6 .4a 16.0 9 .5^ 13.3^433.15 3 6 .4a 23.1 14. 0? 2 0 .1 ,453.15 6 6 .4a 45.8 32 .0° 42. V

Dibenzothiophene 423.15 3 .3 a 3 .6 i.ej Z . A \433.15 5 .°* 5 .6 3 . 0° 3 .9 ,453.15 1 0 .9a 12.5 7 . 8° 9 .3

Fluorene 423.15 1 1 .8a 11.1 70d 1 0 .0 '433.15 17. l a 15.2 n.oj 15 .2 ,453.15 3 4 .4a 27.4 26. 0d 32.9

Biphenyl 423.15 37.9^ 41.0 - - 3 6 .6 '433.15 54.4^ 56.0 — 52.8!453.15 105. 5 101.8 - - 1 0 3 .4C

a ) Sivaraman and Kobayashi (1983).b) Reid e t a l . (1977).c ) C r i t i c a l c o n s ta n ts needed were c a l c u l a t e d using th e c o r r e l a t i o n s o f

Roman e t a l . (1986).d) Tsonopoulos e t a l . (1986).

TABLE I I I (b )

A n to in e 's Constan ts f o r F i t t e d Vapor P re s su re Values

Dibenzofuran Dibenzothiophene Fluorene Biphenyl

18.6642 20.00515 16.05834 15.3032

-6724.95 -7919.29 -5776.22 -4087.73

0 0 0 -7 0 .42

Page 190: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE IV

Results of the Thermodynamic Consistency Test of Fredenslund Using a 3-Parameter Legendre

ay __________ Polynomial fo r G__________________

PassesSystem T/°K RMSD P/mm Hg* RMSD y f AAD Y** Test?

T e t r a l i n (1) 423.15 3.47 0.0113 0.0072 YesBiphenyl (2) 433.15 1.01 0.0097 - Yes

453.15 1.69 0.0051 - Yes

T e t r a l i n (1) 423.15 0.22 0.0048 - YesFluorene (2) 433.15 0.35 0.0028 - Yes

453.15 1.54 0.0079 - Yes

T e t r a l i n (1) 423.15 2.56 0.0025 - YesDibenzothiophene (2) 433.15 1.76 0.0015 - Yes

453.15 4.46 0.0029 ~ Yes

T e t r a l i n (1) 423.15 0.78 0.0045 - YesDibenzofuran (2) 433.15 1.09 0.0041 - Yes

453.15 2.34 0.0054 - Yes

*RMSD = Root Mean Square Deviat ion

RHSD P = ( i £ (Pc a l c - Pe x p t / ) !i

**AAD = Average Absolute Deviat ion

AAD Y - n |y1(ca1Ci) y l ( e x p t . ) l

Page 191: Classical and Statistical Thermodynamics of Solid-Liquid

168

The d a t a were analyzed using the maximum l ik e l ih o o d method and four

well known s o lu t i o n models were reg ressed to obta in the b e s t values of

t h e b ina ry i n t e r a c t i o n parameters . The vapor n o n i d e a l i t i e s were e s t i ­

mated us ing the second v i r i a l c o e f f i c i e n t c o r r e l a t i o n of Hayden and

O'Connell (1977) and the c r i t i c a l cons tan ts by the c o r r e l a t i o n s of Roman

e t a l . (1986) when they were not a v a i l a b l e . The b inary i n t e r a c t i o n

parameters ob ta ined with the r eg res s ion a n a ly s i s a re presen ted in Tables

V through VIII and Table IX gives the Root Mean Squared Deviat ion (RMSD)

o f each o f th e v a r i a b l e s f o r each of the systems analyzed. Examination

of t h i s t a b l e shows t h a t the choice of any one o f the c o r r e l a t i o n s to

c o r r e l a t e t h e VLE data has l i t t l e advantage over the o the rs . This

r e s u l t i s as expected. The t a b l e a l so shows t h a t most of the systems

g ive r e s i d u a l s t h a t a re w ith in the expected experimental e r r o r s , though

a few of t h e systems have p ressu re r e s id u a l s t h a t are l a r g e r than a n t i c ­

ipa ted .

The b a s i c premise of t h i s paper i s t h a t VLE i s not the b e s t method

f o r ob ta in ing a c t i v i t y c o e f f i c i e n t da ta fo r th e se kinds o f systems. One

i n d i c a t o r o f t h i s t h a t cannot be presen ted i s the experimental d i f f i ­

c u l t y a s s o c i a t e d with ob ta in ing these data. The problems encountered

when f in d in g th e s e da ta in a dynamic VLE s t i l l as used in t h i s s tudy

inc lude:

1. S o l i d i f i c a t i o n of th e l e s s v o l a t i l e component in the

condensers i f the condenser tempera ture i s too low.

2. Loss of th e more v o l a t i l e component to t h e vacuum system

i f th e condenser temperature i s too high.

3. Temperature swings in the equ i l ib r ium c e l l due to inhomo-

geneous concen t ra t ions r e tu rn in g to the h e a t e r are more

severe than in systems with a lower r e l a t i v e v o l a t i l i t y .

Page 192: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE V

V L E D a t a U s i n q t h e M e t h o d o f M a x i m u m L i k e l i h o o dS y s t e m T e m p e r a t u r e

1 5 0 ° C 1 6 0 ° C 1 8 0 ° CP a r a m e t e r s a P a r a m e t e r s o P a r a m e t e r s c

T e t r a l i n ( 1 ) B i p h e n y l ( 2 ) A 1 2

2 1

3 8 6 1 . 4 5- 2 5 2 7 . 4 8

8 0 3 . 7 83 1 2 . 9 8

- 1 2 3 9 . 9 91 5 6 2 . 7 4

7 8 7 . 2 3 1 1 6 8 . 9 9

- 1 7 0 7 . 1 9 2 3 0 8 . 3 7

3 1 7 . 9 65 6 2 . 5 0

T e t r a l i n (1) F l u o r e n e (Z) A 1 2

2 1

2 3 9 0 . 4 5 - 1 7 3 4 . 0 5

7 1 3 . 7 94 2 1 . 1 1

2 6 5 4 . 9 8- 1 9 1 8 . 1 7

5 4 1 . 4 72 9 7 . 9 2

- 2 3 3 0 . 6 6 4 1 8 0 . 0 3

2 9 5 . 2 69 7 0 . 8 2

T e t r a l i n ( 1 ) D i b e n z o f u r a n (2) , 1 2

2 1

9 5 5 . 5 78 9 1 . 4 2

3 7 2 5 . 3 22 8 6 5 . 9 1

6 1 0 . 8 3- 6 4 1 . 9 9

7 0 2 8 . 7 4 5 9 2 8 . 6 0

2 5 9 9 . 6 4- 1 9 7 2 . 0 7

6 8 0 . 7 93 7 4 . 5 2

T e t r a l i n ( ! ) D i b e n z o t h i o p h e n e ( 2 ) A 1 2

2 1

4 4 9 9 . 1 4- 2 5 3 2 . 3 6

7 8 0 . 6 92 9 2 . 2 3

3 9 3 8 . 7 5- 2 4 3 2 . 3 4

2 6 5 . 7 1 1 1 2 . 1 5

5 5 3 7 . 9 8- 3 0 7 8 . 0 2

3 2 2 . 4 01 0 0 . 3 5

<y

Page 193: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VI

Wilson's Equation Binary Parameters CJ/gmol) Obtained by Regression o fVLE Data Using the Method of Maximum Likel ihood

System T e m p e r a t u r e1 5 0 ° C 1 6 0 ° C 1 8 0 ° C

P a r a m e t e r s 0 P a r a m e t e r s a P a r a m e t e r s a

T e t r a l i n ( 1 )* 1 2

2 1

- 3 1 1 2 . 3 0 3 4 8 . 9 3 2 6 1 8 . 0 4 3 0 5 0 , 7 7 4 7 2 6 . 0 3 1 1 6 4 . 1 7B i p h e n y l ( 2 ) 7 7 4 2 . 8 9 2 4 3 4 . 4 4 - 2 0 3 9 . 9 1 1 9 5 4 , 3 2 - 3 0 6 1 . 1 9 4 3 1 . 4 7T e t r a l i n ( 1 )

X12* 2 1

- 1 8 8 0 . 8 4 6 7 9 . 1 7 - 2 3 1 1 . 2 0 3 8 5 . 2 4 7 3 6 6 . 0 0 3 9 8 0 . 1 6F l u o r e n e ( 2 ) 3 4 0 0 . 2 1 1 4 2 1 . 5 3 4 1 6 3 . 9 1 9 8 4 . 1 8 - 2 7 0 8 . 5 6 4 7 0 . 4 8T e t r a l i n ( 1 )

* 1 2

* 2 1

2 9 8 0 . 2 0 2 6 2 9 . 9 9 5 1 1 8 . 1 4 2 2 7 7 . 6 0 1 2 4 1 . 8 9 6 9 1 . 6 1D i b e n z o f u r a n ( 2 ) - 2 6 4 2 . 6 0 2 8 7 5 . 0 1 - 4 5 1 2 . 0 0 1 4 0 5 . 1 7 1 2 6 . 1 9 1 4 2 8 . 6 5T e t r a l i n ( 1 )

" 1 2* 2 1

1 6 9 8 . 6 8 4 2 0 . 3 0 1 6 4 5 . 3 3 1 6 0 . 5 9 9 7 5 . 3 8 1 6 6 . 5 8D i b e n z o t h i o p h e n e ( 2 ) 4 6 9 4 . 5 8 2 6 3 2 . 0 6 2 9 4 8 . 2 4 6 9 4 . 4 4 7 4 3 7 . 6 6 1 9 2 3 . 8 5

Page 194: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VII

WRTL Binary Parameters (J/gmot) Obtained by Regression ofVLE Data Using the Method o f Maximum Likel ihood

System T e m p e r a t u r e1 5 0 ° C 1 6 0 Q C 1 8 0 ° C

P a r a m e t e r s a P a r a m e t e r s a P a r a m e t e r s aT e t r a l i n ( 1 )

B 1 22 1

4 0 9 4 . 0 0 1 0 1 9 . 5 0 - 7 0 3 . 6 9 8 4 8 . 5 0 - 1 2 8 2 . 9 9 6 7 2 . 0 1B i p h e n y l ( 2 ) - 1 9 2 9 . 0 9 1 5 2 . 2 7 1 1 5 4 . 5 6 1 4 6 4 . I B 2 3 1 9 . 8 0 1 3 3 7 . 5 7T e t r a l i n ( 1 )

B 1 22 1

2 2 9 6 . 2 3 7 3 4 . 8 5 2 6 0 0 . 9 5 5 8 0 . 8 3 - 5 8 3 . 3 7 2 6 4 . 9 5F l u o r e n e (2) - 1 2 0 4 . 6 0 3 3 6 . 3 4 - 1 4 2 0 . 2 2 2 1 8 . 0 3 3 9 6 5 . 7 8 2 1 1 0 . 8 9T e t r a l i n ( 1 )

a 1 22 1

3 7 4 . 8 6 1 4 3 6 . 8 4 - 5 7 3 . 2 3 6 8 0 . 8 1 2 0 3 6 . 9 9 7 8 2 . 0 9D i b e n z o f u r a n (2) - 4 5 . 1 0 1 2 9 9 . 6 7 1 0 3 6 . 1 7 1 1 8 9 . 6 9 - 1 0 8 2 . 8 9 3 6 2 . 5 4T e t r a l i n ( 1 ) R 1 2

2 1

5 4 3 8 . 0 4 1 2 6 0 . 8 2 4 1 9 9 . 6 9 3 8 5 . 8 6 6 5 6 2 . 5 6 6 5 6 . 8 4D i b e n z o t h i o p h e n e ( 2 ) - 8 9 5 . 2 7 1 8 5 . 6 3 - 1 2 1 7 . 8 7 9 4 . 6 6 - 1 5 3 8 . 7 1 7 5 . 2 6

Page 195: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE VIII

Van Laar Binary Parameters Obtained by Regression o fVLE Data Using the Method o f Maximum Likel ihood

S y s t e m T e m p e r a t u r e1 5 0 ° C 1 6 0 ° C 1 8 0 ° CP a r a m e t e r s o P a r a m e t e r s o P a r a m e t e r s a

T e t r a l i n { 1 )C 1 2

- 0 . 3 2 4 1 0 . 4 0 4 2 0 . 0 7 2 9 0 . 0 9 6 8 0 . 2 6 9 4 0 . 2 3 5 8B i p h e n y l (2) C2 1

- 0 . 0 9 9 1 0 . 0 4 4 1 0 . 0 4 3 7 0 . 0 3 1 7 0 . 0 4 3 5 0 . 0 1 2 1

T e t r a l i n (1)^ 1 2

0 . 0 5 1 2 0 . 0 4 1 7 0 . 0 2 2 4 0 . 0 1 2 5 0 . 9 5 6 4 0 . 9 6 9 4F l u o r e n e ( 2 ) Ch 0 . 1 8 1 5 0 . 0 7 8 6 0 . 1 9 2 3 0 . 1 6 7 3 0 . 2 2 2 7 0 . 0 6 5 1T e t r a l i n ( 1 )

c122 1

0 . 0 8 3 4 0 . 0 4 5 7 0 . 1 0 5 3 0 . 1 0 6 6 0 . 0 5 0 0 0 . 0 2 6 3D i b e n z o f u r a n ( 2 ) 0 . 0 9 3 4 0 . 0 3 4 8 0 . 0 5 8 6 0 . 0 1 8 5 0 . 1 7 2 9 0 . 0 9 3 1T e t r a l i n Cl)

&2 1

0 . 1 8 3 6 0 . 0 4 8 8 0 . 1 0 8 9 0 . 0 1 4 1 0 . 0 8 4 2 0 . 0 2 2 7D i b e n z o t h i o p h e n e (2) 1 . 4 1 8 4 0 . 6 3 9 9 1 . 0 3 7 2 0 . 2 3 1 0 1 . 7 8 4 2 1 . 4 5 4 3

Page 196: Classical and Statistical Thermodynamics of Solid-Liquid

173

R o o t

S y s t e mT e t r a l i n - B i p h e n y l

T e t r a l i n- F l u o r e n e

T e t r a l i n - D i b e n z o f u r a n

TABLE IX

M e a n S q u a r e D e v i a t i o n s ( R M S D ' s ) f o r E a c h S y s t e m U s i n g t h e M a x i m u m L i k e l i h o o d M e t h o d

S o l u t i o n R M S DT / K M o d e l P / m m H q T/K

^ 1

4 2 3 . 1 5 U N I Q U A C 3 . 2 9 0 . 0 4 0 . 0 0 0 6 0 . 0 0 6 1W i l s o n ' s 3 . 1 1 0 . 0 3 0 . 0 0 0 7 0 . 0 0 6 5N R T L 3 . 2 8 0 . 0 4 0 . 0 0 0 6 0 . 0 0 6 2V a n L a a r 3 . 7 3 0 . 0 4 0 . 0 0 0 3 0 . 0 0 5 2

4 3 3 . 1 5 U N I Q U A C 1 . 6 1 0 . 0 2 0 . 0 0 0 4 0 . 0 0 3 9W i l s o n ' s 1 . 6 0 0 . 0 2 0 . 0 0 0 5 0 . 0 0 4 0N R T L 1 . 6 1 0 . 0 2 0 . 0 0 0 4 0 . 0 0 4 0V a n L a a r 1 . 6 1 0 . 0 2 0 . 0 0 0 5 0 . 0 0 4 0

4 5 3 . 1 5 U N I Q U A C 1 . 8 1 0 . 0 4 0 . 0 0 0 5 0 . 0 0 2 2

W i l s o n ' s 1 , 7 4 0 . 0 4 0 . 0 0 0 5 0 . 0 0 2 3N R T L 2 . 3 2 0 . 0 4 0 . 0 0 0 5 0 . 0 0 3 4V a n L a a r 1 . 7 3 0 . 0 3 0 . 0 0 0 5 0 . 0 0 2 4

4 2 3 . 1 5 U N I Q U A C 0 . 5 3 0 . 0 1 0 . 0 0 0 1 0 . 0 0 1 9W i I s o n 1s 0 . 5 1 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 0

N R T L 0 . 5 2 0 . 0 1 0 . 0 0 0 1 0 . 0 0 1 9V a n L a a r 0 . 4 8 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 3

4 3 3 . 1 5 U N I Q U A C 0 . 3 8 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 6W i I s o n ' s 0 . 4 0 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 5N R T L 0 . 3 7 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 6V a n L a a r 0 . 5 8 0 . 0 1 0 . 0 0 0 2 0 . 0 0 2 2

4 5 3 . 1 5 U N I Q U A C 1 . 7 1 0 . 0 3 0 . 0 0 0 5 0 . 0 0 2 2

W i l s o n ' s 2 . 0 3 0 . 0 4 0 . 0 0 0 7 0 . 0 0 1 7N R T L 1 . 9 2 0 . 0 3 0 . 0 0 0 6 0 . 0 0 1 7V a n L a a r 2 . 1 3 0 . 0 4 0 . 0 0 0 7 0 . 0 0 1 5

4 2 3 . 1 5 U N I Q U A C 1 . 0 3 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 2

W i l s o n ' s 1 . 0 1 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 3N R T L 1 . 0 1 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 3V a n L a a r 1 . 0 2 0 . 0 1 0 . 0 0 0 1 0 . 0 0 2 3

4 3 3 , 1 5 U N I Q U A C 1 . 1 4 0 . 0 1 0 . 0 0 0 3 0 . 0 0 2 8W i l s o n ' s 1 . 1 0 0 . 0 1 0 . 0 0 0 3 0 . 0 0 2 8N R T L 1 . 1 0 0 . 0 1 0 . 0 0 0 3 0 . 0 0 2 8V a n L a a r 1 . 1 0 0 . 0 1 0 . 0 0 0 3 0 . 0 0 2 8

4 5 3 . 1 5 U N I Q U A C 1 . 9 0 0 . 0 3 0 . 0 0 0 9 0 . 0 0 5 3W i l s o n ' s 1 . 8 8 0 . 0 3 0 . 0 0 0 9 0 . 0 0 5 2N R T L 1 . 8 7 0 . 0 3 0 . 0 0 0 9 0 . 0 0 5 1V a n L a a r 1 . 9 0 0 . 0 3 0 . 0 0 0 9 0 . 0 0 5 2

Page 197: Classical and Statistical Thermodynamics of Solid-Liquid

174

TABLE IX (Continued)

R o o t M e a n S q u a r e D e v i a t i o n s ( R M S D ' s ) f o r E a c h S y s t e m U s i n g t h e M a x i m u m L i k e l i h o o d M e t h o d

S y s t e mT e t r a l i n - D i b e n z o t h i o p h e n e

S o l u t i o n R M S DT / K M o d e l P / m m H q T / K i i *_1

4 2 3 . 1 5 U N I Q U A C 2 . 7 2 0 . 0 2 0 . 0 0 0 5 0 . 0 0 2 0

W i l s o n ' s 2 . 8 0 0 . 0 2 0 . 0 0 0 5 0 . 0 0 2 0

N R T L 2 . 6 8 0 . 0 2 0 . 0 0 0 5 0 . 0 0 2 0

V a n L a a r 2 . 9 6 0 . 0 2 0 . 0 0 0 5 0 . 0 0 1 94 3 3 . 1 5 U N I Q U A C 1 . 1 8 0 . 0 1 0 . 0 0 0 2 0 . 0 0 1 3

W i l s o n ' s 1 . 1 5 0 . 0 1 0 . 0 0 0 2 0 . 0 0 1 3N R T L 1 . 3 1 0 . 0 2 0 . 0 0 0 3 0 . 0 0 1 7V a n L a a r 1 . 1 9 0 . 0 1 0 . 0 0 0 3 0 . 0 0 1 5

4 5 3 . 1 5 U N I Q U A C 2 . 8 6 0 . 0 5 0 . 0 0 1 2 0 . 0 0 2 1

W i l s o n ' s 3 . 3 8 0 . 0 6 0 . 0 0 1 3 0 . 0 0 2 4N R T L 2 . 8 5 0 . 0 5 0 . 0 0 1 2 0 . 0 0 2 1

V a n L a a r 5 . 6 6 0 . 0 8 0 . 0 0 2 3 0 . 0 0 3 8

Page 198: Classical and Statistical Thermodynamics of Solid-Liquid

175

4. D i lu t io n of the samples necessary to prevent s o l i d i f i c a ­

t i o n during G.C. an a ly s i s lowers the accuracy of the

l i q u i d and vapor phase mole f r a c t i o n s obtained.

While none of the se problems i s insurmountable, t h e i r combined

e f f e c t i s to s u b s t a n t i a l l y lower the r e l i a b i l i t y of the r e s u l t s . The

s e n s i t i v i t y of th e r e s u l t s to the value of vapor p ressu re used is e a s ie r

to quan t i fy . As Figure 1 showed, the " b e s t f i t " value t o the vapor

p re s s u re i s 40% lower than the l i t e r a t u r e experimental value. The

experimental a c t i v i t y c o e f f i c i e n t s ob ta ined using the f i t t e d value fo r

vapor p ressu re are shown in Figure r . The e f f e c t o f the value of vapor

p r e s s u re chosen on the p red ic ted a c t i v i t y c o e f f i c i e n t s i s very la rge ,

r e l a t i v e to the s i z e of the n o n id e a l i t i e s fo r t h i s system. The exper i ­

mental a c t i v i t y c o e f f i c i e n t s fo r dibenzofuran (y^) obtained using the

l i t e r a t u r e value f o r vapor p ressu re a re a l l l e s s than one and approach a

va lue of 0.56 a t x2 = 1. This obviously cannot be co r rec t . The pre­

d i c t e d a c t i v i t y c o e f f i c i e n t s f o r a l l fou r of th e systems (by both VLE

and SLE) a re given in a l a t e r s ec t ion and th e r e l a t i v e r e l i a b i l i t y of

each w i l l be d iscussed .

Page 199: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coe

ffic

ient

s1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

Mole Fraction TetralinFigure 6 -2 : Experimental Activity Coefficients in the

Tetralin - Dibenzofuran System.

Solid lines are VLE predictions at 453.15 K. Dashed lines are solubility predictions.Dots and squares are experimental values from VLE.

Page 200: Classical and Statistical Thermodynamics of Solid-Liquid

SOLID-LIQUID EQUILIBRIUM RESULTS AND DISCUSSION

The s o l u b i l i t i e s of twelve so lu tes (acenaphthene, naphthalene,

phenanthrene, carbazole, biphenyl, f luorene , dibenzofuran, dibenzothio­

phene, xanthene, thioxanthene, anthracene, and ac r id ine ) have been found

in t e t r a l i n and decal in (an isomeric mixture of 60.6% c i s - and 39.4%

t r a n s -d e c a l in ) and the s o l u b i l i t i e s of seven of the so lu te s ( the f i r s t

seven l i s t e d above) have been found in an equimolar mixture of t e t r a l i n

and decalin . The r e s u l t s are presented in Tables X to XII. Also l i s t e d

in Tables X and XI are the f i t s to the data of the four so lu t ion models

(Scatchard-Hildebrand theory, extended Scatchard-HiIdebrand theory,

Wilson's equation, and UNIQUAC). As discussed prev ious ly , c o r r e l a t i o n

of the data using these models requires some pure component parameters.

In p a r t i c u l a r , l i qu id molar volumes and heats of vapor iza t ion are needed

f o r the Scatchard-Hildebrand theory. Application of t h i s s o lu t ion model

to sol i d - l i q u id s o l u b i l i t i e s was accomplished using the f l o a t i n g datum

p o in t method of Choi and McLaughlin (1983) fo r a l l of the so lu te s except

anthracene and carbazole. Because of t h e i r extremely high melting

p o in t s , the more t r a d i t i o n a l method (ca l c u la t io n of the s o l u b i l i t y

parameter and l iqu id molar volume of the so lu te as a hypothe tical sub­

cooled l iqu id a t 298.15 K) has been employed. When the pure component

p ro p e r t i e s were not a v a i lab le , they were est imated by a number of co rre­

l a t i o n s . These are c i t e d , along with the r e s u l t i n g values of the pure

component parameters , in Table XIII. The binary parameters obtained by

the regress ion of the data are presented in Tables XIV and XV. Note

t h a t regula r so lu t ion theory has no f i t t e d parameters . I t s pred ic t ions

Page 201: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE X

Comparison of Experimental and Predicted A c t i v i ty Coef f i c i en t sfor the Twelve So lutes in Tetra l in .

C i j 0 £. . * M 0 W i I s o n 1 s Eqn. U N I Q U A CT e m pK

X g C e x p t . ) Y 2 ( e x p t . ) V 2 Cc a l c . 1 A %Y 2 (c a l c . ) A%

V 2 ( c a l c . ) A%

V 2 (c a l c . ) A%

B i p h e n y l3 0 5 . 63 1 0 . 53 1 4 . 6 3 1 9 . 23 2 2 . 7 3 2 6 . 9

0 . 4 5 2 80 . 5 0 6 00 . 5 5 5 60 . 6 1 8 50 . 6 7 0 80 . 7 3 3 9

1 . 0 5 61 . 0 5 11 . 0 4 51 . 0 3 31 . 0 2 31 . 0 1 8

1 . 0 1 51 . 0 1 2

1 . 0 0 91 . 0 0 71 . 0 0 51 . 0 0 3

- 3 . 9- 3 . 8- 3 . 4- 2 . 6

- 1 . 8

- 1 . 5

1 . 0 5 61 . 0 4 51 . 0 3 51 . 0 2 51 . 0 1 81 . 0 1 2

- 0 . 6

- 0 . 9- 0 . 8

- 0 . 5- 0 . 6

1 . 0 5 81 . 0 5 01 . 0 4 21 . 0 3 31 . 0 2 61 . 0 1 8

- 0 . 2

- 0 . 1

- 0 . 30 . 0

+ 0 . 30 . 0

1 . 0 5 81 . 0 5 01 . 0 4 21 . 0 3 31 . 0 2 61 . 0 1 8

+ 0 . 1

- 0 . 1

- 0 . 2

0 . 0

+ 0 . 30 . 0

F l u o r e n e3 0 3 . 63 1 1 . 73 2 2 . 83 2 5 . 73 3 5 . 7 3 4 3 . 0 3 5 6 . 3

0 . 1 6 7 2 0 . 2 0 7 5 0 . 2 6 9 5 0 . 2 8 6 1 0 . 3 7 0 2 0 . 4 3 3 4 0 . 5 7 2 8

1 . 1 2 0

1 . 1 0 1

1 . 1 0 0

1 . 1 0 4 1 . 0 5 7 1 . 0 4 8 1 . 0 2 4

1 . 0 4 81 . 0 4 21 . 0 3 41 . 0 3 21 . 0 2 31 . 0 1 81 . 0 1 0

- 6 . 4- 5 . 4- 5 . 9- 6 . 5- 3 . 2- 2 . 8

- 1 . 4

1 . 1 2 0

1 . 1 0 41 . 0 8 31 . 0 7 81 . 0 5 71 . 0 4 41 . 0 2 3

- 0 . 3- 1 . 4- 2 . 3- 0 . 0

- 0 . 30 . 0

1 . 1 2 31 . 1 1 0

1 . 0 9 11 . 0 8 61 . 0 6 61 . 0 5 31 . 0 2 9

+ 0 . 3+ 0 . 8

- 0 . 8

- 1 . 6

+ 0 . 9+ 0 . 5+ 0 . 5

1 . 1 2 2

1 . 1 0 91 . 0 9 11 . 0 8 71 . 0 6 61 . 0 5 31 . 0 3 0

+ 0 . 2

+ 0 . 8

- 0 . 8

- 1 . 6

+ 0 . 9+ 0 . 5+ 0 . 5

P h e n a n t h r e n e3 0 9 . 7 3 1 6 . 23 2 5 . 8 3 3 3 . 1 3 4 0 . 6

0 . 2 8 4 3 0 . 3 3 4 3 0 . 4 1 7 5 0 . 4 8 8 7 0 . 5 6 8 1

1 . 1 6 51 . 1 3 31 . 1 0 2

1 . 0 8 11 . 0 4 5

1 . 1 3 41 . 1 1 1

1 . 0 7 91 . 0 5 81 . 0 3 9

- 2 . 6

- 2 . 0

- 2 . 1

- 2 . 1

- 0 . 6

1 . 1 6 5 1 . 1 3 6 1 . 1 0 0

1 . 0 7 0 1 . 0 4 8

+ 0 . 2

- 0 . 5- 1 . 0

+ 0 . 2

1 . 1 6 41 . 1 3 71 . 1 0 0

1 . 0 7 51 . 0 5 1

- 0 . 1

+ 0 . 4 - 0 . 2

- 0 . 6

+ 0 . 6

1 . 1 6 31 . 1 3 71 . 1 0 0

1 . 0 7 51 . 0 5 1

- 0 . 1

+ 0 . 4- 0 . 2

- 0 . 6

+ 0 . 6 sjCD

f

Page 202: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE X (Continued)

Comparison of Experimental and Predicted A c t i v i ty Coef f i c i en t sfor the Twelve So lutes in Tetral in,

£. . = ij 0 £. . t i.l 0 W i l s o n ' s Eqn. U N 1 Q U A CT e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) y - ( c a l c . ) A * %

y 2 ( c a l c . ) A %

y 2 ( c a l c . ) A%

y 2 ( c a 1 c . ) A%

A c e n a p h t h e n e3 0 8 . 13 1 2 . 63 2 2 . 23 3 1 . 93 4 3 . 73 5 1 . 9

0 . 2 5 2 10 . 2 8 4 90 . 3 6 4 10 . 4 6 9 50 . 6 1 7 50 . 7 4 6 1

1 . 0 7 3 1 . 0 6 4 1 . 0 5 7 1 . 0 3 0 1 . 0 1 8 1 . 0 0 1

1 . 0 3 71 . 0 3 31 . 0 2 51 . 0 1 71 . 0 0 81 . 0 0 4

- 3 . 4- 2 . 9- 3 . 1- 1 . 3- 0 . 9- 0 . 2

1 . 0 7 31 . 0 6 51 . 0 5 01 . 0 3 31 . 0 1 61 . 0 0 7

+ 0 . 1

- 0 . 7 < 0 . 3 - 0 . 1

+ 0 . 6

1 . 0 7 41 . 0 6 61 . 0 5 01 . 0 3 31 . 0 1 61 . 0 0 7

+ 0 . 1

+ 0 . 2

- 0 . 7+ 0 . 3- 0 . 2

+ 0 . 6

1 . 0 7 41 . 0 6 61 . 0 5 01 . 0 3 31 . 0 1 61 . 0 0 7

+ 0 . 1

+ 0 . 2

- 0 . 7+ 0 . 3- 0 . 2

+ 0 . 6

N a p h t h a l e n e3 0 6 . 63 1 1 . 7 3 1 8 . 43 2 3 . 7 3 3 0 . 1

0 . 3 6 3 50 . 4 1 4 10 . 4 8 2 00 . 5 5 0 60 . 6 2 7 2

1 . 0 8 41 . 0 6 71 . 0 6 01 . 0 3 71 . 0 3 6

1 . 0 3 51 . 0 2 91 . 0 2 31 . 0 1 71 . 0 1 2

- 4 . 5- 3 . 5- 3 . 5- 1 . 9- 2 . 4

1 . 0 8 41 . 0 7 01 . 0 5 41 . 0 4 01 . 0 2 7

+ 0 . 3 - 0 . 6

+ 0 . 3 - 0 . 9

1 . 0 8 21 . 0 7 11 . 0 5 61 . 0 4 41 . 0 3 1

- 0 . 2

+ 0 . 3- 0 . 4+ 0 . 6

- 0 . 5

1 . 0 8 21 . 0 7 11 . 0 5 71 . 0 4 41 . 0 3 1

- 0 . 2

+ 0 . 4- 0 . 3+ 0 . 7- 0 . 5

D i b e n z o f u r a n3 1 8 . 93 2 2 . 63 2 6 . 63 3 7 . 9 3 3 9 . 5

0 . 4 5 2 10 . 4 9 0 70 . 5 4 9 40 . 6 9 9 00 . 7 3 3 0

1 . 0 8 91 . 0 8 41 . 0 5 21 . 0 3 31 . 0 1 6

1 . 0 9 11 . 0 7 71 . 0 5 91 . 0 2 41 . 0 1 9

+ 0 . 2

- 0 . 7+ 0 . 7- 0 . 9+ 0 . 3

1 . 0 8 91 . 0 7 51 . 0 5 71 . 0 2 41 . 0 1 8

- 0 . 9+ 0 . 5- 0 . 9+ 0 . 2

1 . 0 9 11 . 0 7 71 . 0 5 91 . 0 2 51 . 0 2 0

+ 0 . 2

- 0 . 7+ 0 . 7- 0 . 8

+ 0 . 4

1 . 0 9 11 . 0 7 71 . 0 6 01 . 0 2 71 . 0 2 0

+ 0 . 2

- 0 . 6

+ 0 . 8

- 0 . 7+ 0 . 4

Page 203: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE X (Continued)

Comparison o f Experimental and Predicted A c t iv i t y Coe f f i c i en t sfor the Twelve Solutes in Tetral in.

e . . = i j 0 I . . * 1 J 0 W i I s o n 1s Eqn. U N I Q U A C

T e m pK

x 2 ( e x p t . ) V 2 ( e x p t . ) y , ( c a l c . ) A * %

y 2 (c a l c . ) A%

y 2 ( c a l c . ) A%

Y 2 ( c a l c . ) A%

D i b e n z o t h i o p h e n e 3 0 8 . 7 0 . 2 1 6 3 1 . 2 4 8 1 . 3 3 0 + 6 . 6 1 . 2 4 8 1 . 2 5 0 + 0 . 2 1 . 2 4 9 + 0 . 1

3 1 8 . 2 0 . 2 7 8 1 1 . 2 1 3 1 . 2 6 0 + 3 . 9 1 . 1 9 7 - 1 . 3 1 . 2 0 8 - 0 . 4 1 . 2 0 9 - 0 . 33 2 6 . 6 0 . 3 5 0 8 1 . 1 6 1 1 . 1 9 6 + 3 . 0 1 . 1 4 9 - 1 . 0 1 . 1 6 5 + 0 . 4 1 . 1 6 6 + 0 . 43 3 6 . 3 0 . 4 4 6 6 1 . 1 2 4 1 . 1 3 1 + 0 . 6 1 . 1 0 0 - 2 . 1 1 . 1 1 8 - 0 . 5 1 . 1 1 8 - 0 . 53 3 7 . 8 0 . 4 6 9 2 1 . 1 0 4 1 . 1 1 9 + 1 . 3 1 . 0 9 1 - 1 . 2 1 . 1 0 9 + 0 . 4 1 . 1 0 8 + 0 . 3T h i o x a n t h e n e 3 0 9 . 2 0 . 0 8 6 9 1 . 2 1 8 1 . 4 5 4 + 1 9 . 4 1 . 2 1 8 1 . 2 1 7 - 0 . 1 1 . 2 1 6 - 0 . 1

3 1 7 . 3 0 . 1 1 2 1 1 . 2 0 4 1 . 4 0 8 + 1 6 . 9 1 . 1 9 7 - 0 . 5 1 . 2 0 0 - 0 . 3 1 . 2 0 1 - 0 . 2

3 2 8 . 8 0 . 1 5 9 9 1 . 1 6 7 1 . 3 3 8 + 1 4 . 6 1 . 1 6 5 - 0 . 1 1 . 1 7 4 + 0 . 6 1 . 1 7 4 + 0 . 6

3 3 7 . 3 0 . 2 0 4 4 1 . 1 4 6 1 . 2 8 5 + 1 2 . 1 1 . 1 4 1 - 0 . 4 1 . 1 5 2 + 0 . 6 1 . 1 5 3 + 0 . 6

3 4 4 . 5 0 . 2 4 6 7 1. 1 45 1 . 2 4 2 + 8 . 5 1 . 1 2 1 - 2 . 1 1. 134 - 1 . 0 1 . 1 3 4 - 1 . 0

3 5 2 . 0 0 . 3 0 6 4 1 . 1 1 0 1 . 1 9 3 + 7 . 6 1 . 0 9 8 - 1 . 1 1 . 1 1 1 + 0 . 2 1 . 1 1 1 + 0 . 1

X a n t h e n e3 0 4 . 6 0 . 2 2 0 2 1 . 1 7 8 1 . 1 9 3 + 1 . 3 1 . 1 7 8 - 1 . 2 0 7 + 2 . 5 1 . 2 0 1 + 2 . 0

3 1 8 . 3 0 . 2 8 7 6 1 . 2 2 4 1 . 1 4 9 - 6 . 1 1 . 1 3 7 - 7 . 1 1 . 1 8 7 - 3 . 0 1 . 1 9 0 - 2 . 8

3 3 1 . 8 0 . 4 0 2 2 1 . 1 6 0 1 . 0 9 6 - 5 . 5 1 . 0 8 8 - 6 . 1 1 . 1 4 9 - 0 . 9 1 . 1 5 4 - 0 . 53 4 0 . 9 0 . 5 0 1 4 1 . 1 1 3 1 . 0 6 2 - 4 . 6 1 . 0 5 8 - 5 . 0 1 . 1 1 5 + 0 . 1 1. 1 1 7 + 0 . 43 4 8 . 9 0 . 6 0 4 7 1 . 0 7 3 1 . 0 3 7 - 3 . 3 1 . 0 3 4 - 3 . 6 1 . 0 8 1 + 0 . 7 1 . 0 8 1 + 0 . 73 4 9 . 9 0 . 6 2 8 6 1 . 0 5 2 1 . 0 3 2 - 1 . 8 1 . 0 3 0 - 2 . 1 1 . 0 7 3 + 2 . 1 1 . 0 7 3 + 2 . 0

CDo

Page 204: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE X (Continued)

Comparison of Experimental and Predicted Ac t iv i t y Co e f f i c i en t sfor the Twelve Solutes in Tetra l in .

T e m pK

x 2 ( e x p t . )’ 0

. 2 ij * 0 W i l s o n ' s Eqn. U N I Q U A Cy 2 ( e x p t . ) y - ( c a l c . ) A ^ %

Y2 ( c a l c . ) A ~ T

Y 2 ( c a l c . ) A%

Y 2 ( c a l c . } A

C a r b a z o l e 3 4 4 . 7 0 . 0 0 7 3 5 . 7 0 9 2 . 1 4 3 - 6 2 . 5 5 . 7 0 9 7 . 2 4 3 + 2 6 . 9 7 . 0 0 1 + 2 2 . 63 7 4 . 8 0 . 0 1 0 3 8 . 5 2 8 2 . 0 0 6 - 7 6 . 5 4 . 9 1 3 - 4 2 . 4 6 . 6 0 6 - 2 2 . 5 6 . 9 0 6 - 1 9 . 04 7 6 . 2 0 . 2 8 8 7 1 . 9 3 7 1 . 3 1 8 - 3 2 . 0 1 . 8 8 0 - 2 . 9 2 . 6 5 0 + 3 6 . 8 3 . 0 0 2 + 5 5 . 04 9 5 . 2 0 . 6 9 7 1 1 . 0 4 4 1 . 0 4 8 + 0 . 3 1 . 1 1 2 + 6 . 5 1 . 3 6 0 + 3 0 . 2 1 . 2 8 3 + 2 2 . 9A c r i d i n e3 0 5 . 2 0 . 1 4 8 3 1 . 5 6 3 1 . 0 8 5 - 3 0 . 6 1 . 5 6 3 1 . 5 5 4 - 0 . 6 1 . 5 5 4 - 0 . 63 0 6 . 9 0 . 1 5 9 1 1 . 5 1 1 1 . 0 8 2 - 2 8 . 4 1 . 5 3 9 + 1 . 9 1 . 5 3 2 + 1 . 4 1 . 5 3 2 + 1 . 43 1 6 . 3 0 . 1 9 7 7 1 . 4 8 0 1 - 0 7 1 - 2 7 . 6 1 . 4 5 6 - 1 . 6 1 . 4 5 6 - 1 . 6 1 . 4 5 6 - 1 . 63 2 2 . 4 0 . 2 3 9 2 1 . 3 8 3 1 . 0 6 2 - 2 3 . 2 1 . 3 8 7 + 0 . 3 1 . 3 9 0 + 0 . 5 1 . 3 9 0 + 0 . 53 3 1 . 3 0 . 3 0 4 4 1 . 2 9 6 1 . 0 4 9 - 1 9 . 1 1 . 2 9 8 + 0 . 1 1 . 3 0 4 + 0 . 6 1 . 3 0 4 + 0 . 63 3 6 . 7 0 . 3 4 6 3 1 . 2 6 2 1 . 0 4 2 - 1 7 . 4 1 . 2 5 0 + 0 . 9 1 . 2 5 8 - 0 . 3 1 . 2 5 8 - 0 . 3A n t h r a c e n e2 9 9 . 6 0 . 0 1 0 0 1 . 2 7 4 1 . 0 0 8 - 2 0 . 9 1 . 2 7 4 - 1 . 2 6 4 - 0 . 8 1 . 2 6 4 - 0 . 83 1 9 . 5 0 . 0 1 9 9 1 . 2 7 9 1 . 0 0 7 - 2 1 . 2 1 . 2 4 8 - 2 . 4 1 . 2 8 2 + 0 . 2 1 . 2 8 3 + 0 . 33 2 7 . 6 0 . 0 2 5 9 1 . 2 7 1 1 . 0 0 7 - 2 0 . 8 1 . 2 3 8 - 2 . 6 1 . 2 8 7 + 1 . 2 1 . 2 8 8 + 1 . 33 3 3 . 0 0 . 0 3 0 3 1 . 2 8 2 1 . 0 0 7 - 2 1 . 5 1 . 2 3 1 - 4 . 0 1 . 2 9 0 + 0 . 6 1 . 2 9 0 + 0 . 63 4 3 . 4 0 . 0 4 0 8 1 . 2 9 0 1 . 0 0 6 - 2 2 . 0 1 . 2 1 7 - 5 . 7 1 . 2 9 3 + 0 . 2 1 . 2 9 3 + 0 . 23 4 6 . 2 0 . 0 4 3 3 1 . 3 1 4 1 . 0 0 6 - 2 3 . 4 1 . 2 1 4 - 7 . 6 1 . 2 9 4 - 1 . 5 1 . 2 9 3 - 1 . 6

Page 205: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI

Comparison o f Experimental and Predicted A c t i v i ty Coe f f i c i en t sfor the Twelve So lu tes in Decal in*.

£. . = 1.1

; 0 fiij * 0 W i 1 s o n ' s Eqn, U N I Q U A CT e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) V 2 ( c a l c . ) A%

Y 2 (c a l c . ) A %Y g C c a l c . ) A

%Y2 ( c a l c . ) A

%B i p h e n y l3 0 9 . 03 1 6 . 03 1 8 . 23 2 4 . 3 3 2 8 . 2

0 . 3 6 1 10 . 4 7 4 00 . 5 1 8 00 . 6 4 0 60 . 7 3 8 5

1 . 4 2 61 . 2 6 11 . 2 0 81 . 1 0 71 . 0 3 8

1 . 2 1 61 . 1 4 01 . 1 1 61 . 0 6 21 . 0 3 3

- 1 4 . 7- 9 . 6- 7 . 6- 4 . 0- 0 . 5

1 . 4 2 6 1 . 2 6 9 1 . 2 2 1

1 . 1 1 6 1 . 0 6 0

+ 0 . 6

+ 1 . 0

+ 0 . 9 + 2 . 1

1 . 4 2 81 . 2 5 61 . 2 0 71 . 1 0 51 . 0 5 3

+ 0 . 2

- 0 . 4 + 0 . 1

- 0 . 2

+ 1 . 4

1 . 4 2 81 . 2 5 71 . 2 0 71 . 1 0 41 . 0 5 2

+ 0 . 1

- 0 . 4- 0 . 1

- 0 . 2

+ 1 . 3F l u o r e n e3 0 6 . 1 3 2 1 . 3 3 3 1 . 6 3 4 2 . 9 3 5 3 . 03 6 6 . 2

0 . 0 8 4 30 . 1 4 9 10 . 2 2 4 40 . 3 1 4 40 . 4 4 4 50 . 6 6 7 1

2 . 3 6 71 . 9 2 01 . 6 0 01 . 4 4 11 . 2 4 01 . 0 5 1

1 . 5 6 01 . 4 4 41 . 3 4 61 . 2 5 41 . 1 5 71 . 0 5 3

- 3 4 . 1- 2 4 . 8- 1 5 . 8- 1 3 . 0- 6 . 7+ 0 . 2

2 . 3 6 72 . 0 3 81 . 7 7 91 . 5 5 01 . 3 2 61 . 1 0 4

+ 6 . 2

+ 1 1 . 2

+ 7 . 5 + 6 . 9 + 5 . 1

2 . 3 5 91 . 9 2 71 . 6 3 21 . 4 1 01 . 2 2 0

1 . 0 6 2

- 0 . 3+ 0 . 4+ 2 . 0

- 2 . 1

- 1 . 6

+ 1 . 1

2 . 3 5 41 . 9 3 51 . 6 3 41 . 4 0 81 . 2 1 41 . 0 5 8

- 0 . 5+ 0 . 8

+ 2 . 2

- 2 . 3- 2 . 1

+ 0 . 7P h e n a n t h r e n e3 1 4 . 4 0 . 1 5 9 3 2 . 2 7 0 1 . 9 6 1 - 1 3 . 6 2 . 2 7 0 - 2 . 2 6 4 - 0 . 3 2 . 2 6 0 - 0 . 43 2 0 . 1 0 . 2 0 2 0 2 . 0 1 1 1 . 8 1 4 - 1 0 . 8 2 . 0 7 5 + 2 . 7 2 . 0 2 3 + 0 . 6 2 . 0 2 5 + 0 . 73 2 6 . 2 0 . 2 5 5 4 1 . 8 0 0 1 . 6 6 3 - 7 . 4 1 . 8 5 8 + 3 . 4 1 . 7 9 4 - 0 . 3 1 . 7 9 9 - 0 . 1

3 3 1 . 9 0 . 3 2 8 3 1 . 5 6 3 1 . 5 0 2 - 3 . 9 1 . 6 4 1 + 5 . 0 1 . 5 7 1 + 0 . 5 1 . 5 7 3 + 0 . 6

3 3 7 . 4 0 . 4 0 3 0 1 . 4 1 5 1 . 3 7 1 - 3 . 1 1 . 4 6 0 + 3 . 8 1 . 4 0 6 - 0 . 7 1 . 4 0 5 - 0 . 73 4 1 . 2 0 . 4 7 5 1 1 . 2 9 0 1 . 2 7 3 - 1 . 3 1 . 3 4 2 + 4 . 0 1 . 2 8 9 - 0 . 1 1 . 2 8 6 - 0 . 33 4 5 . 6 0. 5 6 1 2 1 . 1 8 6 1 . 1 8 1 - 0 . 4 1 . 2 2 4 + 3 . 3 1 . 1 8 6 0 . 0 1 . 1 8 2 - 0 . 4

COro

Page 206: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI (Continued)

Comparison of Experimental and Predicted A c t i v i ty Coe f f i c i en t sfor the Twelve Solutes in Decalin*.

2 . . = 1J 0 £. . 7 IJ 0 W i I s o n ' s Eqn. LINIQUACT e m pK

x 2 ( e x p t . ) y 2 (e x p t . ) y 2 ( c a l c . ) A%

y 2 (ca lc. ) A%

y 2 (c a l c . ) A%

y 2 ( c a l c . ) A%

A c e n a p h t h e n e3 0 0 . 7 3 1 0 . 93 1 8 . 73 2 7 . 8 3 3 6 . 0 3 4 8 . 3

0 . 1 2 3 90 . 1 B 7 30 . 2 4 9 60 . 3 3 0 20 . 4 4 7 70 . 6 5 9 7

1 . 7 9 1 1 . 5 5 0 1 . 4 1 6 1 . 3 3 2 1 . 1 8 5 1 . 0 5 0

1 . 4 8 11 . 3 9 31 . 3 2 21 . 2 4 61 . 1 6 11 . 0 5 9

' 1 7 . 3- 1 0 . 1

- 6 . 7- 6 . 5- 2 . 0

+ 0 . 8

1 . 7 9 11 . 6 3 41 . 5 1 31 . 3 8 51 . 2 4 81 . 0 8 9

+ 5 . 5 + 6 . 8

+ 4 . 0 + 0 . 8

+ 3 . 6

1 . 7 7 7 1 . 5 7 4 1 . 4 3 3 1 . 3 0 2 1 . 1 7 7 1 . 0 5 5

- 0 . 8

+ 1 . 5 + 1 . 2

- 2 . 2

- 0 . 7 + 0 . 5

1 . 7 7 51 . 5 7 61 . 4 3 51 . 3 0 31 . 1 7 51 . 0 5 3

- 0 . 9+ 1 . 7+ 1 . 3- 2 . 2

- 0 . 8

+ 0 . 3N a p h a t h a l e n e3 0 2 . 93 0 7 . 73 1 1 . 7 3 1 9 . 0 3 2 4 . 33 2 9 . 7 3 3 5 . 6

0 . 2 2 6 20 . 2 7 0 50 . 3 1 8 10 . 3 9 6 00 . 4 7 0 30 . 5 6 2 30 . 6 7 2 5

1 . 5 9 9 1 . 4 9 3 1 . 3 8 9 1 . 3 0 6 1 . 2 2 9 1. 1 4 6 1 . 0 7 6

1 . 3 8 3 1 . 3 3 5 1 . 2 9 0 1 . 2 2 4 1. 1 7 1 1 . 1 1 7 1 . 0 6 6

- 1 3 . 5 - 1 0 . 6

-7. 1 - 6 . 3 -4. 7 - 2 . 6

- 0 . 9

1 . 5 9 9 1 . 5 2 0 1 . 4 4 6 1 . 3 4 0 1 . 2 5 7 1. 174 1 . 0 9 7

+ 1 . 8

+ 4 . 1 + 2 . 6

+ 2 . 3 + 2 . 4 + 1 . 9

1 . 5 8 91 . 4 9 51 . 4 1 21 . 3 0 01 . 2 1 91 . 1 4 21 . 0 7 6

- 0 . 6

+ 0 . 2

+ 1 . 7 - 0 . 4 - 0 . 8

- 0 . 4 0 . 0

1 . 5 8 81 . 4 9 61 . 4 1 31 . 3 0 11 . 2 1 91 . 1 4 11 . 0 7 5

- 0 . 7+ 0 . 2

+ 1 . 7- 0 . 4- 0 . 8

- 0 . 4- 0 . 1

D i b e n z o f u r a n3 2 6 . 43 2 8 . 23 3 1 . 53 3 3 . 53 3 7 . 2

0 . 4 2 4 50 . 4 6 4 60 . 5 1 1 00 . 5 7 5 20 . 6 4 4 7

1 . 3 5 6 1 . 2 8 5 1 . 2 4 8 1 . 1 5 3 1 . 1 0 5

1 . 4 0 61 . 3 4 31 . 2 7 81 . 2 0 51 . 1 3 9

+ 3 . 7 + 4 . 6 + 2 . 5 + 4 . 5 + 3 . 0

1 . 3 5 6 1 . 3 0 1 1 . 2 4 5 1 . 181 1 . 1 2 3

+ 1 . 3 - 0 . 2

+ 2 . 4 + 1 . 6

1 . 3 5 61 . 2 9 21 . 2 3 01 . 1 6 31 . 1 0 7

0 . 0

+ 0 . 6

- 1 . 4+ 0 . 8

+ 0 . 1

1 . 3 5 61 . 2 9 31 . 2 3 01 . 1 6 31 . 1 0 6

0 . 0

+ 0 . 6

- 1 . 4+ 0 . 8

+ 0 . 1

CDId

Page 207: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI (Continued)

Comparison of Experimental and Predicted A c t i v i ty Coe f f i c i en t sfor the Twelve Solutes in Decalin*.

* i i = ° \ i * ° W i l s o n ' s Eqn. U N I Q U A CT e m pK

x ^ f e x p t . ) y 2 ( e x p t . ) y 2 ( c a l c . ) & y ^ C c a l c . ) A%

y , ( c a 1 c . ) & * %

Y - C c a l c . )* %

Dibenzothiophene3 1 1 . 3 0 . 1 0 5 6 2 . 7 1 9 2 . 8 3 7 + 4 . 3 2 . 7 1 9 - 2 . 7 3 2 + 0 . 4 2 . 7 2 7 + 0 . 33 1 8 . 9 0 . 1 3 9 3 2 . 4 6 0 2 . 5 4 6 + 3 . 5 2 . 4 5 1 - 0 . 4 2 . 4 4 4 - 0 . 7 2 . 4 4 7 - 0 . 6

3 2 5 . 8 0 . 1 8 5 9 2 . 1 5 3 2 . 2 4 5 + 4 . 3 2 . 1 7 3 + 0 . 9 2 . 1 5 1 - 0 . 1 2 . 1 5 7 + 0 . 2

3 3 3 . 9 0 . 2 6 2 8 1 . 8 1 6 1 . 8 8 6 + 3 . 9 1 . 8 3 8 + 1 . 2 1 . 8 1 3 - 0 . 1 1 . 8 1 6 0 . 0

3 4 0 . 2 0 . 3 5 4 8 1 . 5 3 6 1 . 5 9 4 + 3 . 8 1 . 5 6 4 + 1 . 8 1 . 5 3 6 0 . 0 1 . 5 4 1 + 0 . 43 4 6 . 3 0 . 4 6 5 5 1 . 3 2 6 1 . 3 5 8 + 2 . 4 1 . 3 4 1 + 1 . 1 1 . 3 2 6 0 . 0 1 . 3 2 3 - 0 . 3C a r b a z o l e3 1 9 . 7 0 . 0 0 0 6 7 2 9 . 7 8 9 5 . 8 7 7 - 8 0 . 3 2 9 . 7 8 9 - 2 9 . 2 4 5 - 1 . 8 1 7 . 9 6 0 - 3 9 . 73 3 3 . 3 0 . 0 0 2 6 3 1 1 . 4 5 5 5 . 4 3 4 - 5 2 . 6 2 5 . 6 3 4 + 1 2 3 . 8 1 4 . 8 6 1 + 2 9 . 7 1 5 . 7 4 6 + 3 7 . 53 4 8 . 5 0 . 0 0 4 1 4 1 1 . 1 0 4 5 . 0 2 4 - 5 4 . 8 2 2 . 0 6 0 + 9 8 . 7 1 1 . 7 3 4 + 5 . 7 1 3 . 8 5 0 + 2 4 . 73 5 7 . 6 0 . 0 0 5 4 4 1 0 . 7 0 0 4 . 8 0 4 - 5 5 . 1 2 0 . 2 4 3 + 8 9 . 2 1 0 . 0 7 3 - 5 . 9 1 2 . 8 5 1 + 2 0 . 1

3 6 1 . 6 0 . 0 0 5 5 7 1 1 . 5 5 0 4 . 7 2 0 - 5 9 . 1 1 9 . 5 6 7 + 6 9 . 4 1 0 , 0 9 6 - 1 2 . 6 1 2 . 4 9 7 + 8 . 2

3 7 6 . 0 0 . 0 1 0 9 8 8 . 2 5 6 4 . 3 8 1 - 4 6 . 9 1 6 . 9 6 9 + 1 0 5 . 5 6 . 4 4 1 - 2 2 . 0 1 0 . 9 2 0 + 3 2 . 33 8 8 . 2 0 . 0 1 8 8 0 6 . 3 2 2 4 . 0 9 7 - 3 5 . 2 1 4 . 9 1 8 + 1 3 6 . 0 4 . 4 5 1 - 2 9 . 6 9 . 5 9 8 + 5 1 . 84 0 2 . 2 0 . 0 2 8 1 1 5 . 6 5 5 3 . 8 0 9 - 3 2 . 6 1 2 . 9 7 6 + 1 2 9 . 4 3 . 4 5 6 - 3 8 . 9 8 . 3 6 0 + 4 7 . 84 1 6 . 2 0 . 0 4 9 6 7 4 . 2 0 0 3 . 4 5 6 - 1 7 . 7 1 0 . 7 6 7 + 1 5 6 . 4 2 . 3 8 2 - 4 3 . 3 6 . 8 2 5 + 6 2 . 54 3 8 . 2 0 . 0 9 5 2 7 3 . 2 4 2 2 , 9 3 1 - 9 . 6 7 . 8 5 3 + 1 4 2 . 3 1 . 6 6 7 - 4 8 . 6 4 . 8 8 2 + 5 0 . 64 7 3 . 2 0 . 2 9 9 0 9 1 . 7 9 0 1 . 8 5 5 - 3 . 6 3 . 2 6 8 + 8 2 . 5 1 . 0 9 6 - 3 8 . 8 2 . 1 0 4 + 1 7 . 54 9 1 . 7 0 . 5 0 5 5 1 1 . 3 7 4 1 . 3 5 8 - 1 . 1 1 . 7 9 9 + 3 0 . 9 1 . 0 1 9 - 2 5 . 8 1 . 3 6 0 - 1 . 0

5 0 2 . 2 0 . 6 9 1 5 3 1 . 1 5 4 1 . 1 2 8 - 2 . 2 1 . 2 6 0 + 9 . 2 1 . 0 0 3 - 1 3 . 1 1 . 1 1 0 - 3 . 8

Page 208: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI (Continued)

Comparison of Experimental and Predicted Ac t iv i t y Coef f i c i en t sfor the Twelve Solutes in Decal in*.

2 . . = i.l 0 2 . . * i.l 0 W i I s o n 1s Eqn. U N I Q U A CT e m pK

x ^ f e x p t . ) •y2 < e x p t . ) y _ ( c a l c . ) A i %

y , { c a l c . ) A £ %

V 2 ( c a 1 c . ) A%

Y 2 ( c a l c . 1 A%

A c r i d i n e3 0 6 . 03 2 0 . 73 3 5 . 03 4 5 . 73 5 4 . 73 5 8 . 1

0 . 0 2 9 5 0 . 0 4 6 3 0 . 0 9 6 9 0 . 1 8 5 0 0 . 3 2 0 9 0 . 3 9 6 3

7 . 9 9 16 . 9 0 74 . 3 7 12 . 7 9 21 . 8 9 31 . 6 2 9

2 . C 2 61 . 9 1 61 . 7 4 51 . 5 5 01 . 3 4 31 . 2 5 9

- 7 4 . 7- 7 2 . 3- 6 0 . 1- 4 4 . 5- 2 9 . 0- 2 2 . 7

7 . 9 9 16 . 7 8 15 . 1 5 23 . 6 3 42 . 3 8 41 . 9 7 0

- 1 . 8

+ 1 7 . 9 + 3 0 . 1 + 2 5 . 9 + 2 0 . 9

8 . 1 8 06 . 5 7 24 . 4 4 82 . 3 9 91 . 9 1 81 . 6 3 5

+ 2 . 4- 4 . 9+ 1 . 8

+ 3 . 8+ 1 . 3+ 0 . 3

8 . 1 3 66 . 6 3 94 . 5 0 12 . 8 4 31 . 8 0 91 . 5 2 8

+ 1 . 8

- 3 . 9+ 3 . 0+ 1 . 8

- 4 . 5- 6 . 2

A n t h r a c e n e3 2 3 . 63 2 7 . 13 4 2 . 5 3 5 1 . 0 3 6 2 . 93 8 5 . 6

0 . 0 0 7 90 . 0 0 8 70 . 0 1 5 10 . 0 2 0 40 . 0 2 9 90 . 0 5 8 7

3 . 6 4 9 3 . 7 1 8 3 . 4 0 1 3 . 1 9 4 2 . 9 6 8 2 . 6 1 6

1 . 3 1 01 . 3 0 51 . 2 8 61 . 2 7 41 . 2 5 81 . 2 2 6

- 6 4 . 1- 6 4 . 9- 6 2 . 2- 6 0 . 1- 5 7 . 6- 5 3 . 1

3 . 6 4 93 . 5 9 13 . 3 3 73 . 2 0 03 . 0 1 32 . 6 5 5

- 3 . 4 - 1 . 9 + 0 . 2

+ 1 . 5 + 1 . 5

3 . 7 1 13 . 6 5 03 . 3 7 03 . 2 1 63 . 0 0 32 . 5 9 5

+ 1 . 7- 1 . 8

- 0 . 9+ 0 . 7+ 1 . 2

- 0 . 8

3 . 6 8 03 . 6 2 43 . 3 6 93 . 2 2 83 . 0 3 22 . 6 4 8

+ 0 . 8

- 2 . 5 - 0 . 9 + 1 . 1

+ 2 . 1

+ 1 . 2

T h i o x a n t h e n e3 0 9 . 53 2 1 . 13 2 8 . 13 3 7 . 83 4 3 . 9 3 5 3 . 3

0 . 0 3 5 2 0 . 0 5 4 4 0 . 0 7 0 3 0 . 1 0 2 9 0 . 1 2 7 9 0 . 1 9 1 0

3 . 0 3 72 . 7 6 42 . 6 0 42 . 3 0 52 . 1 7 51 . 8 3 8

3 . 8 1 63 . 4 5 53 . 2 2 92 . 8 8 52 . 6 7 32 . 2 7 6

+ 2 5 . 7+ 2 5 . 0+ 2 4 . 0+ 2 5 . 1+ 2 2 . 9+ 2 3 . 9

3 . 0 3 72 . 7 9 72 . 6 4 42 . 4 0 82 . 2 6 01 . 9 7 8

+ 1 . 2

+ 1 . 5 + 4 . 6 + 3 . 9 + 7 . 7

3 . 0 4 62 . 7 6 42 . 5 8 72 . 3 1 72 . 1 5 51 . 8 5 7

+ 0 . 30 . 0

- 0 . 7+ 0 . 5- 0 . 9+ 1 . 1

3 . 0 4 22 . 7 6 72 . 5 9 12 . 3 2 02 . 1 5 41 . 8 4 9

+ 0 . 2

+ 0 . 1

- 0 . 5+ 0 . 6

- 0 . 9+ 0 . 6

CDi_n

Page 209: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XI (Continued)

T e m p x . ( e x p t . ) K

X a n t h e n e3 X 6 . 6 0 . 1 3 5 2322. 3 0 . 1 7 8 23 3 2 . 4 0 . 2 7 4 23 3 9 . 7 0 . 3 8 1 2346. 7 0 . 4 6 3 53 5 1 . 5 0 . 5 6 1 3

Comparison of Experimental and Predicted A c t iv i t y Coef f i c i en t sfor the Twelve 5o lute s in Decal in*.

,(expt. )0 e . . * . . . >J 0

y,,(calc. ) a%

Y 2 ( c a l c . ) A%

2 . 5 1 4 2 . 2 5 7 - 1 0 . 2 2 . 5 1 42 . 1 5 3 2 . 0 6 4 - 4 . 1 2 . 2 7 2 + 5 . 51 . 7 2 5 1 . 7 3 6 + 0 . 7 1 . 8 6 8 + 8 . 31 . 4 3 1 1 . 4 8 5 + 3 . 8 1 . 5 6 5 + 9 . 31 . 3 4 3 1 . 3 4 0 - 0 . 2 1 . 3 9 3 + 3 . 71 . 2 1 3 1 . 2 1 5 + 0 . 1 1 . 2 4 6 + 2 . 7

W i l s o n ' s Eqn. U N T Q U A Cy ( c a l c . ) J ± _ y , ( c a l c . ) % ___

2 . 4 9 1 - 0 . 9 2 . 4 8 5 - 1 . 2

2 . 1 8 4 + 1 . 5 2 . 1 8 9 + 1 . 71 . 7 3 8 + 0 . 8 1 . 7 4 3 + 1 . 1

1 . 4 4 8 + 1 . 2 1 . 4 4 7 + 1 . 1

1 . 3 0 1 - 3 . 2 1 . 2 9 7 - 3 . 51 . 1 8 2 - 2 . 6 1 . 1 7 6 - 3 . 1

00CTY

Page 210: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XII

Comparison of Experimental and Predicted A c t i v i ty Coef f i c i en t sof Seven Solutes in a 50% Tetralin/50% Decal in Mixture

2 . . = 0 1. 1

£. . * 0 1 J W i l s o n ' s Eqn. U N IQ U A C

T e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) Y , { c a l c . ) A * %

Y ( c a l c . ) _ A _ c %

Y ~ ( c a l c . ) A 4 %

Y2 ( e a l c . ) A%

B i p h e n y l3 0 2 . 7 0 . 3 6 6 5 1 . 2 2 6 1 . 0 9 4 - 1 0 . 8 1 . 2 3 8 + 1 . 4 1 . 2 2 1 - 0 . 4 1 . 2 0 3 - 1 . 93 1 0 . 1 0 . 4 5 9 9 1. 149 1 . 0 6 5 - 7 . 3 1 . 1 6 3 + 1 . 6 1 . 1 6 1 + 1 . 0 1 . 1 5 4 + 0 . 43 1 6 . 9 0 . 5 5 3 7 1 . 1 0 0 1 . 0 4 3 - 5 . 2 1 . 106 + 0 . 5 1 . 1 1 1 + 1 . 0 1 . 1 1 0 + 0 . 93 2 3 . 5 0 . 6 5 6 3 1 . 0 6 4 1 . 0 2 5 - 3 . 7 1 , 0 6 0 - 0 . 3 1 . 0 6 7 + 0 . 3 1 . 0 6 8 + 0 . 43 2 8 . 7 0 . 7 4 8 7 1 . 0 3 4 1 . 0 1 3 - 2 . 1 1 . 0 3 1 - 0 . 3 1 . 0 3 6 + 0 . 2 1 . 0 3 8 + 0 . 43 3 4 . 2 0 . 8 5 0 9 1 . 0 1 4 1 . 0 0 4 - 1 . 0 1 . 0 1 1 - 0 . 3 1 . 0 1 3 - 0 . 1 1 . 0 1 4 0 . 0

F l u o r e n e3 0 9 . 7 0 . 1 5 1 5 1 . 4 4 1 1 . 2 0 3 - 1 6 . 5 1 . 5 3 8 + 6 . 8 1 . 4 0 0 - 2 . 8 1 . 2 3 6 - 1 4 . 23 2 7 . 0 0 . 2 5 4 0 1 . 2 8 1 1 . 1 4 4 - 1 0 . 7 1 . 3 6 8 + 6 . 8 1 . 2 8 0 - 0 . 1 1 . 2 1 0 - 5 . 63 3 7 . 5 0 . 3 4 6 9 1 . 1 7 1 1 . 1 0 4 - 5 . 7 1 . 2 6 0 + 7 . 6 1 . 2 0 0 + 2 . 5 1 . 1 7 1 0 . 0

3 4 7 . 0 0 . 4 4 9 3 1 . 0 9 4 1 . 0 7 0 - 2 . 2 1 . 1 7 2 + 7 . 1 1 . 1 3 4 + 3 . 6 1 . 1 2 6 + 3 . 03 5 7 . 2 0 . 5 5 6 8 1 . 0 7 1 1 . 0 4 3 - 2 . 6 1 . 1 0 4 + 3 . 1 1 . 0 8 2 + 1 . 0 1 . 0 8 4 + 1 . 2

3 6 4 . 2 0 . 6 5 6 5 1 . 0 3 1 1 . 0 2 5 - 0 . 6 1 . 0 6 0 + 2 . 8 1 . 0 4 7 + 1 . 6 1 . 0 5 1 + 2 . 0

P h e n a n t h r e n e 3 1 2 . 7 0 . 2 5 2 2 1 . 3 8 5 1 . 3 6 9 - 1 . 2 1 . 5 0 6 + 8 . 7 1 . 4 6 1 + 5 . 5 1 . 4 3 0 + 3 . 33 2 4 . 4 0 . 3 5 3 0 1 . 2 5 5 1 . 2 5 0 - 0 . 4 1 . 3 3 8 + 6 , 6 1 . 3 1 0 + 4 . 4 1 . 2 9 6 + 3 . 23 3 3 . 0 0 . 4 5 8 3 1 . 1 4 5 1 . 1 6 2 + 1 . 5 1 . 2 1 6 + 6 . 2 1 . 2 0 0 + 4 . 8 1 . 1 9 3 + 4 . 23 4 1 . 6 0 . 5 5 4 2 1 . 1 1 5 1 . 1 0 3 - 1 . 1 1 . 1 3 6 + 1 . 9 1 . 1 2 6 + 1 . 0 1 . 1 2 3 + 0 . 8

3 4 8 . 6 0 . 6 5 4 0 1 . 0 6 0 1 . 0 5 9 - 0 . 1 1 . 0 7 7 + 1 . 6 1 . 0 7 2 + 1 . 1 1 . 0 7 1 + 1 . 0

3 5 2 . 2 0 . 6 9 7 3 1 . 0 5 3 1 . 0 4 4 - 0 . 9 1 . 0 5 6 + 0 . 4 1 . 0 5 4 + 0 . 1 1 . 0 5 3 0 . 0

CD«sj

Page 211: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XII (Continued)

Comparison of Experimental and Predicted Ac t iv i t y Co e f f i c i en t sof Seven Solutes in a 50% Tetralin/50% Decal in Mixture

£. . = 1J 0 *i.i *0 W i I s o n ' s Eqn. U N 1 Q U A C

T e m pK

x 2 ( e x p t . ) y 2 ( e x p t . ) Y - , ( c a l c . ) A * %

Y2 ( c a l c . ) A %V 2 ( c a l c . ) A

%Y 2 ( c a 1 c . ) A

%H a p h t h a l e n e308 . B3 1 8 . 5 3 2 4 . 93 3 5 . 03 3 9 . 63 4 5 . 1

0 . 3 5 0 60 . 4 5 2 90 . 5 3 3 60 . 6 8 0 10 . 7 5 8 00 . 8 5 5 5

1 . 1 7 91 . 1 2 71 . 0 9 51 . 0 5 01 . 0 2 91 . 0 0 9

1 . 1 2 61 . 0 8 81 . 0 6 41 . 0 3 01 . 0 1 71 . 0 0 6

- 4 . 6- 3 . 5- 2 . 8

- 1 . 9- 1 . 2

- 0 . 3

1 . 2 3 5 1 . 1 6 2 1 . 116 1 . 0 5 4 1 . 0 3 1 1 . 0 1 1

+4. 7 + 3 . 1 + 2 . 0

+ 0 . 4 + 0 . 1

+ 0 . 2

1 . 2 1 0

1 . 1 4 61 . 1 0 61 . 0 5 01 . 0 2 91 . 0 1 0

+ 2 . 6

+ 1 . 7+ 1 . 0

0 . 0

0 . 0

+ 0 . 1

1 . 1 9 01 . 1 3 91 . 1 0 31 . 0 5 11 . 0 3 01 . 0 1 1

+ 0 . 9 + 1 . 0

+ 0 . 8

+ 0 . 1

+ 0 . 1

+ 0 . 2

A c e n o p h t h e n e3 0 5 . 63 1 9 . 33 2 8 . 83 3 6 . 93 4 2 . 63 4 9 . 4

0 . 2 0 2 0

0 . 3 0 5 50 . 4 0 6 50 . 5 0 4 60 . 5 8 7 80 . 7 0 5 3

1 . 2 5 41 . 1 7 71 . 1 0 91 . 0 7 31 . 0 4 61 . 0 0 6

1 . 1 7 2 1 . 1 2 3 1 . 0 8 6 1 . 0 5 8 1 . 0 4 0 1 . 0 2 0

- 6 . 6

- 4 . 6 - 2 . 0

- 1 . 4 - 0 . 6

+ 1 . 3

1 . 3 2 7 1 . 2 3 0 1 . 1 5 9 1 . 1 0 6 1 . 0 7 2 1 . 0 3 6

+ 5 . 8 + 4 . 5 + 4 . 5 + 3 . 1 + 2 . 5 + 2 . 9

1 . 2 7 71 . 1 8 91 . 1 2 71 . 0 8 31 . 0 5 51 . 0 2 6

+ 1 . 8

+ 1 . 0

+ 1 . 6

+ 0 . 9+ 0 . 8

+ 2 . 0

1 . 2 1 1

1 . 1 6 31 . 1 1 91 . 0 8 21 . 0 5 71 . 0 2 9

- 3 . 4- 1 . 2

+ 0 . 9+ 0 . 9+ 1 . 0

+ 2 . 3D i b e n z o f u r a n3 0 8 . 73 1 7 . 53 2 5 . 73 2 8 . 6 3 4 3 . 5

0 . 1 6 9 30 . 2 4 1 20 . 3 2 7 80 . 5 4 9 60 . 7 9 9 9

2 . 3 2 41 . 9 8 01 . 7 3 11 . 0 9 51 . 0 0 4

1 . 5 6 21 . 4 3 71 . 3 2 01 . 1 3 21 . 0 2 4

- 3 2 . 8- 2 7 . 5- 2 3 . 7+ 3 . 4+ 2 . 0

1 . 6 1 21 . 4 7 41 . 3 4 61 . 1 4 21 . 0 2 6

- 3 0 . 6- 2 5 . 6- 2 2 . 2

+ 4 . 3+ 1 . 8

1 . 6 1 31 . 4 6 41 . 3 3 01 . 1 2 71 . 0 2 2

- 3 0 . 6- 2 6 . 1- 2 3 . 1+ 3 . 0+ 1 . 8

1 . 5 1 41 . 4 1 01 . 3 0 61 . 1 2 71 . 0 2 3

- 3 4 . 8- 2 8 . 8- 2 4 . 5+ 3 . 0+ 2 . 0

COno

Page 212: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XII (Continued)

Comparison o f Experimental and Predicted A c t i v i ty C oe f f i c i en t so f Seven Solutes in a 50% Tetralin/50% Decal in Mixture

T e m pK

X g ( e x p t . ) y 2 ( e x p t . ) V 2 ( c a l c . ) A%

y2( c a l c . ) A%

W i l s o n ' s Eqn.y 2( c a l c . ) A

%

U H 1 Q U A CV 2 ( c a l c . > A

%

D i b e n z o t h i o p h e n e3 0 3 . 7 0 . 1 4 0 2 1 . 7 0 6 1 . 9 4 5 + 1 4 . 0 1 . 8 9 6 + 1 1 . 2 1 . 7 3 9 + 2 . 0 1 . 7 0 6 0 . 0

3 1 4 . 3 0 . 1 9 5 4 1 . 5 6 9 1 . 7 4 8 + 1 1 . 4 1 . 7 1 1 + 9 . 0 1 , 6 0 4 + 2 . 2 1 . 5 8 2 + 0 . 8

327 . S 0 . 3 0 7 7 1 . 3 5 3 1 . 4 8 2 + 9 . 5 1 . 4 6 0 + 7 . 9 1 . 4 0 7 + 4 . 0 1 . 3 9 4 + 3 . 03 3 7 . 0 0 . 4 1 9 4 1 . 2 1 5 1 . 3 0 4 + 7 . 4 1 . 2 9 1 + 6 . 3 1 . 2 6 7 + 4 . 3 1 . 2 5 7 + 3 . 53 4 3 . 1 0 . 5 1 0 2 1 . 1 3 4 1 . 2 0 2 + 6 . 0 1. 194 + 5 . 3 1 . 1 8 2 + 4 . 3 1 . 1 7 4 + 3 . 63 4 9 . 2 0 . 6 0 8 9 1 . 0 7 5 1 . 1 2 1 + 4 . 3 1 . 1 1 6 + 3 . 9 1 . 1 1 2 + 3 . 5 1 . 1 0 6 + 2 . 9

Page 213: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XIIKa)

S o l u b i l i t y P a r a m e t e r s a n d L i q u i d M o l a r V o l u m e s o f S o l i d s a n d l i q u i d s at t h e M e l t i n g P o i n t s o f t h e S o l i d s

T mK

Sol ids d e c a l i n m i x t u r e * 1 t e t r a l i n6 2 A fil A 6 1 a

( d / m 3 )*5 X 1 0 s

( m 3 m o l “ 1 ) x 1 0 " 5

( d / m 3 / 1x 1 0

( m 3 mol 3)x 1 0

< J/tn3 1*5

x 1 0

C m 3 m o l 3) x 1 0 ‘ 6

B i p h e n y l 3 4 2 . 6 1 . 9 3 0 4 3 1 5 5 . 2 b 1 . 6 5 3 5 a 1 6 2 . 9 1 1 . 8 3 7 3 a 141. 9 bN a p h t h a l e n e 3 5 2 . S 1 . 9 6 6 2 3 1 3 0 . 9 C 1 . 6 3 1 8 6 1 6 4 . 4 1 1 . 8 1 5 1 3 1 4 3 . 0 bP h e n a n t h r e n e ' 3 7 2 . 8 1 . 9 7 7 2 a 1 6 8 . l d 1 . 5 9 2 0 s 1 6 7 . 4 1 1 . 7 7 4 4 s 1 4 5 . 4 bF I u o r e n e 3 8 7 . 6 1 . 8 5 0 8 e 1 6 3 . 7 f 1 . 5 6 4 5 3 1 6 9 . 6 1 1. 7 4 6 2 a 1 4 7 . l bA c e n a p h t h e n e 3 6 6 . 5 1 . 8 9 3 0 6 1 4 9 . 8 9 1 . 6 0 4 3 a 1 6 6 . 4i 1 . 7 8 6 7 3 1 4 4 . 7 bD i b e n z o t h i o p h e n e 3 7 1 . 4 2 . 0 5 5 0 k 1 6 4 . 2 j 1 . 5 9 5 5 a 1 6 7 . 2m 1 . 7 7 7 9 a 1 4 5 . 2 bD i b e n z o f u r a n 3 5 5 . 7 2 . 0 4 1 0 k 1 5 2 . 5 ^ 1 . 6 2 6 6 s 1 6 4 . 8 1 1 . 8 0 9 7 a 1 4 3 . 4 bC a r b a z o l e n 5 1 9 . 2 2 . 3 4 5 2 k 1 4 3 . 0 1 1 . 7 7 1 1 a 1 5 5 . 5 1 1 . 9 5 1 4 s 136. 9 bX a n t h e n e 3 7 3 . 7 2 . 0 0 1 6 k 1 6 1 . 7 1 1 . 5 8 2 6 a 1 6 7 . 5 1 1 . 7 8 3 3 a 1 4 5 . 5 bA c r i d i n e 3 8 4 . 2 1 . 8 9 4 6 k 1 7 2 . 1 J' 1 . 5 6 1 6 a 1 6 9 . I 1 1 . 7 6 2 3 3 1 4 6 . 7 bT h i o x a n t h e n e 4 0 1 . 7 1 . 9 8 9 0 k 1 7 3 . 3 1 1 . 5 2 6 6 s 1 7 1 . 7 1 1 . 7 2 7 3 a 1 4 8 . 8 bA n t h r a c e n e 11 4 8 9 . 5 1 . 9 8 7 1 s 1 5 8 . I 1 1 . 7 7 1 1 s 1 5 5 . 5 1 1 . 9 5 1 4 s 1 3 6 . 9 b

Page 214: Classical and Statistical Thermodynamics of Solid-Liquid

191

TABLE Xl IHa) (continued!

C r i t i c a l C o n s t a n t w e r e e v a l u a t e d a c c o r d i n g to R o m a n e t al. ( 1 9 8 6 ) ,T c = 9 . 9 7 S g 0 ' 2 4 9 T b ° ' 6 9 1

P = 9 . 6 9 x 1 0 4 S 1 - 9 5 T h " 1 - 6 5c g o„ a -> c " 1 - 6 6 T 2 . 2 1v = 4 . 9 3 x 1 0 S T.c g b

• , n - 6 c - 0 . 6 4 5 T 1 . 7 6 w = 7 . 0 1 x 1 0 S T.9 b( T h e v a l u e s a r e l i s t e d in T a b l e X I I I ( b ) . )

D a t a S o u r c e s :a. E n t h a l p y o f v a p o r i z a t i o n w a s e v a l u a t e d b y u s i n g t h e C l a u s i u s - C l a p e y r o n e q u a t i o n

w i t h t h e A n t o i n e e q u a t i o n c o n s t a n t s g i v e n b y R e i d e t al. ( 1 9 7 7 ) .b. T i m m e r m a n s ( 1 9 6 5 ) .c. W e a s t e t al. ( 1 9 7 9 ) , R e i d e t al. ( 1 9 7 7 ) a n d D e a n ( 1 9 7 9 ) .d. Int. C r i t . T a b l e s ( 1 9 2 6 ) . E x t r a p o l a t e d b y u s i n g e q u a t i o n 1 2 - 3 . 2 o f R e i d e t al.

( 1 9 7 7 ) .e. A n t o i n e e q u a t i o n c o n s t a n t s g i v e b y D e a n ( 1 9 7 9 ) .f. M c L a u g h l i n a n d U b b e l o h d e ( 1 9 5 7 ) .g . L a n g e a n d F o r k e r ( 1 9 6 1 ) .h. I s o m e r i c m i x t u r e p r o p e r t i e s c a l c u l a t e d f r o m p u r e c o m p o n e n t p r o p e r t i e s u s i n g a

c o m p o s i t i o n o f 6 0 . 6 % c i s - d e c a l i n / 3 9 . 4 % t r a n s - d e c a l i n a n d a s s u m i n g an ideal s o l u t i o n .

i. S e y e r a n d D a v e n p o r t ( 1 9 4 1 ) . £j. T s o n o p o u l o s , C . , e t al. ( 1 9 8 6 ) . T e m p e r a t u r e c o r r e c t e d u s i n g A v / A T = 0 . 1 1

c m 3 / K , w h i c h is r e a s o n a b l y c o n s t a n t a m o n g t h e f i v e s o l u t e s f o r w h i c h d a t a is a v a i l a b l e .

k. C a r r u t h a n d K o b a y a s h i ( 1 9 7 2 ) . »1. U s e d R a c k e t t eqn . ( 1 9 7 0 ) t o c o r r e c t v f o r t e m p e r a t u r e .m. C o r r e l a t i o n o f R o m a n e t al. ( 1 9 8 6 ) u s e d t o p r e d i c t c r i t i c a l c o n s t a n t s n e e d e d

f o r t h e c o r r e l a t i o n s in k a n d 1 a b o v e . V a l u e s u s e d a n d o b t a i n e d a r e l i s t e d in T a b l e X l l l ( b ) .

n. F o r a n t h r a c e n e a n d c a r b a z o l e , v a l u e s a r e c a l c u l a t e d a t 2 5 ° C i n s t e a d Df t hem e l t i n g p o i n t .

Page 215: Classical and Statistical Thermodynamics of Solid-Liquid

192

TABLE XIIlb

C o r r e l a t i o n V a l u e s f o r t h e C r i t i c a l C o n s t a n t sTb/K V K v /-^!—c gmoi

UJ

D ib e n z o th io p h e n e 605 1.19 871 519 .493

D ib e n z o fu ra n 558 1.16 817 452 .434

C a rb a z o le 628 1.18 891 573 .530

A n th ra ce n e 614 1.12 883 591 .526

A c r id in e 619 1.11 869 613 .537

Xanthene 584 1.10 833 547 .487

T h io x a n th en e 613 1.10 861 609 .531

Page 216: Classical and Statistical Thermodynamics of Solid-Liquid

193

are included in Tables X >..nd XI fo r comparison purposes. Table

X I I , besides the experimental a c t i v i t y c o e f f i c i e n t of the s o lu te in

the equimolar solven t mixture, contains the predic t ions of a l l four of

the so lu t ion models, using the binary parameters obtained above ( l i s t e d

in Tables XIV and XV) and so lven t -so lven t binary parameters obtained

from the VLE study of t e t r a l i n - d e c a l in (Table XVI). The deviat ions of

the predic ted values from the experimental values are a l so shown. The

t e t r a l i n - d e c a l in VLE r e s u l t s , however, have not been presented because

they do not represen t t rue binary mixtures.

Examination of Tables X through XII leads to the following observa­

t i o n s .

1. The experimental a c t i v i t y co e f f i c i e n t s determined from

the s o l u b i l i t y da ta have less s c a t t e r than the experimen­

ta l a c t i v i t y c o e f f i c i e n t s obtained from the VLE expe r i ­

ments.

2. Since i t is l i k e l y t h a t these systems are well-behaved,

with moderate p o s i t i v e dev iat ions from Raoul t ' s law,

p red ic t io n s t h a t show negative deviat ions (or both pos i ­

t i v e and negative dev ia t ions) are not j u s t i f i a b l e . Some

of the VLE based r e s u l t s do t h i s while the SLE based

r e s u l t s do not.

3. The average dev ia t ions of the pred ic t ions from the exper­

imental values fo r SLE are qu i te small; even for the

te rna ry systems which have no data f i t t i n g involved.

Tables X and XI show t h a t the f i t s to the data improve as the number of

binary parameters in c reases , as would be expected. Table XII shows th a t

t h i s t rend i s observed for p red ic t ions of th ree component systems, where

Page 217: Classical and Statistical Thermodynamics of Solid-Liquid

194

TABLE XIV

V a lu es o f t h e B in a ry I n t e r a c t i o n P a r a m e te r s O b ta in e d from t h e A n a ly s i s o f t h e S o l i d S o l u b i l i t y

Data i n D e c a l in Cl)

S o l u t i o n S o l u t e (2 )Model N a p h th a le n e P h e n a n th re n e F l u o r e n e A cenaph thene

E x te n d edR e g u la rS o l u t i o n : *12 6 .7 1 8 x 10~3

/

5 .1 1 9 x 10*3 1 .3 2 6 x 10*2 6 .6 2 5 x 10"3

UNIQUAC:( J /g m o l )

■) 1224 .78 - 5 4 1 .8 0

1187.52-4 1 8 .2 7

212 5 .0 7-1 1 3 0 .2 1

1 8 9 5 .SI -1 0 8 0 .0 2

W i l s o n ' s : ( J / g m o l ) A1221

2 6 6 .1 81930.20

965 .622677 .09

- 9 .8 82 9 7 8 .5 9

-2 9 0 .5 42 439 .74

S o l u t i o n S o l u t e (2 )Model B ip h en y l D ib e n zo th io p h en e D ib e n z o f u r a n C a rb a z o le

E x te n d e dR e g u la rS o l u t i o n : *12 9 .7 8 7 x 10~3 - 1 .0 3 0 x 10"3 - 1 .9 4 1 x l o ' 4 6 .6 3 6 2 x I 0 " 2

UNIQUAC:( J / g m o l ) A]221

8 9 6 .4 5- 2 6 7 .8 0

5 67 .1393 .0 3

1016 .78- 3 3 8 .9 8

2 023 .01- 4 2 3 .5 9

W i l s o n ' s : ( J / g m o l ) A1221

6 4 1 .2 32217 .1 8

123.052560.95

4 3 3 .7 73426.51

- 3 2 9 5 .7 116162.83

S o l u t i o n S o l u t e (2)Model A n th ra c e n e A c r i d in e X anthene T h io x a n th e n e

E x te n d edR e g u la rS o l u t i o n : *12 2 .4 8 5 x 10_2 3 .6 4 4 x 10‘ 2 3 .6 7 1 x 10_3 - 6 .0 0 4 x 1 0 ' 3

UNIQUAC:( J / g m o l ) A1221

1302 .89- 4 7 2 .3 7

2566.49- 9 7 4 .7 0

1442 .20 - 5 6 4 .1 8

1279.19- 5 4 9 .9 0

W i l s o n ' s : ( J / g m o l ) A12*21

8 8 3 .3 62 85 2 .1 8

1839.394833 .89

7 3 0 .1 03 1 5 3 .3 2

791-232504 .05

Page 218: Classical and Statistical Thermodynamics of Solid-Liquid

19S

TABLE XV

V a lu e s o f t h e B in ary I n t e r a c t i o n P a r a m e te r s O b ta in e d from t h e A n a ly s i s o f t h e S o l i d S o l u b i l i t y

D ata i n T e t r a l i n (1 )

S o l u t i o n S o l u t e (2 )Model N a p h th a l e n e Ph en a n th re n e F lu o re n e A cenaphthene

E x te n d edR e g u la rS o l u t i o n :

*12 2 .9 4 7 x 10"3 1.222 x 1 0 ' 3 . 2 .3 5 9 x 1 0 '3 1 .5 7 6 x ID-3

UNIQUAC:( J /g m o l ) a 1 2

21

-4 5 2 .6 36 4 9 .5 3

-2 9 3 .7 5526.15

- 3 9 9 .0 455 4 .9 5

25 .9 456.07

W i l s o n ' s : ( J / g m o l ) i 1 2

21

966 .75-3 3 5 .5 8

789 .722 .0 8

882.81-4 1 6 .3 9

167.79165.75

S o l u t i o n S o l u t e (2 )Model B ip h en y l D ib e n zo th io p h en e D ib e n z o fu ra n C a rb a z o le

E x te n d edR e g u la rS o l u t i o n : *12 3 .3 7 2 x lO-3 - 2 .3 5 0 x 10- 3 5 .9 3 7 x 10~4 2 .1 7 9 x 10*2

UNIQUAC:( J /g m o l) A1221

-9 0 7 .1 7 1232.06

-7 7 1 .9 21096.23

-5 9 0 .9 9767 .46

-1 0 2 6 .2 13839 .22

W i l s o n ' s : ( J / g m o l ) *12

*21

1861 .10- 1 1 3 3 .6 3

1363.71-31 1 .2 1

565.11230 .17

13449.012805 .67

S o l u t i o n S o l u t e (2)Model A n th ra c e n e A c r id in e Xanthene T h io x a n th en e

E x te n d edR e g u la rS o l u t i o n : *12 4 .9 2 6 x 10“ 3 1 .168 x lO-2 -4 .8 7 1 x lO-4 - 4 .7 1 9 x lO-3

UNIQUAC:( J /g m o l ) A 1 2

21

-1 0 1 3 .7 51539.92

- 6 6 .1 2481 .86

-1 1 3 6 .3 11772.89

- 4 7 ^ . 1 3

710.49

W i l s o n 1S: ( J /g m o l ) *12

*21

402 2 .7 2- 1 6 8 4 .6 3

1046.14 617.46

2906.77-1 3 0 8 .2 5

1022.57- 3 5 7 .0 0

Page 219: Classical and Statistical Thermodynamics of Solid-Liquid

196

TABLE XVI

V a l u e s o f t h e S o l v e n t - S o l v e n t B i n a r y P a r a m e t e r s N e e d e d t o P r e d i c t t h e S o l u t e S o l u b i l i t i e s

i n t h e 5031-50% M i x t u r e o f T e t r a l in ( 1 ) a n d D e c a l i n (3). T h e s e V a l u e s W e r e O b t a i n e d F r o m V L E D a t a a t 4 3 3 . 1 5 K,

S o l u t e T m / KN a p h t h a l e n e 3 5 2 . 8P h e n a n t h r e n e 3 7 2 . 8A c e n a p h t h e n e 3 6 6 . 5F l u o r e n e 3 8 7 . 6B i p h e n y l 3 4 2 . 6D i b e n z o t h i o p h e h e 3 7 1 . 4D i b e n z o f u r a n 3 5 5 . 7

£ *1 3- 4 . 3 1 3 x 1 0 " ^ - 4 . 4 0 B x 1 0 t - 4 . 3 6 1 x 1 0 , - 4 . 4 6 9 x 1 0 , - 4 . 2 6 3 x 1 0 , - 4 . 3 9 3 x 1 0 , - 4 . 3 2 0 x 1 0

UNIQUAC: A = 9 1 4 .3 3

'5? * -5= “fi

( J / g m o l ) = 1 2 6 9 . 5 1

( J / g m o l ) A “ = - 7 7 9 . 0 7W i l s o n ' s : = - 8 2 0 . 8 0

* £ - , is c a l c u l a t e d a t t h e S o l u t e M e l t i n g T e m p e r a t u r e , a s r e q u i r e d b y t h e F T O a t i n g D a t u m P o i n t M e t h o d o f C h o i a n d M c L a u g h l i n ( 1 9 8 3 ) f o r all s o l u t e s e x c e p t c a r b a z o l e a n d a n t h r a c e n e , w h i c h a r e e v a l u a t e d a t 2 9 8 . 1 5 K.

Page 220: Classical and Statistical Thermodynamics of Solid-Liquid

197

there is no f i t t i n g done to the data. The average absolute deviations

between the experimental and predicted a c t iv i ty coe f f ic ien ts given in

Table XII are:

Scatchard-Hi1 debrand theory: 6,0%

Extended Scatchard-Hi1 debrand theory: 5.5%

Wilson's equation: 3.7%

UNIQUAC 4.0%

The pure component properties which are needed in the solution

models were presented in Table XIII, along with an explanation of the

sources used for the data and the correlations used for predicting the

properties that were unavailable in the l i terature . The values of the

properties were given at the melting point of the solute as required by

the f loating datum point method, except for the anthracene and carbazole

systems. For those systems, the properties were evaluated at 298.15 K,

which i s the traditional temperature used with the Scatchard-Hildebrand

theory. The pure component parameters needed for UNIQ'JAC (r^ and q^)

are given in Table XVII.

As stated above, the binary parameters obtained by the regression

of the data given in Tables X and XI are presented in Tables XIV and XV.

These binary parameters are not, to the best of our knowledge, presently

available in the l i terature . The r e l i a b i l i t y of these parameters,

re la t ive to the ones presented ear l ier that were derived by regression

of VLE data, w il l be discussed in the next section.

Page 221: Classical and Statistical Thermodynamics of Solid-Liquid

TABLE XVII

Values for r and g for each compound used in the study.

Compound r q

Naphthalene 4.8754 3.368Fluorene 6.1750 4.076Phenanthrene 6.5628 4.336Acenaphthene 5.7860 3.816Biphenyl 5.9380 4.168Dibenzothiophene 6.5190 4.972Dibenzofuran 5.9990 4.648Carbazole 6.3200 4.828Xanthene 6.4186 4.316Thioxanthene 6.9064 4.616Acridine 6.3744 4.332Anthracene 6.5630 4.336Tetralin 5.3380 3.648Decali n 6.1590 4.395

Page 222: Classical and Statistical Thermodynamics of Solid-Liquid

199

COMPARISON OF THE TWO METHODS FOR ROUTINE DETERMINATION

OF SOLUTION MODEL BINARY PARAMETERS

Comparison of two methods for determining the same information is

always a d i f f i c u l t and subjective endeavor. I t i s made more d i f f i c u l t

in the present case by the total lack of VLE data on systems l ike these

to be used for quantitative comparisons. With that fact in mind, these

two methods wil l be compared based on the limited data presented in th is

paper. A number of subjective observations have been made previously in

the paper concerning the re lative d i f f i c u l t i e s of the experimental

procedures necessary for each method. Based on these considerations

alone, SLE would be the choice by a wide margin. The apparatus required

i s simple and inexpensive and the experimental procedures are routine

and almost foolproof. The VLE experiments, on the other hand, require a

special ized apparatus, d i f f i c u l t analytical procedures ( re la t ive to

SLE), and the experimental procedures are very d i f f i c u l t , with a number

of possible sources for errors.

Ease of experimentation, while desirable , i s not the most important

consideration. Rel iab i l i ty of the results obtained is the most impor­

tant cr i ter ion for judgment of the methods. In general, there are a

number of considerations that would favor VLE over SLE measurements.

These considerations are:

1. The SLE analysis assumes that the solute and solvent are

completely immiscible in the so l id phase. While th is is

a reasonable assumption, i t i s d i f f i c u l t to prove for any

given system.

Page 223: Classical and Statistical Thermodynamics of Solid-Liquid

2 0 0

2. The SLE analysis only y ie ld s values for y2- Y]_ must be

obtained using the Gibbs-Duhem equation. Because of

th i s , i t is not possible to t e s t the data for thermody­

namic consistency.

3. VLE results are obtained isothermally, while SLE results

are obtained over a range of temperatures. Our analysis

of the var iab i l i ty of the resu l ts with changing tempera­

tures is not s ig n i f i c a n t , but i t i s s t i l l l e ss desirable

than isothermal result s .

Figures 3 through 6 give the a c t iv i t y co e f f i c i e n t s predicted by

UNIQUAC for the four systems for which the VLE data were obtained, at

a l l three temperatures. They also show the a c t iv i t y coe f f i c ien ts pre­

dicted using the parameters obtained from the s o lu b i l i t y results for

each of those systems. Examination of Figures 3 through 6 leads to the

fol lowing observations:

1. The VLE results give u n rea l i s t i c predictions for some of

the systems, indicating both pos i t ive and negative devia­

t ions from Raoult's law. This resu lt i s believed to be

an a r t i fa c t of the regression procedure, due to the large

amount of scat ter inherent in the VLE data. Figure 2

shows the experimental a c t iv i t y coe f f i c i e n t s for one of

the systems at 423.15 K as an example of the scatter

obtained.

2. Comparison of f igure 2 to f igure 6 shows that the pre­

diction of the two methods (SLE and VLE) are essent ia l ly

within the estimated errors for the VLE data. This

conclusion holds true for f igures 3 through 5 also.

Page 224: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

1.40-

1.30-

1.20-

1.10J

1.00

0.90-

— G1(S0L)

— G2(180)

— G1(180)

— G2(160)

— G1(160)

G2C150)G1C150)

.........

---------

Tetralin - Biphenyl System0.80-

.00 .10T 1—

.20 .30T 1-----------1“.40 .50 .60

x l

“ 1-----------1---------- 1--------.70 .80 .90 1.00

Figure 6 -3 : Comparisons of Activity CoefficientsCalculated From SLE and VLE Data

Page 225: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

2.00'

1.80-

1.60-

1.40-

1.20-

1.00-

0.80

itii%\ii

it\i\

— 62(501)— G1(S0L)

— 62(180)— G 1(180)

— G2(160)

“ •61(160) ..... 62(150)

- 61(150)

Tetralin ~ Fluorene System 1------1------r-

.00 .10 .20 .30—i-----------

.40 .50xl

t ----- r----- 1----- r.60 .70 .80 .90 1.00

Figure 6 -4 : Comparison of Activity CoefficientsCalculated From SLE and VLE Data roo

ro

Page 226: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

61 (SOL)2.00-

62(180)

61(180)

62(160)

61(160)

62(150)

61(150)

1.20-

0.80-Tetroltn - DIbenzothlophene System

.30 .40“ I--------- 1--------- 1--------- 1--------- i------.50 .60 .70 .80 .90 1.00x1

Figure 6 -5 : Comparisons of Activity CoefficientsCalculated From SLE and VLE Data

oco

Page 227: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

— G2(SOL)

— G1(SOL)

— 62(180) — 61(180)

— 62(180)

— G1(160)

62(150)

61(150)

1.40-

Tetrolin - Dlbenzofuron Systemt----- r i i i i i i i

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00xl

Figure 6 -6 : Comparisons of Activity CoefficientsCalculated From SLE and VLE Data 204

Page 228: Classical and Statistical Thermodynamics of Solid-Liquid

205

3. The SLE a c t i v i t y c o e f f i c i e n t p red ic t ions appear to be

le ss s e n s i t i v e to the experimental da ta , leading to

" b e t t e r behaved" p r ed ic t io n s . This i s due to much small­

er e r r o r bars on the r e s u l t s obta ined from SLE.

With a l l these cons idera t ions to a s s e s s , i t i s d i f f i c u l t to recom­

mend one method over the o ther . SLE appears to be a simple and useful

method fo r ob ta in ing binary parameters and i t s r e s u l t s appear to be a t

l e a s t as accura te as the r e s u l t s from VLE. Fur ther s tudy (and a g rea t

deal more VLE data fo r comparison purposes) i s needed but the i n i t i a l

r e s u l t s a re promising.

Page 229: Classical and Statistical Thermodynamics of Solid-Liquid

2 0 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

S o l id - l iq u id s o l u b i l i t y experiments are simple and r e l i a b l e and

appear to be a t l e a s t as accura te as VLE experiments fo r determination

of the binary in t e r a c t io n parameters needed in the various so lu t ion

models, based on our l imited data. The VLE r e s u l t s , fo r these types of

systems, are very s e n s i t i v e to vapor pressure values t h a t are e i t h e r

unknown or u n re l i ab le . While the re are l im i ta t io n s to the s o l u b i l i t y

method, they do not appear to outweigh the advantages.

Further work is needed to fu l l y evaluate t h i s method. Obviously,

more VLE s tud ies on systems of t h i s type would be useful but an even

b e t t e r approach would be to perform the s o l id - l i q u i d equi l ibrium meas­

urements on a number of systems fo r which the VLE data are both p l e n t i ­

ful and accura te . While a small amount of such data does e x i s t , a

l a rg e r database i s needed. Care would have to be taken to ensure t h a t

the two components were t o t a l l y immiscible in the s o l id phase (form a

p e r f e c t e u t e c t i c ) . The parameters obtained from those s tud ie s could

then be compared to r e l i a b l e VLE r e s u l t s and t h e i r r e l i a b i l i t y accura te ­

ly assessed. Unfor tunate ly, our SLE apparatus i s not designed to oper­

a te under such cond i t ions .

Page 230: Classical and Statistical Thermodynamics of Solid-Liquid

207

LITERATURE CITED

Abrams, D. S. and Prausnitz , J . 'M. , (1975), A.I.Ch.E. J . , 21(1), 116.

Acree, W. E, , (1986), Thermodynamic Proper t ies of Nonelectrolyte Solu­

t ions , Chap. 10, Academic Press, New York.

Barker, J. A., (1953), Aus. J . Chem., 6, 207.

Carruth, G. F. and Kobayashi, R . , (1972), I.E.C. Fund., 11, 509.

Choi, P. and McLaughlin, E . , (1983), I .E.C. Fund., 22, 46.

Choi, P. and McLaughlin, E . , (1983), A.I.Ch.E. J . , 29(1) , 150.

Choi, P. , Williams, C. P. , Buehring, K. G. and McLaughlin, E. , (1985),

J . Chem. Eng. Data, 30, 403.

Chu, J . C. , Wang, S. L. , Levy, S. L. and Paul, R . , (1956), Vapor-Liquid

Equilibrium Data, J . W. Edwards Inc. Ann Arbor, MI.

Coon, J. E. , Sediawan, W. B. , Auwaerter, J . E. and McLaughlin, E . ,

(1988), accepted for pub l ica t ion in J . Solut ion Chem.

Coon, J . E. , Troth, M. and McLaughlin, E. , (1987), J . Chem. Eng. Data,

32, 233.

Dean, A., (1979), Lange's Handbook of Chemistry, 12th E d i t . , McGraw-

H i l l , New York.

Eng, R. and Sandler, S. I . , (1984), J. Chem. Eng. Data, 29, 156.

Finke, H. L . , Messerly, J . F . , Lee, S. H. , Osborn, A. G. and Douslin, D.

R . , (1977), J. Chem. Thermo., 9, 932.

Gmehling, J . , Anderson, T. F. and Prausnitz , J . M., (1978), I.E.C.

Fund., 17(4), 269.

Gmehling, J . , Ohken, V. and Ault, W. , (1980), Vapor-Liquid Equilibrium

Data Collec t ion , Chemistry Data Se r ie s , DECHEMA, Frankfurt , W.

Germany.

Page 231: Classical and Statistical Thermodynamics of Solid-Liquid

Gutsche, B. and Knapp, H . , (1982), Fluid Phase Equi l . , 8, 285.

Hala, E. , Pick, J . , Fr ied, V. and Vilfm, 0 . , (1967), Vapor-Liquid Equi­

l i b r ium , 2nd E d i t . , Par t I I I , Pergamon Press.

Hayden, J . G. and O'Connell, J . P . , (1975), I.E.C. Proc. Des. Dev., 14,

209.

Hildebrand, J . H. , P rausn i tz , J . M. and Scott , R. L. , (1970), Regular

and Related S o lu t io n s , Van-Nostrand-Reinhold, New York.

H ira ta , M. , Ohe, S. and Nagahama, K., (1975), Computer-Aided Data Book

of Vapor-Liquid E q u i l i b r i a , Elsev ie r S c i e n t i f i c .

In te rna t iona l C r i t i c a l Tab les , National Academy of Science, (1926).

Krevor, D. M. and P rausn i tz , J . M. , (1986), J . Chem. Eng. Data, 31, 434.

Lange, N. A. and Forker, G. M. , (1961), Handbook of Chemistry, 10th

E d i t . , McGraw-Hill, New York.

Masuoka, H . , Tawaraya, R. and Sa i to , S . , (1979), J . Chem. Eng. Oapan,

12(4), 257.

McLaughlin, E. and Ubbelohde, A. R . , (1957), Trans. Faraday S o c . , 53,

628.

McLaughlin, E. and Zaina l , H. A., (1959), J . Chem. Soc. , 863.

McLaughlin, E. and Zaina l , H. A., (1960), J . Chem. Soc. , 2485.

McLaughlin, E. and Zaina l , H. A., (1960), J . Chem. Soc. , 3854.

Morimi, J. and Nakanishi, K . , (1977), Fluid Phase E q u i l . , 1, 153.

P rausn i tz , J . M., Anderson, T. F . , Grens, E. A., Eckert , C. A., Hsieh,

R. and O'Connell, J . P . , (1980), Computer Ca lculat ions fo r Multi-

component Vapor-Liquid and Liquid-Liquid E q u i l i b r i a , P r en t i ce -H a l l .

P rausn i tz , J . M., L i c h t e n t h a l e r , R. N. and Azevedo, E. G . , (1986),

Molecular Thermodynamics of Fluid Phase E q u i l i b r i a , Edit . 2, Pren-

t i c e -H a l1.

Page 232: Classical and Statistical Thermodynamics of Solid-Liquid

2 0 9

Rackett , H. G . , (1970), J . Chem. Eng. Data, 15, 514.

Radomska, M. and Radomski, R. , (1980), Thermochimica Acta, 40, 405.

Reid, R. C. , P rausn i tz , J. M. and Sherwood, T. K. , (1977), The Proper­

t i e s of Liquids and Gases, McGraw-Hill, New York.

Renon, H. and P rau sn i tz , J . M., (1963), Chem. Eng. S c i . , 18, 244.

Roman, C. E. , Luther, J . E. and Wetzel , D. M., (1986), Energy Progress,

December.

Seyer and Davenport, (1941), J . Am. Chem. Soc. , 63, 2425.

Sivaraman, A. and Kobayashi, R . , (1982), J . Chem. Eng. Data, 27, 164.

Smith, J . M. and Van Ness, H. C. , (1987), In troduct ion to Chemical Engi­

neer ing Thermodynamics. 4 th E d i t . , McGraw-Hill, New York.

Timmermans, J . , (1950/1965), Physico-chemical Constants of Pure Organic

Compounds, Vol. I and I I , E l sev ie r Publishing Co., New York.

Tsonopoulos, C . , Heidman, J . and Hwang, S. C . , (1986), Thermodynamic and

Transpor t P ro p e r t i e s of Coal L iqu ids , John Wiley and Sons.

Unno, Y. , Hoshino, D . , Nagahama, K. and H ira ta , M. , (1979), J. Chem.

Eng. Japan, 12(2) , 81.

Van Ness, H. C. , Pedersen, F. and Rasmussen, P . , (1978), A.K.Ch.E. J. ,

24, 1055.

Weast, R. C . , (1979), CRC Handbook of Chemistry and P hys ics , CRC Press

I n c . , F lor ida .

Willman, B. and Teja, A. S . , (1985), J . Chem. Eng. Data, 30, 116.

Wilson, G. M., (1964), J . Am. Chem. Soc. , 86, 127.

Wich te r le , I . , Linek, J . and Hala, E . , (1973), Vapor-Liquid Equil ibrium

Bib l iography , E l se v ie r S c i e n t i f i c .

Page 233: Classical and Statistical Thermodynamics of Solid-Liquid

210

ACKNOWLEDGEMENTS

The authors wish to thank the Department of Energy, P i t t sburgh

Energy Technology Center , fo r support of t h i s research through gran t

#DE-FG22-84PC70784-A000 and the National Science Foundation fo r i t s

suppor t through equipment g ran t #CPE83-14224. JEC thanks the Shell

Foundation fo r a fel lowship and JEA thanks the LSU Chem. Eng. Dept, fo r

suppor t .

Page 234: Classical and Statistical Thermodynamics of Solid-Liquid

b . ADDITIONAL VLE AND SLE COMPARISONS

In the paper p re sen te d in t h i s c h a p te r , the a c t i v i t y c o e f f i c i e n t s ob­

t a i n e d from s o l u b i l i t y s tu d i e s have been compared t o those ob ta ined from

VLE d a t a f o r fou r systems. Three o th e r systems were determined exper­

im e n ta l ly in our VLE e f f o r t s . The f i r s t was a t e s t system; benzene- to -

luene . The r e s u l t s f o r t h i s system are given in Appendix 4. This system

was used to compare our experimental methods and r e s u l t s to those of B.

Willman (1983), who used an e a r l i e r ver s ion of the same s t i l l in h is

work. The comparison i s d i scu ssed in Appendix 4. The o th e r two systems

s tu d ie d were decal in -b iphenyl and d e c a l i n - t e t r a l i n . These systems were

not inc luded in the paper because the d e c a l in was a mix ture of the c i s -

and t r a n s - i s o m e r s . Because of t h i s , the r e s u l t s do not r e p r e s e n t a t r u e

b in a ry system and were cons idered u n s u i t a b l e f o r p u b l i c a t i o n . In s p i t e

o f t h e i r being omi tted from the paper , both of th e se systems were ana­

lyzed in the manner d e s c r ib e d and the comparisons to the SLE d a t a were

made. The da ta a re p resen ted in t a b l e s 6-18 and 6-19. The d e t a i l s of the

r e g r e s s i o n s a re given in Appendix 5. The comparisons o f th e p r e d ic te d

a c t i v i t y c o e f f i c i e n t s from VLE and SLE a r e given in f i g u r e s 6-7 and 6-8

and th e exper imenta l a c t i v i t y c o e f f i c i e n t s a re given in f i g u r e 6-8B fo r

th e t e t r a l i n - d e c a l in system a t 423.15 K as an example.

- 2 1 1 -

Page 235: Classical and Statistical Thermodynamics of Solid-Liquid

2 1 2

T a b le 6 -1 8

VLE Data f o r the T e t r a l i n (1 ) - Decalin (2) System

T/K P/mm Hg xl y l

423.15423.15423.15423.15423.15423.15423.15423.15423.15

T/K

433.15433.15433.15433.15433.15433.15433.15433.15433.15

T/K

174.5185.0194.1202.7 207.3221.5230.5238.8245.8

P/mm Hg

236.2249.7260.4271.7278.8295.9307.4317.0325.1

P/mm Hg

0.88090.77180.70090.59760.52310.33100.21690.11510.0131

x l

0.87480.76940.70400.59750.52140.32630.21940.12300.0173

x l

0.80630.67280.58530.47620.40910.24560.15660.08630.0086

y l

0.80980.67820.59020.48330.41630.24390.15440.08050.0130

y l

443.15443.15443.15443.15443.15443.15443.15443.15443.15

317.0 332.9 344.7361.0371.2391.2406.6415.7427.1

0.85040.73960.71470.56920.49610.32140.27540.21310.0589

0.81200.70150.60440.50660.42980.24510.14400.07310.0529

Page 236: Classical and Statistical Thermodynamics of Solid-Liquid

213

T ab le 6 -19

VLE Data fo r the Decalin (1) - Biphenyl (2 ) System

T/K P/mm Hg xl y i

423.15 168.8 0.5135 0.8739423.15 178.7 0.5682 0.8923423.15 183.5 0.6006 0.9006423.15 188.6 0.6228 0.9088423.15 . 194.6 0.6545 0.9171423.15 198.6 0.7318 0.9278423.15 209.1 0.7781 0.9528423.15 212.0 0.8019 0.9566423.15 218.7 0.8665 0.9711423.15 236.6 0.9007 0.9786423.15 244.9 0.9485 0.9898423.15 251.0 0.9888 0.9968

T/K P/mm Hg xl yi

433.15 127.7 0.2068 0.6434433.15 210.8 0.4369 0.8491433.15 217.8 0.4903 0.8526433.15 227.0 0.5285 0.8675433.15 232.5 0.5651 0.8745433.15 244.7 0.5975 0.8946433.15 261.2 0.6608 0.9237433.15 283.0 0.7603 0.9464433.15 314.4 0.9049 0.9792433.15 333.1 0.9888 0.9958

T/K P/mm Hg xl yl

453.15 242.6 0.2612 0.6239453.15 352.8 0.4556 0.8068453.15 367.2 0.4863 0.8413453.15 389.2 0.5597 0.8544453.15 393.2 0.5854 0.8741453.15 414.1 0.6224 0.8790453.15 437.2 0.6866 0.9037453.15 480.2 0.7609 0.9412453.15 531.7 0.9069 0.9773

Page 237: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coe

ffic

ient

s2.80

2.60

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80.00 .10 .20 .30 .40 .50 .60 .70 ,80 .90 1.00

Mole Fraction DecalinFigure 6-7 : Comparison of Activity Coefficients

Obtained by Solubility and VLE Experiments.

SOLUBILITY GAMMA2

SOLUBILITY GAMMA1

TEMP=130 GAMMA2

TEMPs180 GAMMA1

TEMP=160 GAMMA2

- TEMP=160 GAMMA1

TEMP=150 GAMMA2

TEMP=150 GAMMAI

Decaltri (i) — Biphenyl (2) System

Page 238: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coe

ffic

ient

s1.300

1.250

1.200

1.150

1.100

1.050

1.000

0.950

0.900.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

Mole Fraction Tefralin

.... TEMP=180 GAMMA2

.... TEMP=180 GAMMA1

— TEMP=160 GAMMA2 •

— TEMP=160 GAMMA1 *— TEMP=150 GAMMA2 /

— TEMP=150 GAMMA1**« _

....... i» »i i, ■ ;—......... - * ......J..................................

(.... ..... -...........Tetralin (1) - Decalin (2) System.

Figure 6 -8 : Predicted Activity CoefficientsObtained From VLE Experiments.

Page 239: Classical and Statistical Thermodynamics of Solid-Liquid

Log

of A

ctiv

ity

Coe

ffic

ient

20

1 0

00

- 0.10

- 0.300.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0. 8 0.9 1.0

Mole f r a c t i o n T e t r a l i n

Figure 6-8B: Tetralin - Decalin System at 423.15 K.

Page 240: Classical and Statistical Thermodynamics of Solid-Liquid

1, The Biphenyl-Benzene study of Baxendale e t a l . (1951) .

217

The VLE systems were d i f f i c u l t to s tudy and the a n a l y s i s of t h a t da ta

i n d i c a t e d s u b s t a n t i a l e r r o r bar s on the r e s u l t s o b ta in ed . While the da ta

comparisons made do suppor t our conc lus ion ( a t l e a s t q u a l i t a t i v e l y ) ,

they do not supply us with any s o r t o f c r o s s - v e r i f i c a t i o n s ince both

types of d a t a were produced by us . In t h i s s e c t i o n , our va lues f o r the

a c t i v i t y c o e f f i c i e n t s f o r the b iphenyl-benzene system w i l l be compared

to th e VLE r e s u l t s of Baxendale e t a l . (1951) , who found th e v a p o r - l i -

quid e q u i l i b r i a of t h i s system fo r t em pera tu res of 303.15, 313.15,

323.15, 333.15, 343.15, and 353.15 K and used th e s e da ta to c a l c u l a t e

th e a c t i v i t y c o e f f i c i e n t of benzene. They then found the a c t i v i t y c o e f ­

f i c i e n t f o r biphenyl by app ly ing th e Gibbs-Duhem equa t ion to th e se r e ­

s u l t s . This i s e x a c t ly op p o s i te to the procedure used by us to ana lyze

the s o l u b i l i t y d a t a . Thei r da ta was very c a r e f u l l y taken and t h e i r

claimed e r r o r ba rs a re sm al le r than those claimed by us f o r our VLE r e ­

s u l t s . Accepting t h e i r r e s u l t s and e r r o r e s t i m a t e s as c o r r e c t , t h e i r

d a t a should be a s t r i n g e n t t e s t of our a s s e r t i o n t h a t SLE da ta a re as

use fu l f o r d e t e rm in a t io n of b in a ry paramete rs f o r th e s e type s of systems

as a r e VLE d a t a . I t i s a l s o an i n t e r e s t i n g comparison s ince each s e t of

d a t a gave only one of the a c t i v i t y c o e f f i c i e n t s with each method supply­

ing the o p p o s i t e one. Strong agreement between the r e s u l t s would i n d i ­

c a t e t h a t p r e d i c t i o n of only one o f the a c t i v i t y c o e f f i c i e n t s i s not too

severe a r e s t r i c t i o n on the SLE method. I t should be noted here t h a t

t h i s system has been one of th e more d i f f i c u l t ones to analyze f o r us as

well as f o r Choi (1983) .

Page 241: Classical and Statistical Thermodynamics of Solid-Liquid

218

To f a c i l i t a t e the comparison of the da ta and to put i t on the same

fo o t in g as our own VLE work, th e d a t a of Baxendale e t a l . have been r e ­

analyzed us ing the method of maximum l i k e l i h o o d . This has been done to

e l im i n a t e any v a r i a t i o n s in c a l c u l a t e d r e s u l t s t h a t would a r i s e from

d i f f e r i n g cho ices fo r vapor phase n o n i d e a l i t i e s and vapor p r e s s u r e s ,

e t c . . Because vapor phase d a t a was not produced in the Baxendale VLE

study of t h i s system, th e a n a l y s i s has been s i m p l i f i e d to B a rk e r ' s meth­

od. The UNIQUAC equa t ion has been used f o r the comparison ( f i g u r e s 6-9

to 6 -12) . The e f f e c t of the choice of equat ion on the r e s u l t s i s s i g ­

n i f i c a n t and i s d i s c u s s e d f u r t h e r l a t e r in t h i s s e c t i o n .

2. R esu l t s of the Comparison.

The r e s u l t s of the a na ly se s f o r the s ix iso therms a re given in Appen­

d ix 5, along with the da ta used. The UNIQUAC b ina ry parameters ob ta ined

a r e p r e s en te d in Table 6-20. To e l im i n a t e some of the crowding on the

graph showing the c a l c u l a t e d a c t i v i t y c o e f f i c i e n t s , only the da ta fo r

303.15 and 353.15 K have been p r e s e n te d . All of the o th e r tempera tu res

g ive va lues between th e se cu rves . The p r e d i c t i o n s based on the s o l u b i l i ­

t y r e s u l t s have a l s o been shown. These r e s u l t s were c a l c u l a t e d us ing a

te m pera tu re of 323.15 K as t h i s i s in the middle o f th e range of the so­

l u b i l i t y d a t a .

Page 242: Classical and Statistical Thermodynamics of Solid-Liquid

2 1 9

T a b l e 6 - 2 0

Summary of t he UNIQUAC Binary I n t e r a c t i o n Parameters Obtained f o r t he Benzene (1) - Biphenyl (2) Systems.

UNIQUAC Parameter s ( J /mol )

System T/K A12 A21

Benzene (1) - 303.15 - 501 . 39 851.70Biphenyl (2) 313.15 - 305 . 99 587.20

323.15 -179 .51 437.79333.15 - 257 . 38 528.75343.15 - 298 . 19 571.32353.15 -230 .36 489.96

The Benzene-Biphenyl System was only Analyzed Using UNIQUAC,

Page 243: Classical and Statistical Thermodynamics of Solid-Liquid

The comparison based s o l e l y on our s o l u b i l i t y d a t a i s p r e s en t e d in f i g ­

ure 6-9 . As f i g u r e 6-9 shows, t he a c t i v i t y c o e f f i c i e n t s p r e d i c t e d from

s o l u b i l i t y d a t a give u n r e a l i s t i c p r e d i c t i o n s o u t s i d e o f t he range of t he

d a t a . Thi s i s one o f t he few systems s t u d i e d where t h i s e f f e c t i s noted.

The r e s u l t i s s u r p r i s i n g because our exper imenta l v a l u e s f o r a c t i v i t y

c o e f f i c i e n t s appear to agree wel l wi t h t he va l ues given by Baxendale e t

a l . (1951) and a l s o wi th t h e value given by Cla rk and Schmidt (1965) ,

who found t h e n o n i d e a l i t i e s f o r t h i s system us ing Gas-Liquid P a r t i t i o n

Chromatography (GLPC). All o f t h e s e exper imenta l d a t a a r e p r e s e n t e d in

f i g u r e s 6-10 and 6-10B. As t h e s e f i g u r e s show, our exper i ment a l values

a r e very c o n s i s t e n t wi th t he d a t a from t he two o t h e r s ou r c e s . The ques­

t i o n as to why the p r e d i c t i o n s ob t a i ned us ing UNIQUAC a r e u n r e l i a b l e r e ­

l a t i v e t o the r e s u l t s from the VLE can be answered wi th a number of

r e a s on s . P a r t of t h e problem i s t h a t t h i s s o l u t e has t h e lowes t mel t i ng

t e mp e r a t u r e o f any o f t he s o l u t e s s t u d i e d . Thi s i s impor t an t because i t

means t h a t t he t e mpe r a t u r e range over which our d a t a were ob t a i ne d (310

K t o 336 K) i s very small and only cover s s o l u b i l i t i e s from x2 of 0.51

t o x2 of 0 . 9 . Thi s i s t h e r eg ion where t he s o l u t e a c t i v i t y c o e f f i c i e n t

i s t e nd i ng towards u n i t y , e s p e c i a l l y in a r e l a t i v e l y i dea l system such

as t h i s one. I t appea r s t h a t a l a r g e r composi t ion range i s nece ss a r y to

g e t r e a l i s t i c p r e d i c t i o n s than t he one used f o r t h i s system. Note t h a t

t h e problem i s r e l a t e d more t o the compos i t ion range than i t i s t o the

number of exper i ment a l p o i n t s , though i n c r e a s i n g both should he l p . The

same number o f p o i n t s , a t a lower s o l u t e mole f r a c t i o n , would "pin down"

t he a c t i v i t y c o e f f i c i e n t s p r e d i c t e d s ince t hey have to go t o one a t t he

me l t i ng p o i n t of t h e s o l u t e . With t h i s thought in mind, we have t r i e d to

f i n d l i t e r a t u r e d a t a f o r t he s o l u b i l i t y of b iphenyl in benzene a t lower

Page 244: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

1.200'

1.150-j \

1.100-

— Gamma 2 (VLE at 353.15 K)

— Gamma 1 (VLE at 353.15 K)

— Gamma 2 (VLE at 303.15 K)

— Gamma 1 (VLE at 303.15 K)— Gamma 2 (Our SLE)

"S. — Gamma 1 (Our SLE) SX ^

1.050

1.000

0.950Benzene (1) - Biphenyl (2) System

.00t------r.10 .20

x1.70 3 0 .90 1.00

Figure b-9: Comparisons o f A c t i v i t y C o e f f i c i e n t sC a l c u l a t e d From Our SLE Data To the VLE

Data o f Baxendale. Tm=342.0 K.

Page 245: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

1.200

1.150-

1 .1 0 0 - a e

1.050-

1.000- -

0.950+-.00

Figure b

■ Gamma 2 (Expt, Our SLE)

O Expt, Baxendala SLE

• Gamma 1 (Expt, Baxendale VLE)

JK Gamma 1 (Expt, dark and Schmidt) /

— Gamma 2 (VLE at 353.15 K) /

— Gamma 1 (VLE at 353.15 K) /

Bmmm (1) - Bfehesyl tt) Sytien— 1-------- 1-------- 1--------1--------1--------1------- 1-------- r ....... i-------

.10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

-10: Experimental A c t iv i ty C oef f ic ien ts Comparison, Dashed Lines are P red ic ted From Baxendale VLE. 222

Page 246: Classical and Statistical Thermodynamics of Solid-Liquid

1.200

1.150^to c

2 1.1004 »*-e o

o

•JM.050- 2*5 <

1.000-

0.950-

■ Gamma 2 (Expt, Our SLE)

O Expt. Baxendale SLE

• Gamma 1 (Expt, Baxendale VLE)

3K Gamma 1 (Expt, Clark and Schmidt)

— Gamma 2 (Our SLE)

— Gamma 1 (Our SLE)

\ 8I

BL. — —MVaVvnTa ••#«•#***»** •

Benzsns (1) - Biphenyl (2) System \.00

- r -.10

T ".20

T “.30

" r.40

i.50x1

■.60

I.70

i.80 .90 1.00

Figure b~10b: Exper imenta l A c t i v i t y C o e f f i c i e n t s Comparison,Dashed Lines a r e P r e d i c t e d Values From Our SLE.

Page 247: Classical and Statistical Thermodynamics of Solid-Liquid

224

t e mper a t u r e s . The r e s u l t of Baxendale e t a l . f o r the s o l u b i l i t y a t

303.15 K has been inc luded in our d a t a s e t . The system has been r eana­

lyzed and the r e s u l t s of t h i s r e a n a l y s i s a r e given in f i g u r e 6-11.

The add i t i on of a f i f t h da t a p o i n t a t a lower s o l u t e mole f r a c t i o n

causes a s u b s t a n t i a l improvement t o t he r e s u l t s even though the composi­

t i on range has only been extended t o x2 equal to 0.4324. Lower values

than t h i s would be b e t t e r but i t i s d i f f i c u l t to ob t a in good r e s u l t s a t

lower t empera t ures than t h i s due to t he l i m i t a t i o n s of our equipment.

Even though the improvement t o t he r e s u l t s was adequate f o r t h i s value

of the mel t i ng t empera t u r e , we dec ided to do an i n t e n s i v e i n v e s t i g a t i o n

o f t he reasons fo r t he s e n s i t i v i t y of t he p r e d i c t i o n s o th e r than the

small composi t ion range a l r e a d y d i s c u s s e d . The most l i k e l y source of e r ­

r o r s i s in t he d a t a a n a l y s i s , not in our exper imental r e s u l t s , as the

l i k e l y exper imental e r r o r s have only a minor e f f e c t on the a c t i v i t y co­

e f f i c i e n t s ob t a i ned . The most s i g n i f i c a n t parameters in t he da t a ana l y ­

s i s a r e the hea t of fus ion o f t he s o l u t e and the s o l u t e mel t ing

t e mper a t u r e . D i f f e r e n t va l ues f o r t h e s e parameters give s u b s t a n t i a l l y

d i f f e r e n t va lues f o r t he s o l u t e a c t i v i t y c o e f f i c i e n t s because they de­

t e rmine the l o c a t i o n of the ideal s o l u b i l i t y curve . In searching the

l i t e r a t u r e , Choi (1983) found s u b s t a n t i a l d i f f e r e n c e s in t he l i t e r a t u r e

va l ues f o r t he se two parameters f o r b iphenyl . The reason f o r t he d i s ­

c r e pa nc i e s i s not c l e a r . Because Baxendale e t a l . recommended using the

value of Spaght e t a l . (1932) f o r t he hea t o f f u s io n , t h i s value has

been used t o make the compar ison. The value given f o r t he mel t ing tem­

p e r a t u r e by Spaght e t a l . i s 341.3 K. The value from Reid e t a l . (1977)

Page 248: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

1.200

1.150-

1.100-

1.050-

1.000

— Gamma 2 (VLEal 353.15 K)

•••■■ Gamma 1 (VIE at 353.15 K)

— Gamma 2 (VLE at 303.15 K)

— Gamma 1 (VLE at 303.15 K)

— Gamma 2 (AH SLE Data)

X — Gemma 1 (Ml SLE Data) /

Benzene (1) - Biphenyl (2) System0.950 T -----------1--------

.70 .80 .90 1.00— i------1----- 1-------1-----1------r~

.00 .10 .20 .30 .40 .50 .60x1

Figure b - l l s Comparisons o f A c t i v i t y C o e f f i c i e n t sC a l c u l a t e d From All SLE Data To th e VLE

Data o f Baxendale. Tms 3 4 2 .0 K. nono

Page 249: Classical and Statistical Thermodynamics of Solid-Liquid

i s 342.4 K and the va lue from the CRC handbook of Chemist ry and Physics

(1979) i s 342.6 K. These a r e s u b s t a n t i a l l y d i f f e r e n t v a l ues f o r a param­

e t e r t h a t should be well known. In f i g u r e 6-12, t he p r e d i c t e d a c t i v i t y

c o e f f i c i e n t s ob t a i ne d us ing d i f f e r e n t v a l u e s from 341.8 K to 342.2 K

have been shown f o r a l l of t he SLE d a t a . The e f f e c t i s more pronounced

t han t h i s f o r va l ues o u t s i d e of t h i s r ange . As f i g u r e s 6-11 and 6-12

show, t h e p r e d i c t i o n s a r e b e s t behaved f o r a a me l t i ng t empera t ur e of

342.0 K. Thi s mel t i ng t e m p e r a t u r e , when combined wi th t he he a t of f us i on

o f Spaght e t a l . , g ives wel l behaved p r e d i c t i o n s f o r t he a c t i v i t y c o e f ­

f i c i e n t s over t he e n t i r e composi t ion range when a l l of t h e SLE d a t a a r e

used. These va l ues a l so agree well wi th t he va l ues ob t a i ne d by Baxendale

e t a l . us ing VLE.

While t he above s tudy appea r s t o i n d i c a t e t h a t t he p r e d i c t i o n s a r e

u n r e l i a b l e , t h i s i s not n e c e s s a r i l y t he cas e . The me l t i ng t empera t u r e

t h a t gave the b e s t p r e d i c t i o n s i s very c l o s e t o t he observed me l t i ng

p o i n t f o r t he biphenyl used. I t i s a l s o r e a s ona b l e t o ana l yze t he d a t a

in a manner t h a t f o r c e s t he s o l u t e a c t i v i t y c o e f f i c i e n t t o converge

smoothly t o one as t he s o l u t e mole f r a c t i o n goes t o one. Thi s va l ue f o r

t he me l t i ng t e mper a t u r e causes t h i s t o happen. The e f f e c t o f t he h e a t of

f u s io n d a t a i s to change t h e magni tude o f t h e a c t i v i t y c o e f f i c i e n t s but

t hey remain r ea sonab l y well behaved r e g a r d l e s s o f t he va l ue chosen. I t

appea r s t h a t , f o r t h e s e r ea s on s , t h e me l t i ng t e mpe r a t u r e used should be

a d j u s t e d t o f o r c e t he a c t i v i t y c o e f f i c i e n t s t o one. Thi s i s l e s s

Page 250: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coef

ficie

nts

1.200

1.150-

1.100-

.050

1.000

0.950.00 .10 iO .30 .40 JO .60 .70 .80 .90 1.00

x lFigure b-12s Comparisons of A ct iv i ty C oef f ic ien ts

Calculated From All SLE Data With Various Values of the Melting Temperature.

Gamma 2, Tm-341.8 K Gamma 1, Tm-341.8 K Gamma 2. Tm-342.0 K

Gamma 1. Tm«342.0 K

Gamma 2. Tm-342.2 K

Gamma 1, Tm-342.2 K

Bsnzans (1) - Blphtnyl (2) System — i------1 r 1------1------1----- 1------1------r

Page 251: Classical and Statistical Thermodynamics of Solid-Liquid

228

impor t an t i f lower s o l u t e mole f r a c t i o n d a t a p o i n t s a r e a v a i l a b l e but i t

i s s t i l l t he optimum procedure t o ob t a i n wel l behaved r e s u l t s . The

changes being d i s cu s s e d make only minor changes in t he exper imental ac­

t i v i t y c o e f f i c i e n t s in t he range of t he d a t a bu t t h e s e e f f e c t s cause

major d i f f e r e n c e s a t o th e r compos i t i ons due t o t he s e n s i t i v i t y of the

f i t t i n g program and t h e f l e x i b i l i t y o b t a i n e d wi th a two-parameter

equa t ion l i k e UNIQUAC.

Since t he above d i s c u s s i o n i s q u i t e n e g a t i v e , i t should be noted a t

t h i s j u n c t i o n t h a t t he s e n s i t i v i t y shown here i s common f o r VLE r e s u l t s

as w e l l . Thi s behav i o r has been noted by a number of r e s e a r c h e r s when

ana l yz i ng systems t h a t were n e a r l y i d e a l . For t h e s e sys tems , t h e se r e ­

s e a r ch e r s have recommended the use of s impler models l i k e extended regu­

l a r s o l u t i o n t he o r y t h a t a r e not s u b j e c t to t h i s problem ne a r l y as much

as t he more complex models l i k e UNIQUAC. The above d i s c u s s i o n should not

be t aken as an i nd i c t me n t of t he method bu t r a t h e r should be viewed as a

warning a g a i n s t f i t t i n g too many pa rameter s wi th too l i t t l e d a t a . The

d e t e r mi n a t i o n of what c o n s t i t u t e s enough d a t a i s a very s u b j e c t i v e e x e r ­

c i s e and f a r too many systems have been ana lyzed t o a t t e mp t t h i s kind of

d e t a i l e d i n v e s t i g a t i o n of each one. This one was chosen because t he l i t ­

e r a t u r e VLE d a t a were a v a i l a b l e and because t h e c h a r a c t e r i s t i c s o f t he

system ( low me l t i ng t e mp er a t u r e , c o n t r o v e r s i a l h ea t of f us i on v a l u e s ,

and n e a r l y i de a l s o l u b i l i t i e s ) made i t a very l i k e l y c a n d i d a t e f o r t h e se

d i f f i c u l t i e s . Choi (1983) a l s o d i s c u s s e d the a n a l y s i s o f t h i s system and

t he problems he encoun t e r ed though h i s a n a l y s i s was not a s e x t e n s i v e as

t he a n a l y s i s done here .

Page 252: Classical and Statistical Thermodynamics of Solid-Liquid

The d i s cu s s i o n above should i n d i c a t e t o the r eade r inexper i enced in

t h i s f i e l d the kinds of d i f f i c u l t i e s encountered when analyz ing thermo­

dynamic d a t a . The da t a a r e r a r e l y as wel l -behaved as t he systems en­

count e red in thermodynamics t e x t books , where smooth da t a a r e chosen to

i l l u s t r a t e t he concept s being d i s cu s s ed . In an a t t empt to determine how

our d a t a compared to t hose of o t h e r r e s e a r c h e r s in t he f i e l d , a number

of systems were chosen from the DECHEMA (Gmehling e t a l . (1980)) VLE l i ­

b ra r y and analyzed in the same manner as our d a t a . All of the systems

chosen had passed the thermodynamic con s i s t e n c y t e s t s , as i s the case

wi th our da t a . When analyzed in t he manner d i s cus sed above, the l i t e r a ­

t u r e dat a showed the same kind of s c a t t e r as our r e s u l t s . This i n d i c a t e s

t h a t our da t a i s of normal q u a l i t y and accuracy and t h a t t he d i f f i c u l ­

t i e s encountered in ana l yz ing and comparing our da t a to the SLE r e s u l t s

i s t y p i c a l . Recent d i s c u s s i o n s on t h i s t o p i c wi th Dr. Robert Robinson,

J r . of Oklahoma S t a t e u n i v e r s i t y i n d i c a t e t h a t he has encountered many

of t he same exper imental d i f f i c u l t i e s as we encountered and t h a t he ob­

t a i n e d t he same s o r t of s c a t t e r and s e n s i t i v i t y in h i s ana l yses of those

r e s u l t s as we did in ou r s . Dr. Robinson ' s work i s VLE on systems s imi ­

l a r to the ones s t ud i e d he r e , us ing a dynamic s t i l l of h i s own des ign .

3. E f f ec t on the Comparison of t he So l u t i on Model Used.

To v e r i f y our a s s e r t i o n t h a t p a r t o f t he s e n s i t i v i t y obt a ined in the

a n a l y s i s of t he system was due to our use o f a two parameter s o l u t i on

model (UNIQUAC), t he r e s u l t s were r eana lyzed using a one parameter model

(Extended Regular So l u t i on Theory) . The p r e d i c t e d va l ues from r eg r e s s i on

of Baxenda le ' s VLE da t a a r e shown in f i g u r e 6-13, along wi th the

Page 253: Classical and Statistical Thermodynamics of Solid-Liquid

Activ

ity

Coe

ffic

ient

s1.300-

Solid line Is SLE with Tm = 342.0 K.; smothers are VLE and Different values of Tm.

N

1.250-

1.200

1.150-

1.100-

1.050-

1.000

0.950- Benzene (1) - Biphenyl (2) System.

0.900-|-------1-------1-------1-------1-------1-------1-------1-------1------ 1—.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

X l

Figure 6-13: Comparison of VLE and SLE Predicted Activity Coefficients Using Extended Regular Solution Theory

Page 254: Classical and Statistical Thermodynamics of Solid-Liquid

231

p r e d i c t e d va l ues obt a ined using the s o l u b i l i t y d a t a . The s o l i d l i n e i s

p r ed i c t e d from SLE wi th the i dea l curve obta ined using Tm = 342.0 K and

the hea t of f us ion value of Spaght e t a l . (1932) . The o th e r p r ed i c t e d

curves were based on d i f f e r e n t va l ues f o r the mel t i ng t empera t u r e . Un­

l i k e the UNIQUAC p r e d i c t i o n s given in f i g u r e s 6-10 and 6-11, t he se p red­

i c t i o n s are a l l r easonab l e and well behaved. This i s s t r ong suppor t f o r

us ing a one parameter model when d ea l i n g wi th ne a r l y i dea l systems.

This po i n t has been made in t he p a s t by o th e r r e s e a r c h e r s when d i s c u s s ­

ing VLE r e s u l t s and t h e i r a n a l y s i s ( Fa b r i e s and Renon (1975) , Willman

(1983) ) .

/

Page 255: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 6 , SECTION B.

Barker , J . A . , Aust . J . Chem., ( 1953) , 6, 207.

Baxendale , J . H . , Enustun, B.V. and S t e r n , J . , P h i l . Trans . Roy. Soc . , ( 1951) , 243, 169.

Choi, P . B. , Ph. D. D i s s e r t a t i o n , ( 1983) , Loui s i ana S t a t e U n i v e r s i t y .

Cla rk , R.K. and Schmidt , H.H., J . Phys. Chem., ( 1965) , 69, 3682.

F ab r i e s , J . and Renon, H. , A. I . Ch . E . J . , ( 1975) , 21, 735.

Gmehling, J . , Onken, U. and A r l t , W., Va p o r - l i q u i d E q u i l i b r i a Data Col­l e c t i o n , Chemis t ry Data S e r i e s , DECHEMA: F r a n k f u r t , (1980) .

Reid, R.C. , P r a u s n i t z , J . M. , and Sherwood, T.K. , ( 1977) , The P r o p e r t i e s of Liquids and G a s es , 3 rd . Ed. , McGraw-Hil l , New York.

Robinson, R. , (1988) , P r i v a t e Communication.

Spaght , M.E. , Thomas, S . B . , and Parks , G . S . , J . Phys. Chem., ( 1932) , 36, 882.

Weast , R.C. , The CRC Handbook of Chemis t ry and Phys i cs , ( 1979) , CRC Pres s I n c . , F l o r i d a . York.

Wil lman, B. , M a s t e r ' s T h e s i s , (1983) , Georgia Tech. U n i v e r s i t y .

- 232 -

Page 256: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 7

INVESTIGATION OF EXPERIMENTAL ACCURACY USING THE

SUCROSE-WATER SYSTEM AS A STANDARD FOR COMPARISON

a. Discuss ion of t he Sucrose-Water System

Examinat ion of the l i t e r a t u r e concerning thermodynamic p r o p e r t i e s

l eads t o an u n l i ke l y conc l us i on ; everyone has ob t a i ned t e mpera t u r es ac­

c u ra t e to 0.1 K or l e s s and p r e s s u r es a c c u r a t e t o 0.1 mm Hg or l e s s .

Cons ider ing the l a rge amount of thermodynamic da t a t h a t f a i l s to pass

the s t andard t e s t s f o r thermodynamic c ons i s t e ncy , t h i s extreme accuracy

i s d i f f i c u l t t o accep t . In an e f f o r t t o determine the accuracy of our

s o l u b i l i t y exper iment s , the s o l u b i l i t y of sucrose in water has been de­

t e rmined by the same methods as used f o r the o th e r systems. This system

was chosen as our s t andard f o r a number o f reasons . These are :

i . The s o l u b i l i t y of sucrose in water has been

exper i men t a l l y determined by a dozen d i f f e r e n t

r e s e a r c h e r s .

i i . These exper imente r s used d i f f e r e n t methods than

us and than each o th e r to ob t a i n t he s o l u b i l i t y

c u r v e .

i i i . The i r methods were des igned f o r l e v e l s of

p r ec i s i o n t h a t a r e h ighe r than our method.

- 233 -

Page 257: Classical and Statistical Thermodynamics of Solid-Liquid

234

i v . The system i s a d i f f i c u l t system t o do us ing

our method because the l i q u i d s o l u t i o n i s very

v i s c o u s (which makes mixing a problem) and

because t he r e f r a c t i v e i n d i c e s o f sucrose and

w a t e r a r e very c l o s e t o g e t h e r (which makes

v i s u a l d e t e r mi n a t i o n of t he e ndpo i n t more

d i f f i c u l t than usua l .

The f a c t o r s above make t h i s system both a severe t e s t of our e xpe r ­

imental method and a w e l l - d e f i n e d s t a n d a r d of accuracy .

b. Ana l ys i s of t h e Res u l t s Using Our Methods

The r e s u l t s o f our s o l u b i l i t y exper i ment s a r e g iven in F igure 7-1.

The p o i n t s a r e o u r r e s u l t s and the l i n e i s t he f i t t e d polynomial given

in Kel ly and Keng (1975) t o r e p r e s e n t t he d a t a of Kel l y (1958) . Exam­

i n a t i o n o f t h i s f i g u r e i n d i c a t e s t h a t s uc r os e - w a t e r s o l u t i o n s a r e h i g h l y

n o n i d e a l , e x h i b i t i n g l a rge neg a t i v e d e v i a t i o n s from i d e a l i t y . Unfo r tu ­

n a t e l y , suc ros e decomposes a t a t e mpera t u r e below i t s me l t i ng p o i n t so

t h e me l t i ng p o i n t and heat o f fus ion a r e unknown. Thi s means t h a t our

normal d a t a a n a l y s i s cannot be done to de t e r mi ne the exper i ment a l a c t i v ­

i t y c o e f f i c i e n t s f o r t h i s system. We have, t h e r e f o r e , done what o t h e r s

have done, which i s t o use t h e s o l u b i l i t y r e s u l t s t o e s t i m a t e both t h e

me l t i ng t e mp e r a t u r e and the h ea t o f f u s i o n . These v a l ue s were then used

wi th our da t a and the da t a o f o t h e r s t o show t he e f f e c t of t e mper a t u r e

e r r o r s on t he exper i men t a l r e s u l t s .

Page 258: Classical and Statistical Thermodynamics of Solid-Liquid

Log

of Su

cros

e Mo

le Fr

actio

n0.00

— Estimated Ideal Solubility

■ Our Data

— Kelly (1958)- 1.00

1.50

2.00

-2.501.000 1.100 1.200 1.300 1.400 1.500 1.600

Reduced Inverse Temperature (Tm/T)

Figure 7 -1 : Sucrose Solubility In Water

Page 259: Classical and Statistical Thermodynamics of Solid-Liquid

236

Before d i s c u s s i n g those r e s u l t s , t h e accuracy of our t e mper a t u r e mea­

surement s w i l l be d i s c u s s e d . F igure 7-1 i s a very poor i n d i c a t o r o f ac­

curacy so t h i s same i n fo rmat i on has been redrawn in f i g u r e 7 -2 , p l o t t i n g

t h e d i f f e r e n c e between our s o l u b i l i t y t e mp e r a t u r e s and those of two

o t h e r r e s e a r c h e r s ve r sus t he weight p e r c e n t suc r ose . Weight p e r c e n t s

were used s imply because a l l of t he l i t e r a t u r e d a t a were a l r e a d y in t h i s

form. Also p r e s e n t e d , in f i g u r e 7 - 3 , a r e t he p e r c e n t d e v i a t i o n s in s o l ­

u b i l i t y of our d a t a compared to t en o th e r r e s e a r c h e r s a t t he same tem­

p e r a t u r e s . F igure 7-2 shows a number o f i n t e r e s t i n g phenomena. I t

should be noted t h a t a l l of t he r e s e a r c h e r s used f o r compar i sons e s t i ­

mated t h e i r e r r o r s to be 0.1 K or l e s s . In s p i t e o f t h a t , t h e i r e s t i ­

mates o f t he s o l u b i l i t y curve d i f f e r by as much as 1 K a t some

c o n c e n t r a t i o n s . The s o l i d l i n e in f i g u r e 7-2 i s our e s t i m a t e of t he ac ­

t u a l s o l u b i l i t y curve and s imply r e p r e s e n t s t h e genera l consensus o f t he

l i t e r a t u r e v a l ue s . The d e v i a t i o n s of t h i s curve from our d a t a appea r to

be as much as 3 K a t some c o n c e n t r a t i o n s , wi th an average d e v i a t i o n of

appr ox i ma t e l y 1 K over t he e n t i r e t e mpe r a t u r e r ange . As f i g u r e 7-2

shows, our t e mper a t u r e p r e d i c t i o n s t e n d t o be h i g he r than the l i k e l y

t r u e v a l ue . We b e l i e v e t h a t t h i s i s a p r e t t y good i n d i c a t o r of t he ac­

t u a l "wor s t case" accuracy of our exper i ment a l method. The r e a d e r wi l l

note t h a t t h i s i s l e s s a c c u r a t e than c l a imed in t h e p u b l i c a t i o n s p r e ­

se n t e d in t h i s work. They w i l l a l s o note t h a t t h e c l a imed accuracy has

been d e c r e a s i n g as more was l e a r n e d about t h e p o s s i b l e sou rces o f e r r o r

in t he method. I t should be noted t h a t i t i s very d i f f i c u l t t o access

t h e a c t u a l s i z e of e r r o r s l i k e t h e s e . The above compar ison i s a r e c e n t

i de a and t h e r e s u l t s o b t a i n e d i n d i c a t e t h a t i t i s very u s e f u l . To the

b e s t of my knowledge, i t i s t h e f i r s t t ime t h a t a compar ison o f t h i s

Page 260: Classical and Statistical Thermodynamics of Solid-Liquid

(T Lit

. -

T Co

on)

/ K

3

2

1

0

-1

2

3

4.660 .680 .700 .720 .740 .760 .780 .800 .820 .840

Weight Fraction Sucrose

Estimated True Saturation Temperature

Kelly (1958)

Charles (1960)

Figure 7 -2 : Deviations Between Our Saturation Temperatures and Literature Values. r-o

to*-4

Page 261: Classical and Statistical Thermodynamics of Solid-Liquid

(W Lit

. -

W Co

on)

/ W

Coon

x

100.

0

0.60-

0.40-

0.20J

0.60-

- 1.00-

— Estimated True Solubility

+ Smelfk et al. (1970)

A Vavrlnecz (1959)

• Charles (1960)

B Kelly (1958)T T T TT T TT T T T ■ f T T -r—r

20 30 40 50 60 70 80 90 100 110Temperature (Deg. C)

Figure 7 -3 : Percent Deviations Between Our Sucrose Solubilities and Literature Values. rou>CO

Page 262: Classical and Statistical Thermodynamics of Solid-Liquid

239

kind has been used as a method f o r o b j e c t i v e l y a s s e s s i n g exper imenta l

e r r o r in t h i s kind of exper i ment .

In s p i t e of the l eve l of e r r o r shown in f i g u r e s 7-2 and 7-3 , t he e f ­

f e c t on t h e exper i ment a l a c t i v i t y c o e f f i c i e n t s ob t a i n e d from t he d a t a i s

minimal . F igure 7-4 i s a p l o t of t he log o f s o l u t e a c t i v i t y c o e f f i c i e n t

v e r s u s mole f r a c t i o n f o r our d a t a and f o r t he d a t a of Kel ly (1958) and

Char l e s ( 1960) . The e x t r a p o l a t e d me l t i ng po i n t given by Kel ly and the

h e a t of f u s io n o b t a i n e d by a n a l y s i s of h i s d a t a have been used. As f i g ­

ure 7-4 shows, the e f f e c t of t he t e mper a t u r e e r r o r s shown in f i g u r e 7-2

on the e x p e r i m e n t a l l y ob t a i ned a c t i v i t y c o e f f i c i e n t i s minimal . Thi s i s

one f e a t u r e t h a t has l ed us t o b e l i e v e t h a t SLE can be a r e l i a b l e source

f o r a c t i v i t y c o e f f i c i e n t da t a f o r some d i f f i c u l t t ype s o f systems, l i k e

t h e ones be ing co n s i d e r ed in our work.

I t i s d i f f i c u l t t o a s s e s s t he source of t he e r r o r s i n d i c a t e d by the

s u c r o s e - w a t e r s o l u b i l i t y r e s u l t s . The thermometers used a r e p r e c i s i o n ,

t o t a l immersion thermometers t h a t can be read t o 0 .1 K. While they a r e

not t r a c e a b l e t o N. B. S . , t hey a r e t he nex t l eve l o f q u a l i t y and we ex­

p e c t them t o be a c c u r a t e to 0 . 1 K i f used as de s i gned . One source of

e r r o r a r i s e s from our i n a b i l i t y , given our exper i ment a l c o n f i g u r a t i o n ,

t o use them as i n t ende d . Because t he thermometers cou l d not be immersed

i n t o our c o n s t a n t t e mpe r a t u r e ba t hs to t h e depth r e q u i r e d , i t was neces­

s a ry to app l y a stem c o r r e c t i o n t o t he observed t e m p e r a t u r e s . The s i z e

o f t h i s stem c o r r e c t i o n v a r i e s wi th t e mper a t u r e and r eac hes a maximum of

appr ox i ma t e l y 0 . 4 K a t 373.15 K. Accept ing t he i n e v i t a b i l i t y o f i n t r o ­

ducing a d d i t i o n a l e r r o r s i n t o t he measurement when app l y i ng t h i s

Page 263: Classical and Statistical Thermodynamics of Solid-Liquid

Log

of Su

cros

e A

ctiv

ity

Coe

ffic

ient

- 2 -

- b -

- 8 -

♦ C h a r le s (I960)

® Ke l l y (1958)

■ Coon

# * *

X840 .080 .120 .180

Mole Fraction Sucrose. 200 .240

Figure 7-4: Sucrose Activi ty Coeff icient Vs. Sucrose Mole Fraction for Saturated Sucrose-Water Solutions.

no-F*CD

Page 264: Classical and Statistical Thermodynamics of Solid-Liquid

c o r r e c t i o n , our e s t i ma t e of t he e r r o r s i n c r e a s e s to 0 .3 K. An a d d i ­

t i o n a l source of e r r o r i s the inhomogenei ty of t empera t u r es wi t h i n the

c o n s t a n t t empera t ure ba th . The bath h ea t e r s a re l o c a t ed a t the bottom of

the ba ths and give r i s e t o convec t ive c u r r e n t s upward through the ba t h .

The ba t hs a r e con t i nuous l y s t i r r e d but t h e r e i s s t i l l t he p o t e n t i a l f o r

some t empera t ure g r a d i e n t s t o e x i s t w i t h i n t he ba t h . The thermometers

a r e l o c a t ed near the edge and top of the t empera t u r e ba t hs and could

t h e r e f o r e d i f f e r somewhat from the bulk o f t he ba th f l u i d . Inc luding

t h i s source of e r r o r might i nc r e a s e our e s t i m a t e o f t he e r r o r s t o 0.5 K.

Compounding t h i s problem i s t he p o s s i b i l i t y of t empera t ur e g r a d i e n t s

wi th i n t he sample tubes themse lves . The tubes a r e made from pyrex g l a s s

and con t a i n an i n e r t gas as wel l as the sample being s t u d i e d . While i t

seems q u i t e u n l i ke l y t h a t thermal e q u i l i b r i u m i s not achi eved wi th i n t he

t ube s , the p o s s i b i l i t y cannot be comple te ly ru l ed out as d i r e c t measure­

ments wi th i n the tubes a re not p o s s i b l e . The c o n t r i b u t i o n to t he e r r o r s

from t h i s source should be n e g l i g i b l e f o r most of the systems s t ud i ed

( s uc r os e - wa t e r being t he most l i k e l y exce p t i on ) but r a i s e our e r r o r e s ­

t i ma t e to 1.0 K to be c o n se r va t i v e .

I t i s c l e a r from the d i s c u s s i o n above t h a t none of our l i k e l y sources

of e r r o r in t empera t ur e measurements can exp l a i n t he d e v i a t i o n s of 3 K

t h a t have been observed in t he s o l u b i l i t y work. A small p o r t i o n of t h a t

e r r o r could be a t t r i b u t e d t o e r r o r s in de t e r mi n a t i o n of mole f r a c t i o n s

f o r the samples but , con s i d e r i ng t he accuracy o f the a n a l y t i c a l balance

used f o r weighing of t he samples, our e s t i m a t e s f o r the e r r o r s in mole

f r a c t i o n are very smal l . The only l o g i ca l answer f o r t he source of the

e r r o r s observed i s human e r r o r in v i s u a l l y de t e rmin i ng t he endpoint tern-

Page 265: Classical and Statistical Thermodynamics of Solid-Liquid

242

p e r a t u r e s . I t i s d i f f i c u l t t o b e l i e v e t h a t e r r o r s as l a r g e as t he ones

we ' r e r e p o r t i n g could r e s u l t in t h i s manner, bu t no o t h e r l o g i c a l ex p l a ­

na t i o n p r e s e n t s i t s e l f .

c . Conclus ions About Our Exper imental Accuracy

When t he r e s u l t s f o r t h e d i f f e r e n t i n v e s t i g a t o r s of t he s uc r os e - w a t e r

s o l u b i l i t i e s a r e t aken i n t o c o n s i d e r a t i o n , our p o s s i b l e e r r o r s d o n ' t

seem unreasonab l e . As noted above, t hos e i n v e s t i g a t i o n s used much more

s o p h i s t i c a t e d exper i ment a l methods than ours and they s t i l l d i s ag r e e

wi th each o t h e r by as much as 1 K a t some t e mp er a t u r e s . Taking t h i s as

an i n d i c a t o r of t h e b e s t p r e c i s i o n and accuracy t h a t i s l i k e l y t o be a t ­

t a i n a b l e , our r e s u l t s compare r ea sonab l y w e l l . Based on t h i s a n a l y s i s ,

our e s t i m a t e s of t h e e r r o r ba r s on our r e s u l t s has i n c r e a s e d b u t t he r e ­

s u l t s s t i l l i n d i c a t e an accuracy l e ve l t h a t i s s u i t a b l e f o r . the purpose

f o r which they a r e being used.

d. Comparison t o Theory

Since t h e s u c r o s e - w a t e r d a t a were produced f o r compar ison to t he

o t h e r i n v e s t i g a t o r s , we dec i ded t o use t h a t d a t a (and t h e i r s ) t o p r e d i c t

t h e s o l u t e a c t i v i t y c o e f f i c i e n t f o r t h e system. That i n f o r ma t i o n was

p r e s e n t e d in Figure 7 -4 . In Figure 7 -5 , t he p r e d i c t e d v a l u e s , based on

t h e Flory-Huggins s o l u t i o n t he o r y (Chi = 0 . 0 ) have been shown. As can be

seen in Figure 7 -5 , t he n e g a t i ve d e v i a t i o n s from i d e a l i t y a r e much

g r e a t e r than would be expec t ed based only on t h e s i z e d i f f e r e n c e of t he

mol ecu l e s . This could p o s s i b l y be e x p l a i n e d by a r a t h e r s t r ong p o la r

Page 266: Classical and Statistical Thermodynamics of Solid-Liquid

Log

of Su

cros

e A

ctiv

ity

Coe

ffic

ien

tChi

— Chi * - 1 7 .5

— Chi* 8 .0

♦ C h ar le3 (1960)

• Ke l l y (1958)

■ Coon

1 1 1 X200040 120 240

Hole Fract ion Sucrose

Figure 7-5: P red ic ted A c t iv i ty C o e f f i c ie n t Vs. Sucrose MoleFrac t ion for S a tu ra ted Sucrose-Uater Solu t ions .

ro

Page 267: Classical and Statistical Thermodynamics of Solid-Liquid

a t t r a c t i o n between t he wa t e r molecules and t he sucrose molecules . Since

s uc r os e c o n t a i n s a l a r g e number o f hydroxyl g roups , t h i s i s probably not

t oo s u r p r i s i n g . To t r y t o ob t a i n a b e t t e r f i t t o t he exper imenta l d a t a ,

a r e g u l a r s o l u t i o n term ( 2 - s u f f i x Margules) in t e rms of volume f r a c t i o n

was added t o t he Flory-Huggins t h e o r y , as d i s c u s s e d in P r a u s n i t z e t a l .

( 1986) . This improved t he f i t immensely, though a va l ue f o r t he Guggen­

heim i n t e r a c t i o n term (w/kT) of approx i ma t e l y -20 had t o be used t o ob­

t a i n good agreement . Thi s i s an ex t remel y l a r g e va l ue and i n d i c a t e s t h a t

t h e p o l a r a t t r a c t i o n i s ex t remel y s t r o n g , probab ly forming hydra t ed com­

p l e x e s in t he l i q u i d phase . The f i t t o t he d a t a was improved f u r t h e r by

making the Guggenheim i n t e r a c t i o n par amete r a f u n c t i on o f t e mper a t u r e .

S ince no obvious f u n c t i o n a l i t y i s known f o r t h i s dependence, a simple

l i n e a r form was used. The f i t was improved by us ing two a d j u s t a b l e pa­

r ame t e r s but t he shape of t he curve was s t i l l not c o r r e c t l y p r e d i c t e d .

While a g r e a t deal of i n s i g h t i n t o t h e s e r e s u l t s cannot be supp l i ed be­

cause of our u n f a m i l i a r i t y wi th t he l i t e r a t u r e in t he a r ea of sugar pro­

c e s s i n g , t h i s may be t he f i r s t t ime t h i s kind o f a n a l y s i s has been done

on t h i s system. Thi s b e l i e f has not been v e r i f i e d by any comprehensive

s ea r ch of t he l i t e r a t u r e bu t our c o l l e a g u e s in Audubon Sugar I n s t i t u t e

a r e unaware of any such r e s u l t s (Saska ( 1988 ) ) .

The a p p l i c a t i o n o f Flory-Huggins t h e o r y above r e q u i r e d us t o e s t i ma t e

t he molar volume of suc rose as a s ub-coo l ed l i q u i d . Thi s was done by ex­

t r a p o l a t i n g the volumes of s u c r o s e - wa t e r s o l u t i o n s t o pure suc r ose . Ac­

t u a l l y , t h e s l ope o f t he volume ve r s u s compos i t ion curve was

e x t r a p o l a t e d to pure s u c r o s e , then t h e l i m i t i n g s lope was used t o d e t e r ­

mine the molar volume. Thi s i s shown in f i g u r e 7 -6 . The e r r o r s

Page 268: Classical and Statistical Thermodynamics of Solid-Liquid

Del

ta

Rho

/Del

ta

Ult.

sucr

ose

in so

luti

on•.181

^ 0.081

0.0b0

0.040

0.020

E x tr a p o la t io n to Puro Sucrosa

Y «4.5E-04X +2.IE-02

DATA _____

0.0000 10 20

X X30 40 50 60 70

weight % sucrose

x80 90 1 90

Figure 7-b: E x t r a p o la t io n o f Molar Density to Est imate the Sub-cooled Liquid Density o f Sucrose a t 20 deg. C

Page 269: Classical and Statistical Thermodynamics of Solid-Liquid

246

i n t roduced by doing t h i s are probably q u i t e small so no f u r t h e r d i s ­

cuss ion i s necessa ry .

Page 270: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 7

Char l e s , D.F. , I n t . Sugar J . , (1960) , 62, 126.

Kel ly , F.H.C. , I n t . Sugar J . , (1958) , 60, 320.

Kel ly , F.H.C. and Keng, M.F. , The Sucrose Crys ta l and I t s S o l u t i o n ,(1975) , Chap. 10, Singapore Un i ve r s i t y Press .

P r a u s n i t z , J .M. , L i c h t e n t h a l e r , R.N. and Azevedo, E.G. , (1986) , Molecu­l a r Thermodynamics of Fluid Phase E q u i l i b r i a , 2nd Ed. , P r e n t i c e - H a l l .

Saska, M. (1988) P r i v a t e Communication.

Smel ik, J . , V a s a t k o , J . and Matejova, J . , Zucker , (1970) , 23, 133, 595.

Vavr inecz, G. , Z. Zucker ind, (1962) , 12, 481.

- 247 -

Page 271: Classical and Statistical Thermodynamics of Solid-Liquid

PART B: STATISTICAL MECHANICS OF SOLID-LIQUID EQUILIBRIA

248

Page 272: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 8

INTRODUCTION

The dominant t r end in phys ica l chem is t ry in th e p a s t f o r t y y e a r s has

been the a t t em p ts to p r e d i c t macroscopic phys ica l p r o p e r t i e s o f m a t e r i ­

a l s ( d e n s i t y , v i s c o s i t y , thermal c o n d u c t i v i t y , m olecu la r d i f f u s i v i t y ,

e t c . ) using s t a t i s t i c a l mechanics, a m olecu la r s c a l e d e s c r i p t i o n o f the

m a t e r i a l . The k i n e t i c th eory of gases was one of the most no tab le suc­

c e s s s t o r i e s based on t h i s approach. The t h e o r i e s f o r the hea t c a p a c i ­

t i e s and f r e e ene rg ie s of s o l i d c r y s t a l s ( l a t t i c e dynamics) have been

a p p l i e d s u c c e s s f u l ly a t the o th e r extreme of d e n s i t y . The l a s t a rea to

develop has been the th eory of l i q u i d s . In the p a s t twenty y e a r s , the

development o f in t e g r a l eq u a t io n s ( f o r th e r a d i a l d i s t r i b u t i o n func t ion

of a m a t e r i a l ) and p e r tu r b a t i o n t h e o r i e s have al lowed the a p p l i c a t i o n

of the s t a t i s t i c a l mechanical approach to l i q u i d s . These types of t h e o ­

r i e s , along with th e advent of h igh-speed computers t h a t make computer

s im u la t ion of m a t e r i a l s a t th e s e d e n s i t i e s r o u t i n e , have al lowed s t a t i s ­

t i c a l mechanics to be a pp l ied to many complica ted systems. The ch a p te r s

fo l low ing d i s c u s s our r e s ea rch in t h i s a r e a , which has mainly been in

the development of computer codes to al low m olecu la r dynamic s im u la t io n s

to be a p p l i e d to new and more complex systems, with th e u l t im a te goal

being the p r e d i c t i o n of s o l i d - l i q u i d e q u i l ib r iu m f o r very l a r g e , complex

m olecu le s , us ing only a small number o f m olecu la r pa ram ete rs . While t h i s

goal i s s t i l l a long way o f f , t h e r e s ea rch d i s c u s s e d in the fo l lowing

c h a p t e r s r e p r e s e n t s some small s t e p s in t h a t d i r e c t i o n .

- 249 -

Page 273: Classical and Statistical Thermodynamics of Solid-Liquid

The importance of computer s im u la t ion can b e s t be unders tood by exam­

in ing the r e l a t i o n s h i p between s im u la t i o n , th e o ry , and exper iment . Fig­

ure 8-1 shows s c h em a t ic a l ly how th e se t h r e e d i f f e r e n t te chn iques can be

used to o b ta in a b e t t e r unders tand ing o f the problem than th e o ry and ex­

per iment a lone . As shown in f i g u r e 8-1 , a comparison of th e o ry d i r e c t l y

to exper iment i s ambiguous because t h e r e a re two causes f o r th e d i s c r e p ­

a n c i e s observed . The f i r s t cause i s due t o the assumptions t h a t a re i n ­

h e re n t in the th e o ry , which i s by d e f i n i t i o n an s i m p l i f i c a t i o n of the

phys ica l r e a l i t y . The second cause of d i s c r e p a n c i e s i s th e lack of an

exac t d e s c r i p t i o n of the in t e r m o l e c u la r f o r c e s between molecule s . Be­

cause the in te rmolecul . a r p o t e n t i a l used r e p r e s e n t s a s i m p l i f i c a t i o n of

the ac tua l f o r c e s e x i s t i n g between m olecu le s , the r e s u l t s of any th e o ry

u t i l i z i n g t h a t in t e r m o l e c u la r p o t e n t i a l a r e a u t o m a t i c a l l y l i m i t e d by i t s

a b i l i t y ( o r i n a b i l i t y ) to d e s c r ib e the r e a l i t y of the i n t e r a c t i o n be­

tween the molecules.

Computer s im u la t ion r e p r e s e n t s a b r id g e between theory and experiment

t h a t a l lows the two causes de s c r ib e d above to be s e p a r a t e d and t h e i r e f ­

f e c t s to be i n v e s t i g a t e d s e p a r a t e l y . When th e o ry and s im u la t ion a re com­

pared , us ing the same form o f the in t e r m o l e c u la r p o t e n t i a l , the

s im u la t ion i s t r e a t e d as the "exac t" exper imenta l r e s u l t s f o r a hy­

p o t h e t i c a l f l u i d obeying the i n t e r m o l e c u la r p o t e n t i a l . With t h i s source

o f e r r o r e l im i n a t e d , the e f f e c t o f the th e o ry assumptions on the r e s u l t s

i t p r e d i c t s can be i n v e s t i g a t e d and op t im ized . When exper iment and simu­

l a t i o n a r e compared, the s im ula t ion r e s u l t s a re cons ide red t o be a t e s t

of how f a i t h f u l l y the in t e r m o l e c u la r p o t e n t i a l model r e p r e s e n t s the t r u e

fo r c e s occu r r in g between the molecule s . The form o f the p o t e n t i a l can

Page 274: Classical and Statistical Thermodynamics of Solid-Liquid

Test Theory Assumptions

TheorySimulation

Experiment

Figure 8 -1 : Relationship Between Simulation, Theory and Experiment

Page 275: Classical and Statistical Thermodynamics of Solid-Liquid

252

be a d j u s t e d , in c lu d in g o p t i m iz a t io n o f the p o t e n t i a l param ete rs and th e

mixing r u l e s , u n t i l t h e r e s u l t s ag ree with exper im en t . Through a combi­

n a t io n o f t h e s e two s t e p s i t i s p o s s i b l e to develop t h e o r i e s with r e a ­

sonable a s sum pt ions , u t i l i z i n g r e a l i s t i c i n t e r m o l e c u l a r p o t e n t i a l s .

Once t h i s i s accompli shed , th e thermodynamic and t r a n s p o r t p r o p e r t i e s of

r e a l f l u i d s can be r o u t i n e l y p r e d i c t e d .

The r e s e a r c h d i s c u s s e d in th e two papers p r e s e n te d here ( c h a p t e r s 10

and 11) a r e examples of the f i r s t use o f molecu la r dynamics s im u l a t i o n s .

We have developed code to s im u la te th e p r o p e r t i e s of molecu le s i n t e r a c t ­

ing v ia th e Lennard-Jones p o t e n t i a l and the 2 - c e n t e r Lennard-Jones po­

t e n t i a l (d u m b b e l l s ) . Code has been developed f o r both pure f l u i d s and

b in a ry m ix tu r e s . In c h a p t e r 10, t h e code p r e s e n t e d in f o r t h e canonica l

ensemble ( c o n s t a n t number o f p a r t i c l e s , c o n s t a n t volume and c o n s t a n t

t e m p e r a t u r e ) . In c h a p t e r 11, th e code given i s f o r the i s o t h e r m a l - i s o -

b a r i c ensemble (NPT). In both c h a p t e r s , the p r e d i c t i o n s o f th e molecu la r

dynamics s im u l a t i o n s a r e compared to the p r e d i c t i o n s of p e r t u r b a t i o n

t h e o r i e s t h a t u t i l i z e th e same in t e r m o l e c u l a r p o t e n t i a l s . The simu­

l a t i o n r e s u l t s a r e t r e a t e d as th e " e x a c t " exper imenta l r e s u l t s . The de­

v i a t i o n s between th e s im u la t io n r e s u l t s and th e t h e o r e t i c a l r e s u l t s a re

a t t r i b u t e d t o t h e l i m i t a t i o n s of t h e t h e o r i e s . In c h a p t e r 11, th e simu­

l a t i o n r e s u l t s have a l s o been compared to the exper im en ta l r e s u l t s f o r

th e systems i n v e s t i g a t e d . As ex p la in e d above, t h i s type o f comparison i s

u se fu l as a t e s t o f t h e p o t e n t i a l and p o t e n t i a l pa ram e te rs b u t i t i s o f

l i m i t e d va lue to th e d i s c u s s i o n p r e s e n t e d in c h a p t e r 11 as t h i s type of

t e s t was not th e purpose o f th e paper .

Page 276: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 9

STATISTICAL MECHANICS BACKGROUND

This c h a p t e r i s a very b r i e f d i s c u s s i o n o f th e advances in s t a t i s ­

t i c a l mechanics in the l a s t 30 y e a r s or so , s in c e th e growth in comput­

ing power he lped to overcome th e computa t ional l i m i t a t i o n s t h a t had kept

people from f u l l y e x p l o i t i n g th e power of th e s t a t i s t i c a l mechanical

t r e a t m e n t o f m a t t e r . The lack o f h ig h -speed computers had n o t s topped

t h e t h e o r e t i c a l advance of t h i s d i s c i p l i n e , as ev idenced by th e k i n e t i c

th e o ry of gases and th e t h e o r i e s o f im p e r f e c t gases developed us ing the

Mayer f - f u n c t i o n approach , b u t i t d id l i m i t the e x t e n s io n of t h e use of

s t a t i s t i c a l mechanics t o f l u i d s o f h ighe r d e n s i t y .

Two a r e a s t h a t have g r e a t l y expanded th e a p p l i c a b i l i t y of s t a t i s t i c a l

mechanics developed a lm os t s im u l ta n e o u s ly in the l a t e 1950 's and e a r l y

I 9 6 0 ' s. The f r s t a r e a i s the s im u la t i o n of m a t t e r on a computer , us ing

e i t h e r th e Monte Car lo method or th e m o lecu la r dynamics method. These

methods, w h i le q u i t e s imple , r e q u i r e t remendous amounts of computer

t im e . The d e t a i l s o f t h e two methods, and th e reasons why our work was

pursued us ing th e m o lecu la r dynamics method, w i l l be d i s c u s s e d below.

The second a r e a , t h a t developed a t about t h e same t im e , i s t h e p r e d i c ­

t i o n o f the p r o p e r t i e s of a condensed phase us ing a p e r t u r b a t i o n expan­

s ion about a known r e f e r e n c e f l u i d , to o b t a in t h e p r o p e r t i e s o f an

unknown f l u i d . The h i s t o r y and s t a t u s o f t h i s a r e a w i l l a l s o be b r i e f l y

d i s c u s s e d below.

a. MONTE CARLO SIMULATION

- 253 -

Page 277: Classical and Statistical Thermodynamics of Solid-Liquid

Monte Carlo s im u la t i o n i s a numerical t e ch n iq u e f o r s o lv in g many d i ­

mensional i n t e g r a l s by sampling a t random from the phase space d e f in e d

by th e i n t e g r a t i o n s . I t i s used to s im u la te m a t t e r by d i s t r i b u t i n g a

number o f molecule s in a random fa s h io n in a volume e lem en t , t o y i e l d a

system w i th th e c o r r e c t d e n s i t y . The molecu les a r e then moved about in a

random manner, g e n e r a t i n g d i f f e r e n t c o n f i g u r a t i o n s (ensem bles ) f o r the

same system. A f t e r a s u f f i c i e n t number of t h e s e c o n f i g u r a t i o n s have been

g e n e r a t e d to a d e q u a te ly sample a l l o f t h e phase space (100,000 -

1 , 0 0 0 ,0 0 0 ) , t h e p r o p e r t i e s o f each c o n f i g u r a t i o n a re averaged to o b t a in

an ensemble average f o r th e e n t i r e system. The o r i g i n a l method, inve n ted

by M e t ro p o l i s e t a l . ( 1 9 5 3 ) , was performed in th e mic rocanon ica l ensemble

(NVE) b u t t h e method has been ex tended to NVT and NPT ensembles (McDo­

na ld (1972, 1972)) . The advantage o f t h i s method i s t h a t i t i s very sim­

p l e to program. The d i s a d v a n ta g e o f th e method i s t h a t the system does

not evo lve w i th t ime s in ce th e changes in th e c o n f i g u r a t i o n s a r e made a t

random. This i s not a problem f o r c a l c u l a t i n g th e thermodynamic p r o p e r ­

t i e s , because th e y a r e ensemble a v e r a g e s , b u t i t does l i m i t t h e u s e f u l ­

ness of th e method f o r s tu d y in g t im e-d ep e n d en t phenomena l i k e d i f f u s i o n

o r m e l t i n g . S ince t h i s method was no t chosen f o r our work, i t w i l l not

be d i s c u s s e d f u r t h e r , exce p t to no te t h a t i t i s being used by many r e ­

s e a r c h e r s a t t h i s t ime .

b. MOLECULAR DYNAMICS SIMULATION

The m o lecu la r dynamics s im u l a t i o n method i s a l s o a method f o r simu­

l a t i n g th e p r o p e r t i e s o f m a t t e r on a computer . I t a l s o s t a r t s with a

s p e c i f i e d number of molecule s in a s p e c i f i e d volume. The molecule s are

Page 278: Classical and Statistical Thermodynamics of Solid-Liquid

255

given random i n i t i a l v e l o c i t i e s . Newton's laws of motion are then i n t e ­

g r a t e d through t ime to determine the motion of each molecule . Note t h a t

th e molecu les a re moving in response to the in t e r m o l e c u la r fo rces be­

tween the m olecu le s , as de termined by a s e t in t e r m o l e c u la r p o t e n t i a l en­

ergy fu n c t i o n , not the fo rce of g r a v i t y . The molecu les move through a

l a rg e number o f c o n f i g u r a t i o n s as t ime e l a p s e s . A t im e-average of the

c a l c u l a t e d p r o p e r t i e s i s t a k en . I t has been shown t h a t the averages from

th e two methods a r e equal i f t h e system of molecules i s e rg o d ic . Since

t h i s i s u s u a l ly the c a s e , the two s im u la t ion methods are used almost i n ­

te rc hangeab ly f o r c a l c u l a t i n g thermodynamic p r o p e r t i e s . Because the sys­

tem evolves through t ime, m olecu la r dynamics s im u la t io n s a re u su a l ly

chosen to i n v e s t i g a t e phenomena t h a t are time dependent . Monte Carlo

methods have been modified in many ways and used fo r t ime-dependent s t u ­

d i e s but molecu la r dynamics i s more e a s i l y a p p l i e d to th e s e types of

s t u d i e s . For t h i s r eason , i t i s the method chosen f o r our work.

The m olecu la r dynamics method was p ioneered in the l a t e 1950 's by

Alder and Wainwright (1959) . Thei r work led to many uses fo r the method.

The ex tens ion o f th e method to o th e r ensembles ( i t was o r i g i n a l l y pe r ­

formed in the NVE ensemble) took longer f o r t h i s method than i t d id fo r

Monte Car lo . Andersen (1980) in t roduced a method f o r running in the

i s o t h e r m a l - i s o b a r i c ensemble. He accomplished t h i s by su rrounding the

volume element w ith a membrane t h a t would expand o r c o n t r a c t th e volume

element in response to a d i f f e r e n c e between a s e t e x t e r n a l p re s s u re and

th e c a l c u l a t e d i n t e r n a l p r e s s u r e . The equa t ion of motion of the membrane

i s so lved along with the equa t ions o f motion f o r th e molecu le s . The mem­

brane i s t o t a l l y permeable to the molecule s . Andersen 's method sca led

Page 279: Classical and Statistical Thermodynamics of Solid-Liquid

t h e p o s i t i o n v e c t o r s a f t e r every t i m e - s t e p so t h a t the volume element

was always a cube of u n i t l e n g th , r e g a r d l e s s o f th e expansion o r con­

t r a c t i o n of the membrane. This means t h a t , in te rms of th e s ca le d p o s i ­

t i o n s and v e l o c i t i e s , the system i s being s im u la te d in the

mic rocanon ica l ensemble and no changes a r e r e q u i r e d f o r th e eq u a t io n s of

motion of the m o lecu le s . Nose1 and Klein (1983) ex tended h i s t r e a tm e n t

t o a l low f o r th e volume element t o expand and c o n t r a c t in a nonuniform

manner, changing shape as well as s i z e . This method, w hi le more compli ­

c a t e d in appea rance , i s e s s e n t i a l l y th e same excep t t h a t a t r a n s f o r m a ­

t i o n m a t r ix i s c o n t i n u a l l y upda ted r e l a t i n g the p r e s e n t c o o r d in a t e

system to t h e o r i g i n a l . The d e t a i l s o f both methods can be found in the

o r i g i n a l p u b l i c a t i o n s . Our work, p r e s e n t e d in c h a p t e r 11, a p p l i e s the

method of Andersen t o molecu la r dynamics code f o r m ix tu res o f monatomic

and d ia tom ic molecu le s and then uses t h a t code t o c a l c u l a t e excess p rop­

e r t i e s , which a r e then compared t o t h e p r e d i c t i o n s o f some r e c e n t p e r ­

t u r b a t i o n t h e o r i e s .

c. PERTURBATION THEORIES FOR LIQUIDS

P e r t u r b a t i o n t h e o r i e s a re a r e l a t i v e l y o ld concep t . The p r o p e r t y of

an unknown system i s e s t i m a t e d by per forming a Tay lo r s e r i e s expansion

abou t a s i m i l a r and known system. The d e r i v a t i v e s in th e T a y lo r s e r i e s

a r e e s t i m a t e d by a number o f methods and th e p r o p e r t i e s o f t h e unknown

system a re o b t a in e d . The use o f p e r t u r b a t i o n th e o ry in t h i s i n s t a n c e i s

somewhat d i f f e r e n t than th e usual c a s e . The unknown system i s d iv i d e d

i n t o two p a r t s , one f o r which th e p r o p e r t i e s a r e known o r can be e s t i ­

mated. The o t h e r p o r t i o n i s m u l t i p l i e d by th e p e r t u r b a t i o n v a r i a b l e .

Page 280: Classical and Statistical Thermodynamics of Solid-Liquid

When th e p e r t u r b a t i o n v a r i a b l e i s z e r o , the r e f e r e n c e system i s ob-

t a i n e d . When th e p e r t u r b a t i o n v a r i a b l e i s one, th e unknown new system i s

o b ta in e d . A s e r i e s s o l u t i o n f o r th e p r o p e r ty of t h e unknown system i s

o b ta in e d in terms of th e r e f e r e n c e system b u t , because th e p e r t u r b a t i o n

expansion v a r i a b l e i s one, t h e r e i s no g u a ra n t e e t h a t th e terms in the

s e r i e s w i l l g e t s m a l l e r , a l low ing th e s e r i e s to converge . Handling t h i s

problem, and t r y i n g v a r io u s ways t o s p l i t a p o t e n t i a l i n t o two p o r t i o n s ,

accoun ts f o r much of th e r e s e a r c h in t h i s a r e a . In s p i t e of the prob­

lems, th e s e kinds of t h e o r i e s have been very s u cces s fu l and have p ro­

g re s sed a g r e a t d e a l . Some of th e h i s t o r i c a l l y s i g n i f i c a n t even ts in

t h i s a r ea a r e given below.

In the e a r l y 1 9 5 0 ' s , Barker (1951) and Pople (1952) independen t ly

sugges ted t h a t th e p r o p e r t i e s of a p o l a r system could be expressed as a

p e r t u r b a t i o n to th e p r o p e r t i e s of th e nonpo la r system. At about th e

same t im e , Longue t-Higgins (1951) p r e s e n t e d a very s i m i l a r expansion ( t o

th e f i r s t o r d e r te rm s) based on conformal s o l u t i o n th e o r y , us ing the

r a t i o of an energy param ete r ( a p p ro x im a te ly equal to t h e r a t i o of t h e

c r i t i c a l t e m p e ra t u r e s ) as the p e r t u r b a t i o n expansion v a r i a b l e . Brown and

Longue t-Higgins (1951) ex tended th e f i r s t o r d e r t r e a t m e n t to in c lu d e

second o rd e r te rm s . The p a r t i t i o n fu n c t i o n of a system was p r e s e n te d in

te rms of a p e r t u r b a t i o n expans ion about th e p a r t i t i o n f u n c t i o n of a r e f ­

e rence system by Zwanzig (1954) . He then used t h i s expansion to d e t e r ­

mine t h e Helmholtz f r e e energy of th e system of i n t e r e s t . While the

t r e a t m e n t s of t h e v a r io u s i d e a s a r e q u i t e d i f f e r e n t , t h e concep ts a re

e s s e n t i a l l y t h e same in a l l c a s e s . The p e r t u r b a t i o n t h e o r i e s d i s c u s s e d

Page 281: Classical and Statistical Thermodynamics of Solid-Liquid

258

below a re based on the Zwanzig expansion t o f in d th e Helmholtz f r e e en­

ergy.

In l i g h t of th e advances t h a t have been made in t h e t h e o ry of f l u i d s

due to th e use of p e r tu r b a t i o n t h e o r i e s l i k e th e ones t h a t w i l l be d i s ­

cussed below, i t i s i n t e r e s t i n g to note a quote made a t a meeting of the

Faraday S oc ie ty in 1953 by Dr. R.L. S c o t t , a highly re s p e c t e d s o lu t i o n

chem is t , in d i s c u s s in g Longuet-Higgins ' expansion.

"The eq u a t io n s a re good only to th e f i r s t o rd e r in ( f - 1 ) ; because most l i q u i d s a re not p e r f e c t l i q u i d s and obey the law of corresponding s t a t e s only roughly a t b e s t , any a t t em p t t o ex tend th e theory of conformal s o lu t i o n s to h igher o rd e r s of ( f - 1 ) would probably be u s e l e s s . "

While Zwanzig1s p e r t u r b a t i o n expansion expressed th e Helmholtz f r e e

energy o f a system in terms o f the p a r t i t i o n func t ion and i t s d e r i v a ­

t i v e s f o r a r e fe re n c e system, i t d id not p r e s e n t any s p e c i f i c way to ob­

t a i n th e needed r e f e r e n c e p r o p e r t i e s or the d e r i v a t i v e s o f those

p r o p e r t i e s . Because of t h i s , i t was a few y e a r s b e fo re any p r a c t i c a l

use was made of th e expansion .

One o f the systems of i n t e r e s t a t t h a t t im e , and s t i l l one of the

most widely i n v e s t i g a t e d , was th e Lennard-Jones (12-6) in t e r m o l e c u la r

p o t e n t i a l . Attempts to use p e r t u r b a t i o n expans ions to determine the f r e e

energy of systems obeying t h i s p o t e n t i a l a r e d i s c u s s e d below. A number

o f r e s e a r c h e r s t r i e d d i f f e r e n t s p l i t s of the Lennard-Jones p o t e n t i a l

i n t o r e f e r e n c e and p e r t u r b a t i o n te rms . McQuarrie and Katz (1966) s p l i t

the p o t e n t i a l i n t o the r e p u l s i v e t w e l f t h power p o r t i o n and a t t r a c t i v e

Page 282: Classical and Statistical Thermodynamics of Solid-Liquid

259

s i x t h power p o r t i o n . The i r theo ry was unsuccessfu l because the r e s u l t i n g

expansion d ive rged . Barker and Henderson (1967) s p l i t the p o t e n t i a l i n t o

i t s p o s i t i v e and nega t ive p o r t i o n s and then approximated the r e p u l s i v e

p o r t i o n as a hard sphere . T h e i r th eo ry was su ccess fu l though i t r equ i re d

terms out to second o rde r to b r ing i t s p r e d i c t i o n s in l i n e with the sim­

u l a t i o n r e s u l t s fo r the Lennard-Jones p o t e n t i a l . Handling o f the second

o rd e r terms was d i f f i c u l t and slowed the a p p l i c a t i o n of the th eo ry .

Weeks, Chandler , and Andersen (1971) s p l i t the p o t e n t i a l a t i t s minimum

value which sepa ra ted the r e p u l s i v e po r t ion and a t t r a c t i v e p o r t i o n s com­

p l e t e l y . Thei r theo ry a l s o was success fu l a t p r e d i c t i n g th e s imula t ion

r e s u l t s and i t only r e q u i r e d th e f i r s t o rder term. While both the BH and

WCA t h e o r i e s have been e x t e n s i v e l y used, the WCA th eory has dominated as

a b a s i s f o r f u r t h e r improvements because i t e l i m i n a t e s many problems a s ­

s o c i a t e d with the second o rd e r terms in the BH theo ry .

F ische r and Lago (1983) extended the WCA theo ry to m ix tu res of

spheres and dumbbells . They used t h e i r th eo ry to p r e d i c t excess p ro p e r ­

t i e s f o r a rg o n -n i t r o g e n and s i m i l a r systems. Enciso and Lombardero

(1981) proposed a s i m i l a r th e o ry and a l s o used i t to p r e d i c t excess p ro ­

p e r t i e s f o r the same systems. N e i the r group could v e r i f y t h e i r theo ry

p r e d i c t i o n s because t h e r e were no s im ula t ion r e s u l t s f o r m ix tures of

t hose kinds o f molecule s . The papers in c h a p te r 10 and 11 supply th e ne­

c e s s a ry s im ula t ion r e s u l t s and t e s t the p r e d i c t i o n s o f th e two p e r t u r b a ­

t i o n t h e o r i e s , in th e NVT ensemble ( c h a p t e r 10) and then in the NPT

ensemble ( c h a p t e r 11). th e paper in c h a p te r 11 a l s o t e s t s th e ex tens ion

of th e FL p e r t u r b a t i o n theo ry by Bohn (1986) which can handle b ina ry

m ix tu res of Lennard-Jones dumbbells .

Page 283: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 9

A lder , B . J . and Wainwright , T . E . , J . Chem. Phys . , (1959 ) , 31, 459.

Andersen, H.C . , J . Chem. P h y s . , ( 1980 ) , 72, 2384.

B arke r , J . A . , J . Chem. P h y s . , ( 1951 ) , 19, 1430.

B arke r , J .A . and Henderson, D . , J . Chem. P h y s . , (1967) , 47, 4714,

Bohn, M., F i s c h e r , J . and Kohler , F . , F lu id Phase Equi1 . , (1986) , 31, 232.

Bohn, M., Lago, S . , F i s c h e r , J . and Kohler , F . , F lu id Phase E q u i l . ,(1986 ) , 23, 137.

Brown, S. and Longuet -Higg ins , H.C . , Proc . Roy. Soc. A, (1951) , 209,416.

Enciso , E. and Lombardero, M., Mol. Phys . , ( 1981 ) , 44, 725.

F i s c h e r , J . and Lago, S . , J . Chem. Phys . , (1983) , 78, 5750.

Longuet -Higg ins , H.C. , Proc. Roy. Soc. A, (1951) , 205, 247.

McDonald, I . R . , Mol. Phys . , (1972) , 23, 41.

McDonald, I . R . , Mol. Phys . , (1972) , 24, 391.

McQuarrie, D.A. and Katz, J . L . , J . Chem. P h y s . , (1966) , 44, 2393.

M e t ro p o l i s R . , Rosenblu th , A.W., Rosenblu th , M.N., T e l l e r , A.H. and T e l ­l e r , E . , J . Chem. P h y s . , (1953 ) , 21, 1087.

Nose1, S. and K le in , M.C., Mol. P h y s . , ( 1983 ) , 50, 1955.

Pople , J . A . , Proc. Roy. Soc. A, ( 1952 ) , 215, 67.

S c o t t , R.L. in The E q u i l ib r iu m P r o p e r t i e s o f S o lu t i o n s o f N on-E lec t ro ­l y t e s , D i s c u s s io n s of t h e Faraday S o c i e t y , ( 1953 ) , p. 44, Aberdeen Uni­v e r s i t y P r e s s .

Weeks, J . D . , Chandle r , D. and Andersen, H.C. , J . Chem. Ph y s . , (1971) , 54, 5237.

Zwanzig, R.W., J . Chem. P h y s . , (1954 ) , 22, 1420.

- 260 -

Page 284: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 10

STRUCTURE AND THERMODYNAMIC PROPERTIES OF MOLECULAR LIQUIDS

a. Manuscript pub l i she d in Molecular Phys ics , 19, 27,

(1986) .

- 261 -

Page 285: Classical and Statistical Thermodynamics of Solid-Liquid

262

STRUCTURE AND THERMODYNAMICS OF

MOLECULAR LIQUID MIXTURES

.A.ftS. Gupta and J . E. Coon

Department o f Chemical E n g in e e r in g

L o u is ia n a S t a t e U n iv e r s i t y

Baton Rouge, L o u is ia n a 70803

USA

*Author to whom a l l th e correpon dence sh ou ld be a d d r e ssed .

Running T i t l e - Computer s im u la t io n o f l i q u i d m ix tu r e s .

Author f o r Correspondence - Sumnesh GuptaDepartment o f Chemical E n g in e e r in g L o u is ia n a S t a t e U n iv e r s i t y Baton Rouge, L o u is ia n a 70803 USA

M anuscr ipt Pages - 31 Number o f T ab les - 5Number o f F ig u r e s - 7

Page 286: Classical and Statistical Thermodynamics of Solid-Liquid

2 6 2 a

10 / 7 /88

Attn: Journal of Molecular Physics Taylor and Francis Limited 242 Cherry Street Philadelphia, PA 19106Dear sirs:

0 C T l d m

I am writing to you in connection with a paper that I recently coauthored in your Journal of Molecular Physics. The paper is titled:"Structure and Thermodynamics of Molecular Liquid Mixtures." by S. Gupta and J. E. Coonand it appeared in Molecular physics, 57(5), 1049-1061, (1986).

The purpose of this letter is to request a letter from youallowing this paper to be included in my Ph.D. dissertation asa chapter. My college requires the letter because the idissertation will be microfilmed by University Microfilms inc., who will then distribute it on a By Request Only basis to other researchers.The letter in no way affects your copyright to the paper.

The letter should specifically state the conditions I have given in the above paragraph.

As I am scheduled to graduate in December of this year andmust have roy dissertation (letters included) in by November 25,1988, I request that you respond to this letter as quickly as possible. Thank you in advance for your timely responsie.

Sincerely,

PERMISSION TO REPRODUCE 1$ GRANTED PROVIDED THAT:

(1) ‘duo acknowledgm ent is made to the journal concerned '

(2) the material has not been quoted or reproduced from another source

4?) -foe consent o{ tho author-Ts obtained

n m £ L U J S £For TAYLOB & LTD*

John ;E. Coon

Page 287: Classical and Statistical Thermodynamics of Solid-Liquid

Abstract

In t h i s paper we r e p o r t m o le c u la r dynamics s im u la t io n r e s u l t s f o r

equ im olar m ix tu res o f argon and n i t r o g e n , and argon and oxygen. We have

used th e s i t e - s i t e L ennard-Jones ( 1 2 :6 ) d ia to m ic p o t e n t i a l fo r oxygen

and n i tr o g e n and th e L ennard-Jones ( 1 2 :6 ) a tom ic p o t e n t i a l f o r argon.

E x c e ss molar p r o p e r t i e s o b ta in ed from s im u la t io n s and th e th e o r y o f

F i s c h e r and Lago are found t o be i n good agreem ent w h ile d i f f e r i n g from

e x p e r im en ta l r e s u l t s and a l s o from th e p e r t u r b a t io n c a l c u l a t i o n s o f

E n c iso and Lombardero. L ocal s t r u c t u r e i n t h e s e m ix tu r e s has a l s o been

s t u d ie d and i t i s shown t h a t th e e f f e c t o f a t t r a c t i v e f o r c e s on th e

l o c a l s t r u c t u r e in m o le c u la r f l u i d s i s s m a l l .

Page 288: Classical and Statistical Thermodynamics of Solid-Liquid

1. I n t r o d u c t io n

2 6 4

Computer s im u la t io n m ethods, Monte C arlo and m o le c u la r dynam ics,

have become an im p ortan t t o o l i n th e m o le c u la r -b a s e d s tu d y o f f l u i d s * .

Computer s im u la t io n o f f l u i d s has been u sed i n th e deve lopm ent and

t e s t i n g o f s t a t i s t i c a l m echan ics b ased f l u i d t h e o r i e s su ch as th e p e r ­

t u r b a t i o n t h e o r i e s and i n t e g r a l e q u a t io n a p p r o x im a t io n s* . In a d d i t i o n ,

computer s im u l a t i o n has a l s o b een used i n d e v e lo p in g an u n d e r s ta n d in g o f

th e in t e r m o le c u la r i n t e r a c t i o n s i n v o lv i n g f l u i d s c o n s i s t i n g o f s im p le2

m o le c u le s such as argon and krypton and f l u i d s c o n s i s t i n g o f more

3 4complex m o le c u le s such as w a ter and lo n g - c h a in a lk a n e s .

A l a r g e number o f computer s im u la t io n s i n v o lv i n g pure a tom ic

l i q u i d s m odeled by p o t e n t i a l s such a s th e h a r d -sp h e r e p o t e n t i a l , th e

r e p u l s i v e i n v e r s e power p o t e n t i a l , and t h e L ennard-Jones ( 1 2 : 6 )

5p o t e n t i a l have b een r e p o r te d and an e x c e l l e n t re v ie w i s a v a i l a b l e .

Computer s im u la t io n s i n v o l v i n g m ix tu r e s o f a tom ic l i q u i d s are r e l a t i v e l y

6 7few . R e c e n t ly Gubbins e t a l . and Gupta have rev iew ed computer

s im u la t io n s o f a tom ic l i q u i d m ix tu r e s and have p o in t e d ou t th e need f o r

f u r t h e r s im u l a t i o n s o f a tom ic l i q u i d m ix tu r e s a s w e l l a s m ix tu r e s

i n v o lv i n g s m a l l n o n s p h e r ic a l m o le c u le s . I t must be p o in t e d o u t t h a t th e

computer s im u la t io n m eth od o logy , Monte Carlo a s w e l l a s m o le c u la r

dynam ics , i s f a i r l y w e l l d e v e lo p e d f o r m o le c u la r f l u i d s such as

n i t r o g e n , o xygen , and methane which have been u s u a l l y m odeled as m u l t i -

8**l6c e n te r e d L enn ard -Jones d um bells . In c o n t r a s t , a thorough

l i t e r a t u r e s e a r c h has r e v e a le d o n ly a few r e p o r t s on computer

s im u la t io n s i n v o l v i n g m ix tu r e s o f sm a ll n o n s p h e r ic a l m o le c u le s

(R e fe r e n c e s 1 7 - 1 9 , 3 9 ) .

Page 289: Classical and Statistical Thermodynamics of Solid-Liquid

265

20 21 R e c e n t ly , E n c iso and Lombardero and F i s c h e r and Lago have

d eve lop ed p e r tu r b a t io n t h e o r i e s f o r m ix tu res o f f l u i d s c o n s i s t i n g o f

s p h e r ic a l and n o n sp h e r ic a l p a r t i c l e s , m ain ly argon + n i t r o g e n and

argon + oxygen, u s in g th e s i t e - s i t e Lennard-Jones p o t e n t i a l . Due t o a

l a c k o f computer s im u la t io n r e s u l t s fo r such m ix tu r e s , however, r e s u l t s

from t h e s e t h e o r i e s have been compared o n ly w ith th e ex p e r im en ta l d a ta .

Thus, m ain ly to t e s t t h e s e t h e o r i e s and to s tu d y th e l o c a l s t r u c t u r e in

t h e s e m ix tu r e s , we have s im u la ted t h e s e m ix tu res a t zero p r e s s u r e and

84°K u s in g th e m o le c u la r dynamics method f o r 500 p a r t i c l e system s and

r e p o r t our r e s u l t s h e r e .

In th e n e x t s e c t i o n we d i s c u s s th e m o le c u la r dynamics s im u la t io n

m ethodology used in t h i s work and p r o v id e d e t a i l s o f our m o le c u la r

dynamics s im u l a t i o n s . In S e c t io n 3 , we r e p o r t our r e s u l t s on thermo­

dynamics and com parisons w ith p e r tu r b a t io n t h e o r i e s are a l s o d i s c u s s e d .

In s e c t i o n 4 , we show th e e f f e c t o f a t t r a c t i v e f o r c e s in m o lecu la r

l i q u i d m ix tu res and we summarize our r e s u l t s and p r e s e n t c o n c lu s io n s in

th e l a s t s e c t i o n .

Page 290: Classical and Statistical Thermodynamics of Solid-Liquid

2. Molecular Dynamic Simulation

In t h i s s tu d y we have u sed a t w o - c e n t e r e d L enn ard -Jones ( 1 2 - 6 )

22s i t e - s i t e model p o t e n t i a l f o r s im u l a t i n g oxygen and n i t r o g e n . T h is

p o t e n t i a l model has b een u sed i n t h e p e r t u r b a t i o n t h e o r y c a l c u l a -

20 21 9 10t i o n s ’ and s im u l a t i o n o f pure f l u i d s a s w e l l ’ . Gray and

22Gubbins have d i s c u s s e d t h i s model i n d e t a i l i n c lu d in g t h e s p h e r i c a l

harm onics e x p a n s io n and th e re a d e r i s r e f e r r e d t o r e f e r e n c e 22 f o r more

d e t a i l s . The s i t e - s i t e p o t e n t i a l betw een two m o le c u le s i s g iv e n by

* cw v y = f j f

where r . . i s th e s c a l a r d i s t a n c e betw een th e i n t e r a c t i o n s i t e i o f th e

m o le c u le Of and th e i n t e r a c t i o n s i t e j o f t h e m o le c u le p and and cr^

are t h e u s u a l L enn ard -Jones en e r g y and d i s t a n c e ( s i z e ) p a r a m e te r s . The

s i t e - s i t e d i s t a n c e r . . i s dependent on t h e m utual o r i e n t a t i o n s u) andi j a P

/V ^and a l s o t h e b o n d le n g t h s , SL = jI /a and SL0 = SL0/o00. In a d d i t i o n web ’ a a' act p p pP

have r e p r e s e n t e d argon u s in g t h e a to m ic L enn ard -Jones ( 1 2 : 6 ) model

p o t e n t i a l . The p o t e n t i a l model p a ra m eters £ , o , and SL u sed i n t h i s

21s tu d y are th e same as t h o s e u sed by F i s c h e r and Lago i n t h e i r

p e r t u r b a t i o n t h e o r y c a l c u l a t i o n s f o r m ix tu r e s o f s p h e r e s and d u m b e lls .

The u n l i k e i n t e r a c t i o n p a ra m eters a r e o b ta in e d by a p p ly in g t h e u s u a l

L o r e n tz and B e r t h e l o t r u l e s :

] (2 . 1)

Page 291: Classical and Statistical Thermodynamics of Solid-Liquid

267

In th e m ic r o c a n o n ic a l ensem ble , (N ,V ,E ), th e c l a s s i c a l eq u a t io n s o f

m otion are g iv e n by

" - 9U f o ^m. r . = - 5— ( 2 .4 )l — i o r ,—l

and

I . u> = T ( 2 .5 )l - p . - p .l i

where m, I are th e mass and th e moment o f i n e r t i a , r e s p . , and uu and F

a r e th e a n gu lar momentum and to r q u e , r e s p e c t i v e l y , in th e b o d y - f ix e d

system o f c o o r d in a te s ( p r in c i p a l a x i s ) . Dots d en o te th e t im e -

d e r i v a t i v e s o f c o o r d in a t e s . The t r a n s l a t i o n a l e q u a t io n s o f m otion ( 2 .4 )

23are s o lv e d in th e c a r t e s ia n c o o r d in a te s u s in g G ear's f i f t h order

p r e d i c t o r - c o r r e c t o r a lg o r i th m . For oxygen and n i t r o g e n m o le c u le s the

o r i e n t a t i o n a l e q u a t io n s o f m otion ( 2 .5 ) are a l s o s o lv e d . For t h i s

purpose we u t i l i z e d th e method o f q u a t e r n i o n s i n c o n ju n c t io n w ith

23G ear's f o u r th ord er p r e d i c t o r - c o r r e c t o r a lg o r ith m . T h is method o f

q u a te r n io n s f o r th e s o l u t i o n o f o r i e n t a t i o n a l e q u a t io n s o f m otion fo r

24r i g i d p o ly a to m ic s has been shown by Evans t o be f r e e o f s i n g u l a r i t i e s .

25In a d d i t io n , we have used th e momentum s c a l i n g p rocedure f o r k eep ing

tem perature c o n s ta n t . T h is method has been shown to work

25w e l l w ith b u lk f l u i d s im u la t io n s o f atom ic l i q u i d s and a l s o fo r

26s im u la t io n s i n v o lv i n g v a p o r - l iq u id i n t e r f a c e s . P e r io d ic boundary

c o n d i t io n s were a p p l ie d to th e c u b ic primary s h e l l a lo n g w ith th e

27minimum image c r i t e r i a i n th e u s u a l way . In a d d i t io n , th e V e r le t

28n e ig h b o r l i s t f o r a s i t e - s i t e c u t o f f o f r ^ = 3.1(J was used t o save

computing t im e . This n e igh b or l i s t was updated a t e v e r y t e n th t im e - s t e p

during t h e s e s im u la t io n s .

Page 292: Classical and Statistical Thermodynamics of Solid-Liquid

268

We have s im u la te d pure arg o n , oxygen , and n i t r o g e n and two e q u i -

m olar m ix tu r e s : argon + oxygen and argon + n i t r o g e n u s in g sy s tem s o f

500 p a r t i c l e s . For a l l t h e s e sy s tem s an FCC l a t t i c e was used as th e

i n i t i a l c o n f ig u r a t io n and p a r t i c l e s were a s s ig n e d s p e c i e s l a b e l s a t

random. An e q u i l i b r a t i o n p h ase o f 1000 t i m e - s t e p s was used t o d e s tr o y

th e l a t t i c e and t o remove th e e f f e c t o f random s p e c i e s l a b e l s . Produc­

t i o n runs were o f 1 0 ,0 0 0 t i m e - s t e p s e a c h . The t im e - s t e p s i z e u sed wasJL J. 2 >

At = 0 .0 0 2 , t = t / ( m a / s ) ^ , which corresp on d s t o a p p r o x im a te ly

-156 .3 x 10 seco n d s when t h e m ass , e , and cf f o r n i t r o g e n are u s e d . The

tem p era tu re was f i x e d a t 84°K th rou gh ou t th e s im u la t io n u s in g momentum

s c a l i n g . The d e n s i t y was s p e c i f i e d i n such a way t h a t th e average

p r e s s u r e a t th e end o f th e s im u la t io n would be z e ro or n e a r ly s o . For

t h i s purpose t r i a l runs a t d i f f e r e n t d e n s i t i e s w ith 256 p a r t i c l e s were

made f o r 4000 t i m e - s t e p s t o b r a c k e t th e z e r o - p r e s s u r e d e n s i t y a t 84°K.

E s t im a te d z e r o p r e s s u r e d e n s i t i e s were th en used i n th e l a r g e r 500

p a r t i c l e s ru n s . For t h e s e 500 p a r t i c l e runs a l l o f t h e c a l c u l a t i o n s were

perform ed u s in g t h e d ou b le p r e c i s i o n a r i t h m e t i c on th e IBM-3081 D

m achine a t LSU-Baton Rouge.

The computer a lg o r i t h m was t e s t e d u s in g t h e s h i f t e d - f o r c e

p o t e n t i a l * ^ and th e t o t a l e n erg y c o n s e r v a t io n was w i t h in 0. 01% f o r a

t e s t run o f 1000 t i m e - s t e p s (At = 0 . 0 0 2 ) . P r e d ic t e d p r e s s u r e and

i n t e r n a l en erg y were found t o be i n good agreem ent w i th th e e x i s t i n g

29 9s im u l a t i o n data on argon and n i t r o g e n , In a c t u a l p r o d u c t io n runs a

s i t e - s i t e c u t o f f o f r c = 2 .8 5 O was used f o r th e t r u n c a te d p o t e n t i a l and

r e s u l t s f o r t h e p r e s s u r e and i n t e r n a l en erg y were c o r r e c t e d f o r lo n g -

10range i n t e r a c t i o n s u s in g th e c o r r e c t i o n s g iv e n by S in g e r e t a l .

30Weeks e t a!L. have shown t h a t t h e s t r u c t u r e i n dense a tom ic

l i q u i d s i s d e term in ed m o s t ly by th e r e p u l s i v e f o r c e s . I t has been

Page 293: Classical and Statistical Thermodynamics of Solid-Liquid

26931s u g g e s te d t h a t t h i s may a l s o be t h e c a s e fo r m o le c u la r l i q u i d s . Thus,

t o t e s t th e e f f e c t o f a t t r a c t i v e f o r c e s i n m o le c u la r l i q u i d s we have

30perform ed a d d i t i o n a l s im u la t io n s u s in g th e WCA-type r e p u l s i v e o n ly

32 33p o t e n t i a l s u g g e s te d by Sung and C handler and by A b a sca l e t a l . T h is

p o t e n t i a l , 4>0 , i s g iv e n by

and

. = <}>.. + £ o r . . < r .i j i j orp i j m m {2 .1 )

= 0 r. . > r .i j mm

where r . . i s t h e s c a l a r d i s t a n c e betw een th e i and i s i t e s o f m o le c u le s i j

a and p. The p o t e n t i a l i s t h e u s u a l L ennard-Jones ( 1 2 : 6 ) p o t e n t i a l .

We n o te t h a t th e r e f e r e n c e p o t e n t i a l d e f in e d by ( 2 . 7 ) i s somewhat

21d i f f e r e n t than th e r e f e r e n c e p o t e n t i a l u sed by F i s c h e r and Lago

We have s im u la te d w i t h th e above p o t e n t i a l ( 2 . 6 - 2 . 7 ) a l l o f th e

f i v e sy s te m s t h a t were s im u la te d u s i n g t h e f u l l L enn ard -Jones s i t e - s i t e

p o t e n t i a l . System s o f 500 p a r t i c l e s were used and th e s t a t e - c o n d i t i o n s

were th e same as th e p r e v io u s r u n s . A g a in , run l e n g t h s o f 10000 t im e -J-

s t e p s w i th At = 0 .0 0 2 were u s e d . O ther d e t a i l s were k e p t th e same to

a v o id any a m b ig u i t i e s i n th e com p arison s o f computer s im u la t io n r e s u l t s

f o r t h e s e two model p o t e n t i a l s .

R e s u l t s from our m o le c u la r dynam ics s im u la t io n s f o r t h e s e two

p o t e n t i a l m odels are p r e s e n te d and d i s c u s s e d in t h e n e x t s e c t i o n .

34 "F i s c h e r has p r o v id e d us w i t h th e computer a lg o r i th m used i n th e

Page 294: Classical and Statistical Thermodynamics of Solid-Liquid

2 7 02 1F is c h e r and Lago p e r tu r b a t io n th e o ry c a l c u l a t i o n s f o r m ix tu res o f

atom ic and d ia to m ic l i q u i d s . In th e n e x t S e c t io n we a l s o show a com­

p a r i s o n betw een th e r e s u l t s o f one m olecu lar dynamics s im u la t io n and

20r e s u l t s from th e p e r tu r b a t io n t h e o r i e s o f E n ciso and Lombardero and

21F is c h e r and Lago.

Page 295: Classical and Statistical Thermodynamics of Solid-Liquid

3. Thermodynamic Results

271

T im e-averages o f th e p r e s s u r e , P, and th e c o n f ig u r a t io n a l i n t e r n a l

e n e r g y , U, o b ta in e d from m o lecu la r dynamics s im u la t io n o f pure l i q u i d s

and m ix tu res w ith th e f u l l Lennard-Jones p o t e n t i a l , Equation ( 2 . 1 ) , are

shown in Table 1 in reduced u n i t s o f argon. In a l l f i v e c a s e s th e f i n a l

p r e s s u r e i s v e r y c l o s e t o z e r o . In our c a l c u l a t i o n s rep o r te d h e r e ,

f l u c t u a t i o n s i n th e t im e -a v e r a g e s o f th e p r e s s u r e and th e i n t e r n a l

13en ergy were much s m a l le r than th o s e re p o r te d by Wojcik e t a!L. in t h e i r

pure Lennard-Jones d ia to m ic s im u l a t i o n s . Near th e end o f our s im u la ­

t i o n s , f l u c t u a t i o n s in th e p r e s s u r e were u s u a l ly l e s s than or o f th e

o rd er o f AP = ± 0 .0 0 3 and f l u c t u a t i o n s in th e i n t e r n a l energy were l e s s

than All = + 0 .0 0 1 . Perhaps t h i s i s due t o th e f a c t t h a t in th e s im u la ­

t i o n s rep o r te d h e r e system s o f 500 p a r t i c l e s were used w h ile Wojcik e t

13a l . have used o n ly 165 p a r t i c l e s in t h e i r s im u la t io n s . R e s u l t s from

21th e p e r tu r b a t io n th e o ry o f F i s c h e r and Lago a t th e same s t a t e con­

d i t i o n s as in th e s im u la t io n s are a l s o shown in t h i s t a b l e . The

i n t e r n a l energy r e s u l t s from th e p e r tu r b a t io n th e o r y are v e r y c l o s e to

th e s im u la t io n r e s u l t s . The maximum d i f f e r e n c e i s fo r th e c a se o f

n i t r o g e n ; AU = 0 .0 5 1 . The p r e s s u r e r e s u l t s from t h i s p e r tu r b a t io n

th e o r y are a l s o c l o s e to th e s im u la t io n r e s u l t s .

In Table 2 , we show th e d e n s i t y and th e i n t e r n a l energy v a lu e s a t

z e r o p r e s s u r e and 84°K o b ta in e d from our s im u la t io n r e s u l t s (Table 1)

APby c o r r e c t i n g f o r th e p r e s s u r e . For t h i s p u rp o se , we o b ta in e d ( y—)AU 2T’Nand ( -r—) u s in g th e p e r tu r b a t io n th e o r y o f F i s c h e r and Lago a t

P T,N84°K and th e d e n s i t i e s g iv e n i n T ab le 1. These two q u a n t i t i e s were th e n

used t o c o r r e c t th e s im u la t io n d e n s i t i e s and i n t e r n a l e n e r g ie s g iv e n in

Page 296: Classical and Statistical Thermodynamics of Solid-Liquid

272

T a b l e I : M o l e c u l a r dyna mi cs s i m u l a t i o n ( H D ) r e s u l t s a nd p e r t u r b a t i o n

21t h e o r y c a l c u l a t i o n s (PT) a t o m i c s and d i a t o m i c s a t 84°K.i 3

Reduced u n i t s o f a r g o n a r e us e d f o r t h e d e n s i t y , p = po ,* * 3

i n t e r n a l e n e r g y , U = U / e , and p r e s s u r e , P = Po / e

M D P T•V A , JL

P U P U P

N20 . 6 5 9 2 - 4 . 9 2 8 0 . 00 95 - 4 . 8 7 7 0 . 071 6

Ar 0 . 8 4 6 8 - 6 . 1 0 4 0 . 0 3 40 - 6 . 1 0 3 0 . 1 02 4

° 2 0 . 8 7 42 - 6 . 4 7 9 0 . 02 80 - 6 . 5 1 1 0.1981

Ar + N2 0 . 74 41 - 5 . 4 8 3 0 . 0 1 20 - 5 . 4 6 3 0 . 047 5

Ar + 0_ 0 . 8 57 7 - 6 . 3 1 2 - 0 . 0 5 1 - 6 . 3 1 3 0 . 04 39

Page 297: Classical and Statistical Thermodynamics of Solid-Liquid

273

T ab le 1 t o o b t a in th e z e r o - p r e s s u r e v a l u e s . In d o in g so we have assumed

21t h a t such c o r r e c t i o n s o b ta in e d w ith t h e h e lp o f p e r t u r b a t io n t h e o r y

a r e s m a l l and le a d t o n e g l i g i b l e e r r o r . T h is i s j u s t i f i e d b e c a u seJ t , J - JL «A.

A P' (AP' = - 0 . ) i s s m a l l ( l e a d i n g t o Ap < 0 .0 0 1 ) and a l s o b e c a u se

( ^ - ) and ( ^ ) o b ta in e d from p e r t u r b a t io n theory^ * are p ro b a b ly v e r y

c l o s e t o such v a lu e s o b ta in e d from computer s im u l a t i o n . We a l s o r e f e rJL.

t h e re a d e r to F ig u r e s 1 -3 i n R e f . 35 f o r a com parison o f P v s p fo r

pure L ennard-Jones d ia to m ic s o b ta in e d from th e p e r t u r b a t io n th e o r y and

computer s im u l a t i o n .

R e s u l t s p r e s e n te d i n T ab le 2 show t h a t th e m olar volum es p r e d i c t e d

21by th e p e r t u r b a t io n th e o r y o f F i s c h e r and Lago and our s im u la t io n

r e s u l t s are i n good agreem ent f o r a l l f i v e c a s e s . These r e s u l t s haveE

been used t o o b t a in th e e x c e s s m olar volum e, v , and th e e x c e s s

Ee n t h a lp y , h . In T ab le 3 , we show e x c e s s m olar p r o p e r t i e s from v a r io u s

36s o u r c e s : e x p e r im e n ta l r e s u l t s , m o le c u la r dynam ics , t h e p e r t u r b a t io n

20t h e o r y o f E n c is o and Lombardero , and th e p e r t u r b a t i o n th e o r y o f

21F i s c h e r and Lago . A lso shown i n t h i s t a b l e a r e u n c e r t a i n i t i e s i n th e

E Em o le c u la r dynam ics r e s u l t s f o r h and v . We o b s e r v e t h a t th e

21s im u l a t i o n and th e p e r t u r b a t io n t h e o r y o f F i s c h e r and Lago show good

E Eagreem ent f o r v as w e l l as f o r h f o r b o th m ix t u r e s . However, t h e s e

two s o u r c e s are i n agreem ent w ith e x p e r im e n ta l r e s u l t s o n ly f o r t h e c a se

o f th e argon and n i t r o g e n m ix tu r e . For th e c a s e o f argon and oxygen

21m ix tu r e , b o th t h e p e r t u r b a t io n t h e o r y o f F i s c h e r and Lago and our

E E Es im u l a t i o n r e s u l t s show v and h which d i f f e r from t h e e x p e r im e n ta l v

Eand h n o t o n ly i n m agnitude b u t i n s ig n a s w e l l . The p e r t u r b a t io n

20t h e o r y o f E n c is o and Lombardero i s i n com p le te d isa g r e e m e n t w ith our

s im u la t io n r e s u l t s and a g r e e s w i th th e e x p e r im e n ta l d a ta o n ly f o r th e

e x c e s s m olar vo lum e.

Page 298: Classical and Statistical Thermodynamics of Solid-Liquid

274

T a b l e 2: M o l e c u l a r d y n a m i c s r e s u l t s ( W J ) a n d p e r t u r b a t i o n t h e o r y*) 1p r e d i c t i o n s ( P T ) f o r p u r e f l u i d s a n d e q u i m o l a r m i x t u r e s o f

L e n n a r d - J o n e s a t o m i c a n d d i a t o m i c l i q u i d s a t z e r o p r e s s u r e a n d 8 4 ° K . Z e r o p r e s s u r e m o l a r v o l u m e is d e n o t e d b y v a n d U is t h e c o n f i g u r a t i o n a l i n t e r n a l e n e r g y is U.

_ _ _ _ _ _ _ _ _ _ _ Iffl_ _ _ _ _ _ _ _ _ _ _ _ _ P Tv ( c m 3 / m o l ) U ( J / m o l ) v (cin3 / m o l l

* 23 6 . 1 2 - 4 9 0 8 3 5 . 8 5

A r 2 8 . 2 1 - 6 0 6 6 2 8 . 3 4

° 22 7 . 2 4 - 6 4 4 3 2 7 . 1 6

A r + N 2 3 1 . 9 9 - 5 4 5 5 3 1 . 9 2A r + 0. 2 7 . 6 4 - 6 3 0 4 2 7 . 6 6

Page 299: Classical and Statistical Thermodynamics of Solid-Liquid

275

T a b l e 3: C o m p a r i s o n o f t h e e x c e s s p r o p e r t i e s f o r e q u i m o l a r a r g o n +n i t r o g e n a n d a r g o n + o x y g e n m i x t u r e s at z e r o p r e s s u r e a n d 8 4 ° Kf r o m v a r i o u s s o u r c e s : M o l e c u l a r d y n a m i c s s i m u l a t i o n s ( M D ),

21t h e t h e o r y o f F i s c h e r a n d L a g o ( F L ) , t h e t h e o r y o f E n c i s o a n d L o m b a r d e r o ^ 0 ( E L ), a n d e x p e r i m e n t a l r e s u l t s ^ ( E X P T ) .

_ _ _ _ _ _ A r g o n + N i t r o R e n _ _ _ _ _ _ _ _ _ _ _ A r g o n + O x y g e nh E v E h E v E

'i 3( J / m o l ) (cm / m o l ) ( J / m o l ) ( c m / m o l )

E X P T M D F L E L

5 232 ± 520

-4

- 0 . 1 8- 0 . 1 7 ± 0 . 0 2- 0 . 18

- 0 . 2 6

6 0- 5 0 t 5 -41

0 . 1 4 - 0 . 0 9 ± 0 . 0 2

- 0 . 0 9 0 . 1 5

Page 300: Classical and Statistical Thermodynamics of Solid-Liquid

276

T a b l e 4: M o l e c u l a r d y n a m i c s s i m u l a t i o n r e s u l t s f o r p u r e l i q u i d s a n de q u i m o l a r m i x t u r e s u s i n g t h e W C A - t y p e r e f e r e n c e p o t e n t i a l . U n i t s a r e as in T a b l e 1 a n d t h e t e m p e r a t u r e is 8 4 ° K .

P U P

N 20 . 6 5 9 2 0 . 6 8 3 1 4 . 5 0 2

A 2 0 . 8 4 6 8 0 . 7 0 8 9 6 . 3 7 3

° 20 . 8 7 4 2 0 . 9 0 1 3 7 . 7 5 7

A r + N,, 0 . 7 4 4 1 0 . 7 5 3 B 5 . 3 8 1A r + 0_ 0 . 8 5 7 7 0 , 7 9 0 7 6 . 9 0 0

Page 301: Classical and Statistical Thermodynamics of Solid-Liquid

i n

M olecu lar dyamics r e s u l t s f o r l i q u i d s and m ix tu res modeled by th e

WCA-type r e fe r e n c e p o t e n t i a l g iv e n by E q u ation s ( 2 . 6 - 2 . 7 ) are shown inA

T able 4 . The la r g e p o s i t i v e v a lu e o f P i n t h i s c a se shows th e e f f e c t

o f th e removal o f th e a t t r a c t i v e f o r c e s in l i q u i d s . We have u t i l i z e d

th e ’’s i t e - s i t e " r a d ia l d i s t r i b u t i o n f u n c t io n o b ta in e d from t h e s e

r e f e r e n c e p o t e n t i a l s im u la t io n s to p r e d i c t th e c o n f ig u r a t io n a l i n t e r n a l

energy o f l i q u i d s modeled by th e f u l l Lennard-Jones p o t e n t i a l ( 2 . 1 ) .

For t h i s purpose we u t i l i z e th e r e l a t i o n s h i p

U = 8np 12 x x p J g ^ ( r . . ) 4>. . r2 . d r . . ( 2. 8)LJ K or p J 50fp i j ' i j x j i j

where r . . i s th e s i t e - s i t e d i s t a n c e , g „ i s th e s i t e - s i t e r a d i a l d i s t r i -i j

b u t io n fu n c t io n o b ta in e d from th e r e fe r e n c e f l u i d s im u l a t i o n s , and .J

i s th e f u l l Lennard-Jones p o t e n t i a l ( 2 . 1 ) . V alues o f th e c o n f ig u r a ­

t i o n a l i n t e r n a l en ergy p r e d ic t e d by ( 2 . 8 ) are shown in Table 5 . These

p r e d ic t e d v a lu e s are in e x c e l l e n t agreem ent w ith th e "exact" v a lu e s a l s o

shown in Table 5 ( a l s o l i s t e d in Table 1 ) . The maximum e r r o r i sJ*

AU ^ 0 . 0 6 which i s a p p rox im ate ly one p e r c e n t o f th e c o n f ig u r a t io n a l

i n t e r n a l en erg y .

Page 302: Classical and Statistical Thermodynamics of Solid-Liquid

T a b l e 5: Compar i son o f t h e c o n f i g u r a t i o n a l i n t e r n a l e n e r g y p r e d i c t e d

by t h e E q u a t i o n ( 2 . 8 ) , Upred, and t h e " e x a c t " v a l u e s , Ue xac t ,

o b t a i n e d from s i m u l a t i o n s u s i n g f u l l L e n n a r d - J o n e s p o t e n t i a l

( l i s t e d i n T a b l e 1) . U n i t s a r e a s i n T ab l e 1 and t he

t e m p e r a t u r e i s 86°K.

U p r e d U e x a c t

N 2- A . 8 6 - 6 . 9 2 8

A r - 6 . 0 6 - 6 , 1 0 6

° 2- 6 . 6 2 - 6 . 6 7 9

A r + N 2 - 5 . 6 3 - 5 . 6 8 3A r + ° 2 - 6 . 2 5 - 6 . 3 1 2

Page 303: Classical and Statistical Thermodynamics of Solid-Liquid

4. Local Structure

279

We have determ ined th e a n g le -a v e r a g e ( c e n t e r - c e n t e r ) p a ir d i s t r i ­

b u t io n f u n c t io n s from m o lecu la r d y n a m ic s ' s im u la t io n s . For d e f i n i t i o n s

o f t h e s e f u n c t io n s we r e f e r th e reader to r e fe r e n c e s 22 and 37. In

F ig u r e 1 (a ,b ,a n d c ) we show c e n t e r - c e n t e r p a ir d i s t r i b u t i o n fu n c t io n s

o b ta in e d from v a r io u s so u r c es fo r th e argon and oxygen m ixtu re a t 84°K

and p" = 0 .8 5 7 7 . We show th e t h r e e p a ir s : °2~Q2’ Ar"02 ’ and Ar-Ar.

D i s t r i b u t i o n f u n c t io n s o b ta in ed from th e p e r tu r b a t io n th e o ry o f F is c h e r

21and Lago and from th e s im u la t io n s o f th e WCA type r e fe r e n c e (e q u a t io n s

(2. 6- 2.7 ) are in good q u a l i t a t i v e agreement n o t o n ly w ith each o th e r bu t

a l s o w ith th e s im u la t io n r e s u l t s f o r th e f u l l Lennard-Jones p o t e n t i a l

(e q u a t io n 2 . 1 ) . However, in th e f i r s t peak r e g io n , r < 5°A, th e p a ir

21d i s t r i b u t i o n f u n c t io n s o b ta in ed from th e th e o ry o f F i s c h e r and Lago

are found t o be b e t t e r than th e WCA typ e r e fe r e n c e p o t e n t i a l d i s t r i ­

b u t io n f u n c t io n when compared w ith th e s im u la t io n r e s u l t s f o r th e f u l l

L ennard-Jones p o t e n t i a l . Beyond th e f i r s t peak r e g io n , th e p e r tu r ­

b a t io n th e o ry and th e WCA-type r e fe r e n c e p a i r d i s t r i b u t i o n fu n c t io n s are

in good agreem ent. P a ir d i s t r i b u t i o n f u n c t io n s f o r th e c a se o f th e

argon and n i t r o g e n m ixture show s im i la r com parisons so we choose n o t to

show t h e s e h e r e . We p o in t out here t h a t th e c e n t e r - c e n t e r g ( r ) o b ta in ed

35from F i s c h e r ' s th e o ry f o r pure Lennard-Jones d ia to m ic s have a lr e a d y

been shown t o be in good agreem ent w ith computer r e s u l t s .

The s i t e - s i t e p a i r d i s t r i b u t i o n f u n c t io n s f o r th e argon and oxygen

m ixture are shown in F igu re 2 (a and b) f o r s i t e p a i r s : 0 - 0 and A r-0 .

The s i t e - s i t e d i s t r i b u t i o n f u n c t io n f o r th e p a ir Ar-Ar i s same as th e

c e n t e r - c e n t e r d i s t r i b u t i o n f u n c t io n shown in F ig u r e 1( c ) which has

Page 304: Classical and Statistical Thermodynamics of Solid-Liquid

a lr e a d y been d i s c u s s e d . We o b se r v e good q u a l i t a t i v e agreem ent betw een

th e s im u l a t i o n r e s u l t s f o r th e WCA-type r e f e r e n c e p o t e n t i a l ( e q u a t io n s

2 . 6 - 2 . 7 ) and th e f u l l L ennard-Jones p o t e n t i a l ( e q u a t io n ( 2 . 1 ) ) . F ig u r e

3 (a and b) shows s i m i l a r com parisons f o r th e c a s e o f th e argon and

n i t r o g e n m ix tu r e . A lthough th e agreem ent i s o n ly q u a l i t a t i v e l y c o r r e c t

i n th e f i r s t peak r e g io n , r < 5°A, we have a lr e a d y shown t h a t th e s i t e -

s i t e p a i r f u n c t i o n s o b ta in e d by u s in g th e WCA-type p o t e n t i a l can make

e x c e l l e n t p r e d i c t i o n s o f th e c o n f i g u r a t i o n a l i n t e r n a l en erg y o f th e

sy s tem s w ith a f u l l L ennard-Jones p o t e n t i a l .

We have a l s o o b served s i m i l a r agreem ents betw een th e s i t e - s i t e p a i r

d i s t r i b u t i o n f u n c t i o n s f o r pure arg o n , n i t r o g e n , and oxygen . A l l t h e s e

3 1 -3 3com p arisons r e i n f o r c e th e argument t h a t in th e c a s e o f m o le c u la r

l i q u i d s , r e p u l s i v e f o r c e s p la y a m ajor r o l e i n d e te r m in in g th e l o c a l

30s t r u c t u r e j u s t as th e y do f o r a tom ic l i q u i d s

Page 305: Classical and Statistical Thermodynamics of Solid-Liquid

281

5. Discussion

We have d em on stra ted t h a t m o le c u la r dynam ics s im u la t io n s can be

used t o s tu d y m ix tu r e s o f m o le c u la r l i q u i d s . E x c e ss m olar p r o p e r t i e s

have been o b ta in e d f o r argon + n i t r o g e n and argon + oxygen eq u im olar

m ix tu r e s w ith r e a so n a b le a c c u r a c y . In our com parisons o f th e therm o­

dynamic r e s u l t s , we o b s e r v e t h a t th e p e r t u r b a t io n th e o r y o f F i s c h e r and

21Lago p r o v id e s e x c e s s p r o p e r t i e s which are i n good agreem ent w ith th e

s im u la t io n r e s u l t s . We a l s o o b se r v e t h a t th e th e o r y o f E n c iso and

20Lombardero does n o t compare w e l l w ith s im u la t io n or w ith e x p e r im e n ta l

r e s u l t s . We b e l i e v e t h a t in a d e q u a c ie s i n th e r e p r e s e n t a t i o n o f i n t e r -

m o le c u la r f o r c e s , in th e c h o ic e o f th e p o t e n t i a l model i t s e l f or i n th e

s e l e c t i o n o f m ix ing r u l e s , are th e most p r o b a b le ca u se o f th e

21d i s c r e p a n c i e s betw een s im u la t io n and e x p e r im e n t . F i s c h e r and Lago and

38r e c e n t l y Bohn e t a l . have shown th e e f f e c t t h a t changing th e m ix in g

r u l e s f o r u n l i k e i n t e r a c t i o n p aram eters can have on th e e x c e s s molar

22p r o p e r t i e s in t h e s e m ix t u r e s . Gray and Gubbins have p o in t e d o u t t h a t

th e L ennard-Jones s i t e - s i t e i n t e r a c t i o n model does n o t v e r y w e l l r e p r e ­

s e n t th e lo n g -r a n g e i n t e r a c t i o n s in t h e s e l i q u i d s . Thus i t i s d i f f i c u l t

t o know what i s c a u s in g th e d i s c r e p a n c i e s m entioned ab ove , e s p e c i a l l y ,

s i n c e th e e x c e s s m olar p r o p e r t i e s are s m a l l in m agn itude . N e v e r t h e l e s s ,

we b e l i e v e t h a t our s im u la t io n r e s u l t s are an e x c e l l e n t t e s t f o r

p e r t u r b a t io n t h e o r i e s s i n c e th e i n t e r m o le c u la r f o r c e law has been

removed as an unknown.

Our com p arisons o f th e p a i r d i s t r i b u t i o n f u n c t i o n s show t h a t i n th e

c a s e o f m o le c u la r l i q u i d s , pure and m ix t u r e s , t h e l o c a l s t r u c t u r e i s

d eterm in ed p r i m a r i ly by th e r e p u l s i v e f o r c e s and t h a t a t t r a c t i v e f o r c e s

Page 306: Classical and Statistical Thermodynamics of Solid-Liquid

282

p la y o n ly a minor r o l e . F u r th e r , th e p a ir c o r r e l a t i o n s o b ta in ed from

r e p u l s i v e o n ly p o t e n t i a l s can a d e q u a te ly p r e d i c t m ic r o s c o p ic p r o p e r t i e s

o f l i q u i d s w ith more r e a l i s t i c p o t e n t i a l s . T h is i s in agreement w ith

33th e c o n c lu s io n s o f A b asca l e t a l . who have s u c e s s f u l l y u t i l i z e d the

Monte Carlo p a ir c o r r e l a t i o n f u n c t io n s f o r hard d ia to m ic s to p r e d i c t

th e p r o p e r t i e s o f pure Lennard-Jones d ia to m ic s .

I t would be i n t e r e s t i n g to s tu d y m ix tu res such a s th e argon and

e th an e m ixture fo r which e x c e s s molar p r o p e r t i e s are c o n s id e r a b ly l a r g e r

than th e m ix tu res s tu d ie d h e r e . P e r tu r b a t io n c a l c u l a t i o n s f o r some o f

38t h e s e m ix tu res have a lr e a d y been performed . P o s s i b i l i t i e s fo r s tu d y ­

in g th e e f f e c t s o f in te r m o le c u la r param eters such as th e e lo n g a t io n

l e n g t h , H , on e x c e s s molar p r o p e r t i e s a l s o e x i s t . I t would a l s o be

39i n t e r e s t i n g to extend e x i s t i n g l im i t e d s im u la t io n s o f d ia to m ic l i q u i d

m ixtu res to o b ta in e x c e s s p r o p e r t i e s .

Page 307: Classical and Statistical Thermodynamics of Solid-Liquid

Acknowledgements

283

SG would l i k e t o thank P r o f . J . M. H a i le f o r h i s gu idance w ith th e

s im u la t io n o f d ia to m ic l i q u i d s and P r o f . J . F i s c h e r f o r su p p ly in g h i s

p e r tu r b a t io n th e o r y programs. An award o f a p o s t d o c t o r a l f e l l o w s h i p to

SG by th e Department o f Chemical E n g in e e r in g , LSU-Baton RoUge, and

p a r t i a l f i n a n c i a l support to JEC by th e S h e l l Companies Foundation and

th e DOE, P i t t s b u r g h Energy Technology C enter under gran t

#DE-FG22-84PC70784, i s g r a t e f u l l y acknowledged.

Page 308: Classical and Statistical Thermodynamics of Solid-Liquid

Litera ture Cited

1 . G. A. Mansoori and J . M. H aile in M olecular-Based Study o f F l u i d s , J . M. H aile and G. A. Mansoori, e d s . , ACS Advances in ChemistryS e r ie s , Vol. 204, ACS, Washington (1983).

2 . G. C. M aitland, M. Rigby, E. B. Smith and W. A. Wakeham, I n te r -m olecular F o r c e s , Chap. 8, Clarendon P r e ss , Oxford (1981).

3. D. W. Wood in Water: A Comprehensive T r e a t i s e , F. Franks, E d .,Plenum P r e s s , NY (1979).

4 . T. A. Weber, E. Helfand and Z. R. Wasserman in Molecular-BasedStudy o f F l u i d s , J . M. H aile and G. A. Mansoori, e d s . , ACS Advancesin Chemistry S e r i e s , v o l . 204, ACS, Washington (1983): See a lso thereview by G, T. Evans in t h i s book.

5 . D. Levesque, J. J. Weis, and J . P. Hansen in Monte Carlo Methodsin S t a t i s t i c a l P h y s ic s , K- Binder, e d . , S pringer-V erlag , NY (1979).

6. K. E. Gubbins, K. S. Shing, and W. B. S t r e e t t , J. Phys. Chem., 87,4573 (1983).

7. S. Gupta, D octoral D is s e r t a t io n , Clemson U n iv e r s ity (1984).

8. J. B arojas , D. Levesque and B. Quentrec, Phys. R ev ., A7 1092(1973).

9. P. S. Y. Cheung and J . G. Powles, Mol. P h y s . , 30, 921 (1975).

10. K. S in g e r , A. Taylor , and J . V. L. S in ger , Mol. P h y s . , 33, 1757(1977).

11. W. B. S t r e e t t and D. J . T i l d e s l e y , Proc. Roy. S o c . , A355, 239(1977)

12. S. Romano and K. S in g er , Mol. P h y s . , 3]_, 1765 (1979).

13. M. Wojcik, K. E. Gubbins and J . G. Powles, Mol. P h y s . , 45 , 1209(1982 ).

14. B. G u i l lo t and Y. G uissan i, Mol. P h y s . , 54, 455 (1985).

15. S. S. Murad and K. E. Gubbins in Computer Modeling o f M atter, P.Lykos, e d . , ACS Symposium S e r i e s , 86, ACS, Washington (1978).

16. W. B. S t r e e t t , D. J . T i l d e s l e y , and G. S a v i l l e in Computer Modelingo f M atter , P. Lykos, e d . , ACS Symposium S e r ie s , 86, ACS, Washington(1978)

17. D. F. Coker and R. 0 . Watts, Mol. P h y s . , 44 , 1303 (1981).

18. E. F. O 'Brien, Mol. P h ys . , 26 , 453 (1973).

- 2 8 ( f -

Page 309: Classical and Statistical Thermodynamics of Solid-Liquid

2 8 5

19. K. Nakanishi, H. Tanaka, and H. Touhara in Chemical Engineering Thermodynamics, S. A. Newman, e d . , Ann Arbor Sc ien ce , Ann Arbor, MI (1982).

20. E. Enciso and M. Lombardero, Mol. P hys., AA, 725 (1981).

21. J. F ischer and S. Lago, J . Chem. P hys., 78, 5750 (1983).

22. C. G. Gray and K. E. Gubbins, Theory o f Molecular L iqu ids , Clarendon Press, Oxford (198A).

23. C. W. Gear, Numerical I n i t i a l Value Problems in Ordinary D if feren ­t i a l Equations, P r e n t ic e -H a ll , Englewood C l i f t s , NJ (1971).

2A. D. J . Evans, Mol. Phys., 3A, 317 (1977); D. J. Evans and S. Murad, Mol. Phys., 3A, 327 (1977)..

25. J. M. Haile and S. Gupta, J . Chem. Phys., 79, 3067 (1983).

26. S. M. Thompson, K. E. Gubbins, J . P. R. B. Walton, R. A. R. Chantryand J. S. Rowlinson, J. Chem. P hys . , 81, 530 (198A).

27. W. W. Wood in Physics o f Simple L iq u id s , H.N.V. Temperley, J . S. Rowlinson and G. S. Rushbrooke, e d s . , North-Holland, Amsterdam, 1968.

28. L. V e r le t , Phys. Rev., 159, 98 (1967).

29. J. J. N ico la s , K. E. Gubbins, W. B. S t r e e t t , and D. J . T i ld e s le y ,Mol. Phys., 37 1A29 (1979).

30. J . D. Weeks, D. Chandler, and H. C. Anderson, J . Chem. Phys., 5A, 5237 (1971).

31. D. Chandler, Ann. Rev. Phys. Chem., 29, AAl (1978).

32. S. Sung and D. Chandler, J . Chem. P hys., 56, A989 (1973).

33. J. L. F. Abascal, C. Martin, M. Lombardero, J. Vazquez, A. Banon and J . Santamaria, J. Chem. P h ys . , 82, 2AA5 (1985).

3A. J. F isch er , P r iva te Communication (1985).

35. J. F isch er , J . Chem. P hys., 70, 5371 (1980).

36. J , S. Rowlinson and F. L. Swinton, Liquids and Liquid M ixtures, 3rd e d . , Butterworth, London (1982).

37. W. B. S t r e e t t and K. E. Gubbins, Ann. Rev. Phys. Chem., 28, 373 (1977).

38. M. Bohn, S. Lago, J . F isch er and F. Kohler, Preprint, F lu id Phase E q u il ib r ia (1985).

39. D. J. T i ld e s le y , E. Enciso and P. S e v i l l a , Chem. Phys. L e t t . , 100, 508 (1985).

Page 310: Classical and Statistical Thermodynamics of Solid-Liquid

286

Figure Captions

F igu re 1. ( a , b , and c ) : A n g le -averaged p a i r d i s t r i b u t i o n f u n c t io n s in

th e argon and oxygen m ixture from m ole c u la r

dynamics s im u la t io n o f th e f u l l Lennard-Jones

p o t e n t i a l s ( l i n e s ) and th e WCA-type r e fe r e n c e

p o t e n t i a l s ( c i r c l e s ) and from the p e r tu r b a t io n

21th e o r y o f F i s c h e r and Lago ( t r i a n g l e s ) .

F igu re 2 (a and b ) : S i t e - s i t e p a ir d i s t r i b u t i o n fu n c t io n s in th e

argon and oxygen m ixture from m o lecu la r

dynamics s im u la t io n s o f th e f u l l LJ p o t e n t i a l s

( l i n e ) and, th e WCA-type r e fe r e n c e p o t e n t i a l s

( c i r c l e s ) .

F ig u r e 3 (a and b ) : S i t e - s i t e p a ir s d i s t r i b u t i o n f u n c t io n s in th e

argon and n i t r o g e n m ixtu re from m o le c u la r

dynamics s im u la t io n s o f th e f u l l LJ p o t e n t i a l s

( l i n e ) and, th e WCA-type r e fe r e n c e p o t e n t i a l s

( c i r c l e s ) .

Page 311: Classical and Statistical Thermodynamics of Solid-Liquid

g (r

)

Fig* 1(a) Gupta A Coon

in

©OJ

I f )

o

3 . 0 8 .0 1 0 . 0or /A

287

Page 312: Classical and Statistical Thermodynamics of Solid-Liquid

Figure 1(H) Gupta and Coon

e.o

ro00CO

Page 313: Classical and Statistical Thermodynamics of Solid-Liquid

I

F ie . 1 (c ) Gupta & Coon

m

A r - A ru>

<- inCT>

7 . 0 e.o5 . 0 G.O3 .0

Page 314: Classical and Statistical Thermodynamics of Solid-Liquid

2.5

F i g . 2 ( a ) G u p t a & C o o n

Page 315: Classical and Statistical Thermodynamics of Solid-Liquid

2.0

2.5

F ig . 2(b) Gupta & Coon

A r - 0

U)O '

P o

a . o o.o 10.05 . 03 . 0o

• r / A

PO10

Page 316: Classical and Statistical Thermodynamics of Solid-Liquid

F ig . 3 (a ) Gupta & Coon

CM

If)

7 . 0 10.05 . 0 6 . 03 . 0o

, r / A

292

Page 317: Classical and Statistical Thermodynamics of Solid-Liquid
Page 318: Classical and Statistical Thermodynamics of Solid-Liquid

b. D iscuss ion of th e R e s u l t s in the Paper,

The work p r e s e n te d in t h i s paper r e p r e s e n t s th e e x ten s io n o f of our

m o lecu la r ' dynamics code to mix tures o f 1- c e n t e r and 2- c e n t e r

Lennard-Jones molecu les and th e subsequent use of t h a t code to t e s t the

two r e c e n t p e r t u r b a t i o n t h e o r i e s of F i sche r and Lago (1983) and Enciso

and Lombardero (1981) . The r e s u l t s show t h a t the th e o ry of F i s c h e r and

Lago a re in b e t t e r agreement w i th s im u la t ion r e s u l t s in p r e d i c t i n g the

excess volume and excess i n t e r n a l energy o f m ix tu res o f argon and n i t r o ­

gen or argon and oxygen. The paper a l s o shows t h a t th e r a d i a l d i s t r i b ­

u t i o n f u n c t i o n s f o r th e m ix tu res o b ta in ed from our s im u la t i o n r e s u l t s

agree q u i t e well w ith th e ones ob ta ined using a r e f e r e n c e system s i m i l a r

t o th e one chosen by F i s c h e r and Lago. This i n d i c a t e s t h a t t h e i r choice

o f r e f e r e n c e system was a good one and he lps to e x p l a in why t h e i r th e o ry

gave such good agreement.

The only l i m i t a t i o n o f t h i s paper was t h a t th e s im u l a t i o n s were p e r ­

formed in th e NVT ensemble. Because of t h a t , a t r i a l and e r r o r procedure

had to be used t o o b ta in s im u la t i o n ' r e s u l t s a t z e ro p r e s s u r e , which i s

t h e c o n d i t i o n f o r t h e comparison of th e r e s u l t s t o th e t h e o r i e s . While

t h i s i s not a s e r i o u s l i m i t a t i o n , i t i s i n e f f i c i e n t and r e s u l t s in a

waste of computing t ime t h a t can be e l im i n a t e d by making th e s im u l a t i o n s

in th e NPT ensemble.

- 294 -

Page 319: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 10, SECTION B.

Enciso, E. and Lombardero, M., Mol. P h y s . , (1981) , 44, 725.

F i s c h e r , J . and Lago, S . , J . Chem. P h y s . , (1983) , 78, 5750.

- 295 -

Page 320: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 11

ISOTHERMAL-ISOBARIC MOLECULAR DYNAMICS SIMULATIONS OF

MOLECULAR FLUIDS AND THEIR MIXTURES

a. M anusc r ip t p u b l i s h e d in Chemical P h y s i c s , 113, 43,

(1987) .

- 296 -

Page 321: Classical and Statistical Thermodynamics of Solid-Liquid

2 9 1

1 0 / 7 / 8 8

Attn: Chemical PhysicsPhysical Sciences and Engineering Division Elsevier Science Publishers P.O. Box 2111000 AE Amsterdam, Netherlands Dear Sirs:

I am writing to you in connection with a paper that I coauthored recently in your journal. The paper is:"Isothermal-isobaric Molecular Dynamics Simulation of' Diatomic Liquids and Their Mixtures."

by J. E. Coon, S. Gupta, and E. McLaughlinwhich appeared in Chemical Physics, 113, 43-52, (1987).

The purpose of this letter is to request a letter from you allowing this paper to be included in my Ph.D. dissertation as a chapter. My college requires the letter because the dissertation will be microfilmed by University Microfilms Inc.. They will distribute it on a Request Only Basis to other researchers. The letter in no way affects your copyright to the paper.

The letter should specifically state the conditions I have given in the above paragraph.

As I am scheduled to graduate in December of this year and must have my dissertation (letters included) in by November 25, 1988, I request that you respond to this letter as quickly as possible. Thank you in advance for your timely response.

Sincerely,

Permission granted subject topermission from the authorfs) John E . Coonand to firft acknowledgement of 'he source.■Elsevfcr Science Publishers rhysical - ..^ E n gin eerin g Div<

. 1 *

Page 322: Classical and Statistical Thermodynamics of Solid-Liquid

29<3

ISOTHERMAL - ISOBARIC MOLECULAR DYNAMICS SIMULATION

OF MIXTURES OF DIATOMIC LIQUIDS

by

J. E. Coon

S. Gupta*

and

E. McLaughlin

Department o f Chemical Engineering

Louisiana S ta te U niversity

Baton Rouge, Louisiana 70803

USA

* Author for Correspondence

Running T i t le - Isothermal - iso b a r ic molecular dynamics

Manuscript pages - 28

Date prepared - 3-21-86

Figures - 8

Tables - 4

Page 323: Classical and Statistical Thermodynamics of Solid-Liquid

2 9 9

Abstract

Molecular dynamics sim ulation has been extended to the isotherm al-

i s o b a r ic ensemble for systems o f sp h er ica l Lennard-Jones and 2-cen ter

Lennard-Jones m olecules for pure f lu id s as w ell as binary m ixtures. The

pure f lu i d s im ulations have been used to compare the r e s u l t s obtained

from variou s ensemble averages for two model diatomic f lu id s . For the

m ixtures , the excess in te r n a l energy and excess volume o f the mixtures

have been ca lc u la ted and compared with va lues obtained using previous

NVT m olecular dynamics and perturbation theory for equimolar mixtures o f

argon -n itrogen , argon-oxygen, and n itrogen-oxygen. Comparisons o f the

s i t e - s i t e and c e n ter -cen ter rad ia l d i s t r ib u t io n functions are a lso

shown.

Page 324: Classical and Statistical Thermodynamics of Solid-Liquid

30C

1. Introduction

Molecular dynamics i s a method for sim ulating the properties of

matter on a computer by so lv in g the Newtonian equations of motion for a

system of a few hundred molecules in te r a c t in g through a known force law.

The method was pioneered in the la te 1950's by Alder and Wainwright [ 1]

and has been improved continuously s in ce that time. E x ce l len t reviews of

the subject are a v a i la b le in the l i t e r a t u r e [References 2 - 4 ] .

Many o f the p o te n t ia l a p p lica t ion s for molecular dynamics simula­

t ion s involve changes from one phase to another or e q u i l ib r ia between

d i f f e r e n t phases. These types of problems are very d i f f i c u l t to study

using conventional NVE molecular dynamics s im ulations because they are

i n t r i n s i c a l l y nonconstant volume processes and they are o ften constant

temperature processes as w e l l . There are a lso some properties which are

e a s ie r to c a lcu la te a t constant temperature and pressure ( e . g . , constant

pressure heat capacity ) and u n t i l r e ce n t ly , NPT sim ulations could only

be accomplished using the Monte Carlo method [5 ] . Thus, there i s a need

for the development o f iso th erm al- isob ar ic molecular dynamics s im ulations

to be used to in v e s t ig a te these phenomena.

Andersen [6] extended the sim ulation o f pure atomic l iq u id s to

constant pressure (NPH ensemble). This was accomplished by considering

the c e l l to be surrounded by a f l e x i b l e membrane with a very low mass.

This membrane was allowed to expand or contract uniformly in a l l

d ir e c t io n s in response to an imbalance between the in tern a l and external

pressu res . While the system pressure was f lu c tu a t in g with tim e, the

average value converged to the s p e c if ie d ex terna l pressure. The

equation o f motion for the membrane was solved along with the

Page 325: Classical and Statistical Thermodynamics of Solid-Liquid

equations o f motion of the m olecules. The equations were derived using

a scaled coordinate system for the volume element. Even though the

actual volume element i s con stan tly changing in s i z e , the sca led element

i s o f uniform s i z e . This means that the sca led system i s a c tu a lly being

simulated in the microcanonical (or canonical for the constant tempera­

ture case) ensemble and has the same equations o f motion as those

ensembles, which have been given prev iou sly [2 - 4 ] , Simulations in

t h i s ensemble were f i r s t performed by H aile and Graben [7 ] . This method

has been genera lized by Nos^ and Klein [8] and by Parine llo and Rahman

[9] who developed a method that allows the volume element to

change shape as w e l l as s i z e .

Extensions o f the monatomic f lu id s im ulations to constant

temperature have been made by Nos4 [10 ], Brown and Clarke [11 ], Heyes

[12 ] , and H aile and Gupta [1 3 ] . The s im plest technique for accom­

p l is h in g t h is i s c a l le d "momentum sc a lin g ." At each time s te p , the

t o t a l k in e t ic energy o f the molecules i s sca led to conform to the

fo llow in g expression:

\ 1 m. ( f £ • r . ) = | NkT. ( 1. 1)i

Equation 1.1 ap p lies to sp h er ica l molecules and analogous equations are

e a s i l y derived for more complicated m olecules.

Combination o f the methods to constrain pressure and temperature

lead s to the desired iso th erm a l- iso b a r ic s im u la tion s . Isothermal-

i so b a r ic molecular dynamics sim ulations have been performed by Heyes

[1 2 ] , Brown & Clarke [1 1 ] , H aile [14 ] , and Gupta [15] for systems of

Lennard-Jones spheres. In p a r t ic u la r , the l a s t two references involve

s im ulating mixtures o f sp h er ica l Lennard-Jones l iq u id s . “ Evans'and

Page 326: Classical and Statistical Thermodynamics of Solid-Liquid

Morriss [16] have proposed and tes ted an a l te r n a t iv e method for isotherm al-

i so b a r ic s im ulations using the D o l l ' s tensor Hamiltonian. This method

has been used by Ely [17] to study mixtures o f Lennard-Jones l iq u id s .

Berendsen e t a l . [18] have a l s o proposed a method which invo lves

coupling the system to an ex tern a l bath.

Very few iso th e r m a l- iso b a r ic or i s o b a r ic - i s o e n th a lp ic s im ulations

o f molecular l iq u id s are a v a i la b le . Swope and Andersen [19] have used

a p a r t ia l l y r ig id model for water in conjunction with Andersen's method

[6] to study the s o l u b i l i t y o f gases in water. Nos£ and Klein [8] have

extended Andersen's method to r ig id polyatomic l iq u id s and reported

r e s u lt s for pure s o l id n itrogen . Ryckaert and Ferrario [20] have

m odified the method o f Nos£ and Klein using the method o f contra in ts for

r ig id and p a r t ia l l y r ig id m olecules. The method o f Berendsen e t a l .

[18] a lso invo lves the method o f c o n s tr a in ts . R ecently , Ladd [21] has

extended the D o l l ' s tensor Hamiltonian to molecular l iq u id s and th is

method a lso o f fe r s a future p o s s i b i l i t y .

In t h is paper we have used Andersen's method in conjunction with

the momentum s c a l in g procedure for i so th e r m a l- iso b a r ic molecular dynamics

s im u la tion s o f mixtures o f diatomic l iq u id s . The constant pressure part

o f our algorithm i s r e a l ly a s im p lica t ion for uniform d i la t i o n o f the

method of Nos£ and Klein [8] . In the next s e c t io n we describe the

equations o f motion used in th ese s im u la tion s . In the th ird s e c t io n we

d iscu ss the r e s u l t s for pure diatomic l iq u id s obtained using d i f f e r e n t

s im ulation algorithms and in the fourth s e c t io n we compare isotherm al-

i so b a r ic s im ula tion r e s u l t s for mixtures to those obtained p rev iou sly

using NVT sim ulations and to perturbation theory.

Page 327: Classical and Statistical Thermodynamics of Solid-Liquid

30 J

2- Simulation Methodology

As in a previous paper (2 2 ] , we have modeled nitrogen and oxygen

using a pairw ise a d d it ive 2 -centered Lennard-Jones s i t e - s i t e p o te n t ia l .

The interm olecular p o te n t ia l between the two m olecules i s given by:

* (roAV = f 4 eap (5?r - en ( 2 .1 )

where r . . i s the sca lar d is tan ce between s i t e i o f molecule a and s i t e i

o f molecule £1 and and cr^ are the LJ energy and s iz e parameters,

r e s p e c t iv e ly . The d istance r „ depends on the r e la t iv e o r ie n ta t io n s of

the two m olecules, g iven by iuq and in , and a lso on the length betweenif if

the two cen ters o f a m olecule, given by 2 = 2 /cr and 2 = L / o . a .u Of OfOf p p p p

Argon was represented as a Lennard-Jones sphere p o te n t ia l in the usual

fash ion . The values o f £, c, and 2" used in t h i s study are the same

as those used e a r l i e r [22] and are presented for convenience in Table 1.

The values for the cross parameters, and were obtained from the

B erthe lo t and Lorentz ru les given below:

‘ of = <“« ’ ( 2 ' 2>and

* ■* <0«a + V . ( 2 ' 3>

As pointed out e a r l i e r , Nos£ and K lein [8] have extended the

Hamiltonian o f Andersen [6] for molecular l iq u id s . This Hamiltonian, for

the case o f uniform d i la t io n , i s g iven by

Page 328: Classical and Statistical Thermodynamics of Solid-Liquid

30 4-

T a b l e 1: V a l u e s o f t h e p a i r p o t e n t i a l p a r a m e t e r s u s e d f o r thet w o - c e n t e r e d s i t e - s i t e L e n n a r d - J o n e s m o d e l p o t e n t i a l

P a i r (c/’k ) / K g / A £"A r - A r 1 1 9 . 8 t 3 . 4 0 5 0 . 0N 2 - N 2 3 7 . 2 9 3 . 3 1 0 0 . 3 2 9 20., - 0 2 4 4 . 6 0 3 . 0 9 0 0 . 3 2 9 0

C r o s s - P a r a m e t e r s

P a i r

* i

•H40 g. ./ i

A r - N 2 3 3 . 4 2 3 . 3 5 7 5A r - 0 2 3 6 . 5 5 3 . 2 4 7 5N _ - 0 , 4 0 . 7 8 3 . 2 0 0 0

t W h e n u s e d in t h e 2 C - L J s i m u l a t i o n s , a r g o n is m o d e l e d a s a d i a t o m i c m o l e c u l e w i t h £ * = 0.0. S i n c e t h i s r e s u l t s i n t h e p o t e n t i a l b e i n g t h e s u m o f f o u r t e r m s , e / k = 1 1 9 . 8 / 4 . 0 = 2 9 . 9 5 K is u s e d.

Page 329: Classical and Statistical Thermodynamics of Solid-Liquid

3C5

H = \ I m. (r . • r . ) + I I . (uu • uj )1 -l -l l - p . - p .*i * l * i

+ I I 4T. . (r . .iu.uj.) + k M V2 + PV i <j U U U

(2 .4 )

where m, I , uj, and r are the mass, moment o f in e r t ia , angular v e lo c i t y ,

and t r a n s la t io n a l v e lo c i t y , r e sp e c t iv e ly and 4* j > V, and M are the

p o te n t ia l between molecules i and j , the applied external pressure , the

volume, and the mass o f the membrane, r e sp e c t iv e ly .

The equations of motion r e su lt in g from t h is are given by

where r, £ , and T are the p o s i t i o n , momentum and torque, r e sp e c t iv e ly ,

and ik i s 3 for a sp h er ica l molecule and 5 for a diatomic molecule. In

a l l o f the above, the angular v e l o c i t i e s and torques are expressed in -

the body-fixed system of coordinates (p r in c ip a l a x i s ) . We point ou t, as

did Nose and Klein [8] , that the o r ie n ta t io n a l equations o f motion are

the same as those in the conventional molecular dynamics. In a l l o f the

above equations, dots represent the t im e-d er iva t ives of the v a r ia b le s .

r . —iBi 1 Vid. 3 - i V1

(2 .5 )

and

( 2 .6 )

and

(2 .7 )

and

(2 . 8 )

Page 330: Classical and Statistical Thermodynamics of Solid-Liquid

3C6

Equation 2 .8 represents the equation of motion o f the membrane that

surrounds the volume element. This equation can be s im p l if ie d in con­

s ta n t temperature s im ulations by u t i l i z i n g the fo llow ing co n stra in t

based on the momentum s c a l in g method:

t , • r . ) + % I I . ( uj1 - 1 - l 1 . i -p .l i i

u.u ) = I kT (2 .9 )

pi i

We can rewrite equation 2 .8 as

V = R - P + pkT - | 2 1 d K ^ . )r. . dr.. .

i<j - i j(2 . 10)

which i s a more convenient but e n t ir e ly equivalent form.

Equations 2.5 and 2 .6 , the tra n s la t io n a l equations o f motion, were

solved using Gear's [23] f i f t h order p red ic to r -co rrec to r algorithm. The

o r ie n ta t io n a l equations o f motion 2.7 were so lved , for the diatomics

on ly , using Gear's [23] fourth order p red ic tor -correc tor algorithm,

u t i l i z i n g the method o f quaternions, which has been shown by Evans [24]

to be free o f s in g u la r i t i e s for r ig id polyatomic m olecules. Per iod ic

boundary conditions and the minimum image c r i t e r i a were applied in the

usual manner [3 ] . A V erlet neighbor l i s t [26] was used with a s i t e - s i t e

truncation o f r = 2.8 a for pure runs and r = 3 .05 o for mixture runs.

The neighbor l i s t was updated every ten t im e -s tep s . V e lo c i t ie s were

resca led a t every time step according to equation 2 .9 to keep the

temperature constant.

A ll o f the s im ulations were s tarted with the molecules arranged in

an FCC l a t t i c e . For the pure f lu id s im u la tion s , an e q u i l ib r a t io n period

Page 331: Classical and Statistical Thermodynamics of Solid-Liquid

3 J7

of 1000 t im e-steps was used to destroy the l a t t i c e and to remove any

e f f e c t s o f the i n i t i a l assignment of v e l o c i t i e s to the m olecules. The

e q u i l ib r a t io n phase was followed by a production run of 8000 t im e-steps.2 kThe t im e-step s iz e used was At'-' = 0 .002 , where t* = t/(ma ft) . This

-15corresponds to approximately 6 .3 x 10 seconds, using m, a, and e for

nitrogen . These s im ulations were performed using 256 molecules and the

s i t e - s i t e p o te n t ia l was truncated at 2.5 a. T ail co rrec t io n s , s im ilar

to those given by Singer e t a l . [27 ] , were applied to the in ternal

energy and pressure to account for the e f f e c t o f in tera c t io n s beyond the

c u t o f f .

For the mixture s im ulations , sp ec ie s la b e ls were assigned at

random. An eq u i l ib r a t io n period of 2000 t im e-step s was used to destroy

the l a t t i c e and to remove any e f f e c t o f the random la b e lin g . Because

the s ta te conditions are c lo se to the m elting point ( e s p e c ia l ly for

argon), the sim ulations were f i r s t run a t a higher temperature for 500

s te p s . The temperature was then reduced to the correct value over a

period o f 100 t im e-steps and the e q u i l ib r a t io n then continued a t the

c o rrec t s t a t e conditions for 1400 more s te p s . This procedure improved

the m elting c h a r a c te r is t ic s of the s im u la tion s . The production runs

were a l l o f 10,000 t im e -s tep s , At- = 0 .002 , as th is longer runlength was

c o n s is t e n t with the previous s im ulations [22, 25 ] . A ll o f the mixture

s im ulations were done at a f ixed temperature o f 84 K and a zero target

pressure for 500 p a r t ic l e s , using a s i t e - s i t e c u to f f for the p o te n tia l

function a t r = 2.8 a , with t a i l corrections applied to the pressure and

in te r n a l energy. A to ta l CPU time of 8 hours was used for each run on

an IBM 3084-QX computer using double p r e c is io n ar ithm etic .

Page 332: Classical and Statistical Thermodynamics of Solid-Liquid

3 J8

3. Pure Fluid Results

We have t e s t e d the i so thermal- isobar ic algorithm by s imulating pure

f lu i d s and comparing the r e su l t s with those obtained for other ensembles.

Two d i f f e r e n t diatomic f lu id s have been modeled, one with SL = 0.3292

and the other with JZ* = 0.6300. These two f lu id s were simulated using

NVE, NVT, NPH, and NPT algorithms. The run condit ions are shown in

Table 2 and the s imulation r e su l t s are presented in Table 3.

An important aspect o f the constant pressure algorithm that i s not

relevant for constant volume simulations i s the s e l e c t i o n of the mass of

the membrane surrounding the volume element. Haile and Graben [7] have

in ve s t iga te d the e f f e c t of changing the membrane mass on the equilibrium

properti es of atomic f lu i d s . They found that the s imulation r e su l t s

were not a f fec ted by the mass of the membrane; however, i t s value did

a f f e c t the rate a t which equilibrium was obtained. In the present paper

two d i f f e r e n t values for M* (the reduced mass of the membrane) have been

used in the s imulations (M* = 0.0001 and M* = 0.0005) of diatomic f lu id s

( see Table 2) . Figures l ( a ) - ( c ) and 2 ( a ) - ( c ) show the e f f e c t o f

changing M* for otherwise i d e n t i c a l runs. Figures 1(a) and 1(b) show

the average pressure versus time for a run with M* = 0.0001. Figure

1(c) shows the volume versus time and only shows the production run

r e s u l t s . In 1 ( a ) , the end o f the eq u i l ib r a t io n period i s indicated by

the v e r t i c a l dashed l in e . Figures 2 ( a ) - ( c ) represent the same r esu l t s

for a run with M* = 0.0005. The f ig ures show that the smaller value of

M* i s more o s c i l l a t o r y but that i t a t t a i n s equilibrium fa s te r than the

larger value. Both runs show reasonable response and an acceptable

Page 333: Classical and Statistical Thermodynamics of Solid-Liquid

3C 7

error l ev e l by the end of the run. Note that the comparison of 1(c) and

2(c) shows the f i n a l volumes of the two runs d i f f e r by approximately

0.5% which was a ty p ic a l deviat ion between runs.

Table 3 can be understood more e a s i l y i f some of the runs are

compared d i r e c t l y . I t should be noted that the error bars given in

Table 3 ind ica te the f luc tuat ion of the r e s u l t s with in a run and are not

meant to imply that the overa l l accuracy i s that good. The e f f e c t of

going from the NPH to the NPT ensemble i s demonstrated by comparison of

runs #1 and #5, runs #2 and #6, runs #3 and #11, and runs #4 and #12.

In these runs, the larges t deviat ions occurring are: pressure, 0.62%;

de n s i ty , 0.82%; and internal energy, 0.68%. Most dev iat ions were sub­

s t a n t i a l l y smaller than these . Even these dev iat ions are we l l within

acceptable l im i t s for molecular dynamics c a l c u l a t io n s . NVT and NPT

r e s u l t s can be compared using #9 and e i t h e r #5, #7, #15, or #16 or by

comparing #11 to #13. The maximum1 deviat ions obtained among these runs

are: pressure, 1.25%; dens i ty , 0.51%; and in te r n a l energy, 0.61%. As

in the f i r s t case, these are qu ite acceptable dev ia t ions . The.NVT and

NVE r e s u l t s can be compared using #9 and #10 or by using runs #13 and

#14. The maximum devia t ions found for these cases are: pressure, 12.4%;

temperature, 0.52%,; and in terna l energy, 0.36%. This comparison shows a

s ubs tant ia l dev iat ion in the ca lcu lated pressures , for reasons which are

not obvious. I t i s worth not ing , however, that we would expect the

pressure to be the r e su l t most s e n s i t i v e to the s imulation method used.

This dev iat ion in pressure between NPT and NVE has a l so been not iced by

Haile and Graben [7] and by Gupta [15) .

Page 334: Classical and Statistical Thermodynamics of Solid-Liquid

.in

1

2

3

4

5

6

1

8

y

10

u

12

13

Table 2: Hun condi t ions for t e s t s imulat ions of pure diatomic f l u ids (13)

isemb 1 e Reduced T a r g e t _ P r e s s u r e (_1)

Reduced S t a r t i n g T e m p e ra t u r e ( 2)

Reduced S t a r l i n g ___ D e n s i t y ( 3 ) _ _

Reduced E l o n g a t i nti_

Nl’ll 0 , 7 7 2 2 .0 00 0 . 5 30 0 .32 92

Kill 0 . 7 7 2 2 . 9 00 0 . 5 50 0 . 3 29 2

Nl’ll 0 . 8 1 0 2 . 7 8 0 0 . 3 3 3 0 . 6 30 0

Nl’ll 0 . 8 1 0 2 . 7 80 0 . 3 33 0 . 6 3 0 0

Nl’T 0 . 7 7 2 2 . 8 4 8 (6) 0 .5 5 5 0 . 3 2 9 2

NI’T 0 .7 7 2 2 . 8 1 2 ( 7) 0 . 55 8 0 . 32 92

NI'T 0 . 7 7 2 2 .8 48 0 . 6 0 .3 292

NPT 0 .7 7 2 2 . 8 12 0 . 6 0 . 329 2

NVT 0 .7 72 2 .8 48 0 . 5 5 5 (10) 0 . 32 9 2

NVE 0. 7 72 2 . 8 4 8 0 .5 55 0 . 3292

NI'T 0 . 8 1 0 2 . 7 7 4 (8) 0 .3 3 7 0 . 6 30 0

NPT 0 . 8 1 0 2. 79 1 ( 9) 0 . 3 3 3 0 . 6 30 0

NVT 0 . 8 1 0 2 . 77 4 0 . 3 3 5 (11) 0 .6300

NVE 0. 8 10 2 . 7 74 0.335 0 . 630 0

NPT 0 . 7 7 2 2 . 8 48 0 . 6 0 . 3 29 2

NPT 0 . 7 7 2 2 .8 4 8 0 . 6 0 .32 92

Page 335: Classical and Statistical Thermodynamics of Solid-Liquid

Table 2: (conL.)

Not es3

( ! ) P* = Pa / e

( 2 ) T - = Tk/c3(3) p * = p a

(4) £■--■ = £ / o4

( 5 ) M * = H a / m

( 6 ) Run //5 was s t a r t e d a t t h e f i n a l t e m p e r a t u r e o f Run Ml.

( 7 ) Run I I6 was s t a r t e d a t tin* f i n a l t e m p e r a t u r e o f Hun II2.

( 8 ) Run I I 11 was s t a r t e d a t t l i e f i n a l t e m p e r a t u r e of Rim II3.

( 9) Hun //12 was s t a r t e d a t t h e f i n a l t e m p e r a t u r e of Hun IIU .

( 1 0) Run 119 was r un a t t h e f i n a l d e n s i t y o f Run 115.

( 1 1) Run I I 13 was r u n a t t h e f i n a l d e n s i t y o f Hun Mil ,

( 1 2) Run M16 i s a d u p l i c a t e o f Run II7 e x c e p t t h a t i t has 2000e q u i l i b r a t i o n s t e p s i n s t e a d o f t h e u s u a l 1000.

( 1 3) A l l v a l u e s i n t a b l e s 2 and 3 a r e r e d u ce d u s i n g t h e mas s ,E and a o f n i t r o g e n .

(NA) Hot a p p l i c a b l e . ite

Page 336: Classical and Statistical Thermodynamics of Solid-Liquid

Table 3: Final r e s u l t s f or t e s t s imulat ions of pure diatomic l iqu ids

F i n a l Reduced F i n a l Reduced F i n a l Reduced F i n a l ReducedRun fl F.nseiubl e T e m p e ra t u r e D e n s i I y P r e s s u r e I n t e r n . >1 Energy

1 NPH 2. 84 9 ± 0 . 0 0 3 0 , 55 44 + 0 . 0 00 2 0 . 76 5 ± 0 . 002 - 1 4 .0 5 9 ± 0 . 0 04

5 NPT 2 .8 4 8 0 . 5 54 2 + 0 . 0005 0 . 7 6 6 ± 0 .0 02 -14 .U80 ± 0 . 012

0 NVT 2. 8 48 0 .5552 0 . 7 5 9 ± 0 . 007 -14 .0B5 i 0 .0 02

10 NVE 2 . 8 5 0 ± 0 . 001 0 . 555 2 0 . 675 ± 0 .0 0 5 - 1 4 . 0 8 7 + 0 .0 0 2

7 NPT 2 .8 4 8 0 . 5 5 2 4 ± 0 . 0 00 4 0. 76 5 i 0 .0 03 - 1 4 . 0 0 0 ± 0 .0 13

15 NPT 2.848 0 . 5 55 4 ± 0 .00 05 0 . 7 6 7 ± O.OOH - 1 4 . 1 2 0 i 0 .0 15

lb NPT 2.R4B 0 . 55 3 2 ± 0 . 00 06 0 . 7 6 7 ± 0 .0 02 - 1 4 . 0 2 4 ± 0 .0 1 6

NPII . 2 . 8 1 3 ± 0 . 001 0 .5 576 ± 0 . 000 2 0 . 7 6 / i 0 . 0 04 - 1 4 . 182 1 0 . 0 03

6 NPT 2. 812 0 . 5 6 2 2 + 0 , 0 00 3 0.771 t 0 . 005 - 1 4 . 2 7 9 ± 0 . 0 0 7

B NPT 2. 812 0 ,5631 t 0 .0 004 0 . 76 7 i 0 . 0 0 3 - 1 4 .3 2 7 ± 0 .0 1 3

3 NPH 2 . 7 7 2 ± 0 . 0 0 3 0. 3371 ± 0 . 000 2 0 . 8 0 6 ± 0 . 00 2 - 7 . 6 4 9 ± 0 . 0 0 3

11 NPT 2 .7 7 4 0 . 3 3 5 4 ± 0 . 00 04 0 . 8 0 7 ± 0 . 0 02 - 7 . 6 1 5 ± 0 .007

13 NVT 2 .7 74 0 .3350 0 .7 9 7 ± 0 .0 0 2 - 7 . 63 1 ± 0 . 0 02

14 NVE 2 . 7 6 0 ± 0 .001 0 . 335 0 0 . 76 7 ± 0 .005 - 7 . 6 0 4 i 0 . 0 0 3

4 NPH 2 . 7 9 2 ± 0 . 001 0 , 3 3 3 0 ± 0.0001 0 . 8 0 5 ± 0 .0 0 6 - 7 . 5 7 0 ± 0 ,0 0 3

12 NPT 2. 791 0 . 33 1 5 ± 0 . 0 00 2 0 . 8 1 0 ± 0 .005 - 7 . 5 1 9 t 0 .004

Run Numbers r e f e r t o T a b l e 2.•Va lu e s g i v e n a r e t h e a v e r a g e v a l u e f o r t h e l a s t 1000 t i m e - s t e p s .

Page 337: Classical and Statistical Thermodynamics of Solid-Liquid

3 1 3

A number of other comparisons made in Table 3 are important to the

use fu ln e ss of the method. Runs if7 and #16 compare the e f f e c t o f changing

the length of the e q u i l i b r a t io n period from the usual 1000 t im e-s tep s to

2000 t im e -s t ep s . I t can be seen that the change has very l i t t l e e f f e c t

on the r e s u l t s . Runs #7 and #15 are i d e n t i c a l runs except for the value

of M* used. These are the runs the r e s u l t s of which are presented in

Figures 1 and 2. Within the l i m i t s of the r e s u l t s the choice of M* i s

unimportant. Runs if5 and if7 are i d e n t i c a l except for the s t a r t i n g

d e n s i ty chosen. The r e s u l t s show that s t a r t in g d e n s i ty i s not c r i t i c a l

to the s imulation as long as acceptable run lengths are used for the

e q u i l i b r a t io n period and the production run. All o f these r e s u l t s seem

to i n d i c a t e , w i th in the acceptable error , that any o f the ensembles may

be used r e l i a b l y , depending on the ap p l i c a t io n .

A. Mixture Results

I so therm al- i sobar ic r e s u l t s for pure l iq u id s and equimolar mixtures

o f argon, n i tr oge n , and oxygen a t 84 K and zero pressure are presented

in Table 4. R esu l ts for the con f igu r a t ion a l in t e r n a l energy and the

zero-pressure volume are compared with previous NVT simulation r e s u l t s .

R esu l ts from the two d i f f e r e n t s imulation methods are in c lo s e agreement.

Also shown in Table 4 i s a comparison o f the excess enthalpy and the

ex c es s volume r e s u l t s with not only the NVT s im ulat ion r e s u l t s but a l s o

with the pertu rbation theory o f Fi scher and Lago [28 ] . We note that the

NPT simulation r e s u l t s and NVT s imulation r e s u l t s for excess proper t ie s

Page 338: Classical and Statistical Thermodynamics of Solid-Liquid

T a b l e 4 : Z e r o - p r e s s u r e volume and i n t e r n a l e n e r g y and e x c e s s p r o p e r t i e s o f o p i i n i o l a r M i x t u r e so b t a i n e d from NVT and NPT s i m u l a t i o n s and p c r t u b a t i o n t h e o r y (PT) a t 86 K.

Sys tem V / ( J / g m o l ) v /3

(cm / gmol )

NVT NPT _NVT_ NPT

Ar - 6066 -6058 28.21 28. 25

N2 - 6908 - 6902 3 6 . 1 2 3 6 . 1 2

°2 -6663 -6617 27. 26 27. 34

Ar - -5655 - 5666 31 . 99 32 . 04

Ar - 0 2 - 6306 - 6299 2 7 . 6 4 27 . 65

n 2 - o 2 - 5627 - 5618 3 1 . 4 4 31 . 49

HCX / ( J / g m o l ) veX / (cm^/gmol )

NVT NPT PT NVT NPT

Ar - N2 32±5 35+10 20 - 0 . 1 7 + 0 . 0 2 - 0 . 1 5 + 0 . 0 6

Ar ° 2 -50+5 —61±10 -41 - 0 . 0 9 + 0 . 0 2 - 0 . 1 5 + 0 . 0 6

H2 ° 2 43±5 41 + 10 - - 0 . 2 4 ± 0 , 0 2 - 0 . 2 5 + 0 . 0 6

PT

- 0 . 18

- 0 . 0 9

VT

£

Page 339: Classical and Statistical Thermodynamics of Solid-Liquid

are in e x c e l l e n t agreement, in s p i te of some d i f f eren ces in the molar

properties which tend to cancel out. The d i f ferences are within the

error es t imates in the determination of excess proper t ie s . Furthermore,

these r e s u l t s are al so in good agreement with the theory of Fischer and

Lago [28] . The c a lcu la t ion of excess properties for these mixtures can

be considered to be an ’’acid tes t" of the v a l i d i t y of the simulations

because these resu lt s are extremely s e n s i t i v e to minor changes in the

values o f the t o t a l propertie s from which they are ca lcu la ted . In view

o f t h i s , we f e e l that the r e su l t s obtained by these three methods above

are in e x c e l l e n t agreement. I t i s worth noting that comparison of these

r e s u l t s to the experimental values i s a f r u i t l e s s exe rc i se because i t i s

not known i f the incons is tency o f the comparison i s due to the Lorentz-

Berthole t mixing rules [28, 29] or shortcomings in the model p o te n t ia l

[30] used.

The s i t e - s i t e and the angle-averaged pair d i s t r i b u t io n functions

have a l so been obtained from the NPT simulations . Figures 3 and 4 show

a comparison of these d i s t r ib u t io n functions , for the case o f an

equimolar mixture of nitrogen and oxygen, with those obtained from NVT

s im ula t ions . The pa ir d i s t r ib u t io n function r e su l t s from these two

d i f f e r e n t methods almost overlay each other except i n one case where the

r e s i t s are s t i l l very c lo se to each other in the f i r s t peak region and

c e r t a in ly within the computational error. The r e s u l t s for the other

mixtures, not shown here, give s im i la r agreements. Results for the

l o c a l structure and thermodynamic propertie s c l e a r ly demonstrate that

the i so therm al- isobar ic s imulation can not only be used to simulate

polyatomic f lu i d s but can alsr^be applied to obtain excess properties in

mixtures o f nonspherical molecules .

Page 340: Classical and Statistical Thermodynamics of Solid-Liquid

Acknowledgements

We acknowledge the support of the National Science Foundation

under grant #CPE 83-14224 and the Department o f Energy under grant

#DE-FG22-84PC7Q784 for p a r t i a l funding o f t h i s research and the

S h e l l Co. for a graduate f e l low sh ip to JEC. SG acknowledges the

Department of Chemical Engineering for a postdoctora l f e l lowship

and Dr. W. G. Hoover for he lp fu l d i s c u s s i o n s . The computations

were performed on an IBM 4341-12M in the Chemical Engineering

Department and on an IBM 3084-QX on the LSU - Baton Rouge campus.

Page 341: Classical and Statistical Thermodynamics of Solid-Liquid

317

Literature Cited

1. Alder, B.J. and Wainwright, T . E . , J. Chem. Phys. , 31., 459 (1959).

2. Mansoori, G.A., and Haile , J.M., in Holecular-Based Study ofF l u i d s , J.H. Haile and G.A. Mansoori, e d s . , ACS Advances in Chemistry S e r i e s , Vol. 204, ACS, Washington (1983) and the chapters fo l lowing.

3. Wood, W.W.., in Physics of Simple L iquids , H.N.V, Temperley,J .S . Rowlinson, and G.S. Rushbrooke, e d s . , North-Holland,Amsterdam (1968).

4. Kushick, J. and Berne, B .J . , in S t a t i s t i c a l Mechanics, Part B,B .J . , Berne, e d . , Plenum Press, NY, Chap. 2 (1977) .

5 . McDonald, I .R . , Mol. Phys. , 23, 41 (1972); ib id , 24, 391 (1972).

6. Andersen, H.C., J. Chem. Phys. , 72, 2384 (1980).

7. Hail e , J.M. and Graben, H.W., J. Chem. Phys., 73, 2412 (1980);Mol. Phys. , 40, 1433 (1980).

8. Nose, S. and Klein, M.L., Mol. Phys. , 50, 1955 (1983).

9. P ar in e l lo , M. and Rahman, A. , Phys. Rev. L e t t . , 45, 1196 (1980).

10. Nose, S . , J. Chem. Phys. , 81, 511 (1984).

11. Brown, D. and Clarke, J .H.R. , Mol. Phys. , 51_, 1243 (1984) .

12. Heyes, D.M., Chem. Phys. , 82, 285 (1983).

13. Hail e , J.M. and Gupta, S . , J. Chem. Phys. 79, 3067 (1983) .

14. Hai le , J .M ., Fluid Phase E q u i l . , preprint (1986) .

15. Gupta, S . , Ph.D. D is s er ta t io n , Clemson Univers ity (1984).

16. Evans, D.J. and Morriss, G.P. , Chem. Phys. , TJ_, 63 (1983);87, 451 (1984).

17. Ely, J . , Int . J. Thermodyn., preprint (1986).

18. Berendson, H .J .C . , Postma, J .P.M., van Gunseteren, W.F., Di Nola, A . , and Haak, J . R . , J. Chem. Phys., 81, 3684 (1984) and references therein .

19. Swope, W.C. and Andersen, H.C., J. Phys. Chem., 88, 6548 (1984),

20. Ferrario, M. and Ryckaert, J . p . , Mol. Phys. , 54, 587 (1985) and references there in .

Page 342: Classical and Statistical Thermodynamics of Solid-Liquid

2 1 .

2 2 .

23.

24.

25.

26.

27.

28.

29.

30.

316

Ladd, A .J .C . , Mol. Phys . , 53, 459 (1984) .

Gupta, S. and Coon J . E . , Mol. Phys. , accepted (1986) .

Gear, C.W., Numerical I n i t i a l Value Problems in Ordinary D i f f e r e n t i a l Equations, P r e n t i c e - H a l l , Englewood C l i f f s , NJ (1971).

Evans, D .J . , Mol. Phys . , 34, 317 (1977); i b id , 34, 327 (1977) .

Gupta, S . , Fluid Phase E q u i l . , submitted for p u b l i c a t io n (1986) .

V e r le t , L. , Phys. Rev. , 159, 98 (1967) .

Singer, K . , Taylor, A. and Singer, J .V .L . , Mol. Phys . , 33, 1757 (1977) .

F i scher , J. and Lago, S . , J. Chem. Phys . , 78 , 5750 (1983) .

Maitland, G.C. , Rigby, M., Smith, E. B. , and Wakeham, W.A. , Intermolecular F o r c e s , Clarendon Press , Oxford, Chap. 9 (1981) .

Cheung, P. S . Y. , and Powles, J . G. , Mol. Phys . , 30, 921 (1975) .

Page 343: Classical and Statistical Thermodynamics of Solid-Liquid

3 1 ^

Figure Captions

Figure 1. (a - c ) : The average pressure and volume versus t im e-s tepsfor a run in the NPT ensemble with T* = 2.848,

T& P* = 0 . 772 , 2* = 0 .3292, and M* = 0.0001 (Run #7in Table 2 ) . In ( a ) , the dashed v e r t i c a l l in e marks the end o f the e q u i l i b r a t io n period. In ( c ) , only the production port ion of the run i s presented.

Figure 2. (a - c ) : The average pressure and volume versus t ime-s tepsfor a run in the NPT ensemble with T* = 2.848,P* = 0 . 772 , £* = 0 .3292, and M* = 0.0005 (Run #15 in Table 2 ) . In ( a ) , the dashed v e r t i c a l l i n e marks the end o f the e q u i l i b r a t io n period.In ( c ) , only the production por t ion o f the run i s presented.

Figure 3: S i t e - s i t e pa ir d i s t r i b u t i o n funct ions for anequimolar mixture o f n i trogen and oxygen a t T = 84 K and P = 0. The symbols are NVT r e s u l t s and the l i n e s are NPT r e s u l t s .

Figure 4: Center -center pa ir d i s t r i b u t i o n functions foran equimolar mixture of n i trogen and oxygen at T = 84 K and P =: 0 . The symbols are NVT r e s u l t s and the l i n e s are NPT r e s u l t s .

Page 344: Classical and Statistical Thermodynamics of Solid-Liquid

AVE

n

cu

CL

1 5 0 0 .0 2000.0

T I M E - S T E P S2 5 0 0 .0 3 5 0 0 .05 0 0 .0 3 0 0 0 .0 UOOO.O 3Z0

Page 345: Classical and Statistical Thermodynamics of Solid-Liquid

00

00K-

UJ><

CL

75005500 6500 7000 800060004000 5000T I M E - S T E P S

321

Page 346: Classical and Statistical Thermodynamics of Solid-Liquid

AV

E.

oCD'

CD"

o

> o

7 0 0 0 . 06 0 0 0 . 03 0 0 0 . 0 5 0 0 0 . 02000.0

TIME - STEPS

Page 347: Classical and Statistical Thermodynamics of Solid-Liquid

o'*e o’* 2

o-‘i o'*o

om

- o’e° 3500,02 5 0 0 . 0 3 0 0 0 , 05 0 0 . 0 1000.0 2000.0.0 1 5 0 0 . 0

TIME - STEPS

323

Page 348: Classical and Statistical Thermodynamics of Solid-Liquid

K-

U>

* <r

s _

4 5 0 04 0 0 0 5 0 0 0 5 5 0 0 6 0 0 0 6 5 0 0 7 0 0 0 7 5 0 0 6000T I M E - S T E P S

i

Page 349: Classical and Statistical Thermodynamics of Solid-Liquid

40,0

1)

50.0

46

0.0

470.

0 48

0.0

49

0.0

i T

I (

ll

2000 .0 5 0 0 0 . 0 7 0 0 0 . 03 0 0 0 . 0 6 0 0 0 . 0 8 0 0 0 . 0

TIME - STEPS

Page 350: Classical and Statistical Thermodynamics of Solid-Liquid

02 SI

O'l SO

00 SO

00 SO

00

(J) b

326

N - 0

N -N

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.5C

( r / < r | ( )

Fiqure 3

Page 351: Classical and Statistical Thermodynamics of Solid-Liquid

p.o

0.5

0.0

0.5

0.0

0.5

1.0

1.5

2.0

O J

. I

t

1 t

I

327

2 . 2 5 2 . 5 C2.001.751.501.25.75 1.00

F i g u r e 4

Page 352: Classical and Statistical Thermodynamics of Solid-Liquid

b. Discuss ion of the Resu l t s in the Paper .

The r e s u l t s p r e s en t e d in t h i s paper r e p r e s e n t the ex t ens i on of our

mixture molecular dynamics codes to the NPT ensemble and the subsequent ,

use of them to t e s t t he p e r t u r b a t i o n theory of Bohn e t a l . (1986,1986) .

This p e r t u r b a t i o n theory i s the ex t ens i on of t he F i sche r and Lago theory

to mi xtures of 2 - c e n t e r Lennard-Jones molecules . The r e s u l t s in the

paper show t h a t the t heory r e s u l t s agree q u i t e well wi th the s imul a t i on

r e s u l t s f o r most of the systems even though, f o r many of t he systems

t e s t e d , t he t h e o r e t i c a l r e s u l t s a r e not in agreement wi th the exper ­

imental values f o r those systems. As d i s cus sed in c ha p t e r 8, t h i s means

t h a t t he t heory i s an adequate p r e d i c t o r of the i n t e r a c t i o n s of the mol­

ecu l e s cons ide red ( 2 - c e n t e r Lennard-Jones) bu t t h a t the i n t e r mo l e c u l a r

p o t e n t i a l , along wi th the mixing r u l e s used, a r e inadequa te f o r r e p r e s ­

en t i ng the molecules they a r e being used f o r . This i s not an i nd i c tment

of the t he o ry , only an i n d i c a t i o n t h a t a more complex i n t e r mo l e c u l a r po­

t e n t i a l ( o r more complex mixing r u l e s ) i s needed to p r e d i c t the excess

p r o p e r t i e s of molecules l i k e the ones s t u d i e d . This paper i s an example

of t he u se f u l nes s of computer s i mul a t i on as a source f o r "exac t " r e s u l t s

f o r use in t e s t i n g approximate t h e o r i e s .

- 328 -

Page 353: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 11, SECTION B.

Bohn, M. , F i s c h e r , J . and Kohler , F . , F lu id Phase E q u i l . , (1986) , 31, 232.

Bohn, M., Lago, S . , F i s c h e r , J . and Kohler , F . , Fluid Phase E q u i l . , (1986) , 23, 137.

- 329 -

Page 354: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 12

MELTING AND FREEZING IN ARGON

a. Work of Nose' and Yonazawa

In 1985, S. Nose1 and F. Yonazawa (1985, 1985) pu b l i sh e d a s tudy of

t h e me l t i ng and f r e e z i n g curves f o r a 1 - c e n t e r Lennard-Jones f l u i d

( a rgon i s a good example) us ing i s o t h e r m a l - i s o b a r i c mo l ec u l a r dynamics

s i m u l a t i o n s (NPT). The r e s u l t s they o b t a i n e d f o r a system o f 864 mole­

c u l e s a r e shown in F igure 12-1. The r e s u l t s show a s i g n i f i c a n t h y s t e r e ­

s i s between t he f r e e z i n g and me l t i ng cu r ves . The a c t u a l me l t i ng p o i n t

f o r t h i s system has been e s t i ma t e d by o t h e r i n v e s t i g a t o r s (Andersen

(1985 ) , Clancy (1986) ) us ing NVT s i m u l a t i o n s t o be a t a reduced t emper ­

a t u r e of appr ox i ma t e l y 0 . 70 . F igure 12-1 shows s i g n i f i c a n t subcool i ng

p r i o r t o c r y s t a l l i z a t i o n . Nose' and Yonazawa a l s o de t e rmined t h e c o o l ­

ing r a t e r e q u i r e d t o form a g l a s s f o r t h i s system. Thi s i s a s i g n i f i c a n t

r e s u l t as argon g l a s s has never been produced e x p e r i m e n t a l l y . Th e i r

va l ue f o r t h e c r i t i c a l c o o l i ng r a t e , appr ox i ma t e l y 1 x 10**11 Kelvins

p e r second, e x p l a i n s why t h a t i s as t h i s c o o l i ng r a t e i s many o r d e r s o f

magni tude g r e a t e r than can be o b t a i n e d in t h e l a b o r a t o r y . The r e s u l t

does a t l e a s t give a b a l l p a r k e s t i m a t e t o t he r a t e s t h a t w i l l be needed

t o accompl i sh t h e t a s k . The me l t i ng curve o b t a i n e d by Nose1 and Yonazawa

i s even more i n t e r e s t i n g . I t shows s u p e r h e a t i n g o f t h e c r y s t a l argon by

20-25 K. Th i s i s a s u r p r i s i n g r e s u l t because s u p e r h e a t i ng o f s o l i d s has

n e ve r been demons t r a t ed e x p e r i m e n t a l l y . The r eason why t h e * s i m u l a t i o n s

show t h i s e f f e c t when t h e exper i men t a l r e s u l t s do not i s unknown a t t h i s

t ime b u t some p o s s i b l e e x p l a n a t i o n s a r e d i s c u s s e d l a t e r in t h i s c h a p t e r .

- 330 -

Page 355: Classical and Statistical Thermodynamics of Solid-Liquid

V/SI

GMA*

*31 . 40

1 . 35

1 . 3 0

1 . 2 5

1.20

1 . 1 5

1.10

£ 1 . 0 5

1.00

0 . 9 5

0 . 9020 30 40 50 60 70 80 90 1 00 1 10 120

T/KFigure 1 2 -1 : REPEAT OF ARGON RUNS OF S . NOSE*

USING NPT UOLECULAR DYNAMICS

NUMBER OF PARTICLES

M> » 0 .0 0 1

SIGMA - 3 .4 0 5 Ang.

e /k « 125 K

p e r f e c t c r y s t a l I i q u i d / s o l i d

I

Page 356: Classical and Statistical Thermodynamics of Solid-Liquid

b. Ex t en t i ons t o t he Work o f Nose1 and Yonazawa

332

This system was chosen by us as a t e s t system t o de t ermine t he use­

f u l n e s s of i s o t h e r m a l - i s o b a r i c s i mu l a t i ons f o r t he i n v e s t i g a t i o n of

phase t r a n s i t i o n s v ia d i r e c t s i mu l a t i on . Other i n v e s t i g a t o r s (Andersen

(1985) ) have claimed t h a t a l l of t he phase t r a n s i t i o n s t h a t have been

r e p o r t e d in computer s i mu l a t i on s a r e an a r t i f a c t o f t he p e r i o d i c bounda­

ry c o n d i t i o n s and t he small system s i z e used. They claim t h a t no such

t r a n s i t i o n s would be ob t a i ned in t he s i mu l a t i ons i f a s u i t a b l y l a r g e s i ­

mula t ion were done wi t hou t p e r i o d i c boundar i e s . Thi s hypo t hes i s i s d i f ­

f i c u l t to v e r i f y or d i sp r ove because p e r i o d i c boundar ies a r e d i f f i c u l t

to e l i m i n a t e whi l e s t i l l mimicking an e s s e n t i a l l y i n f i n i t e system. The

e f f e c t on t he r e s u l t s of some of the o t h e r s imul a t i on pa r amete r s , l i k e

system s i z e , a r e e a s i e r to i n v e s t i g a t e . A couple of t he se have been i n ­

v e s t i g a t e d ; t he system s i z e and the membrane mass, to a s c e r t a i n t h e i r

e f f e c t on t he r e s u l t s ob t a i ne d .

The f i r s t s imu l a t i on parameter t h a t was chosen f o r i n v e s t i g a t i o n was

t he number of p a r t i c l e s . I f t he assumpt ion t h a t t he phase t r a n s i t i o n i s

due to boundary e f f e c t s i s t r u e then t he phase t r a n s i t i o n should occur

more r e a d i l y in a small system and l e s s r e a d i l y ( o r not a t a l l ) in a

l a r g e system. To t e s t t h i s h y p o t h e s i s , runs were made f o r a number of

systems d i f f e r i n g in t he number of p a r t i c l e s . Systems of 108, 256, 500,

864, 4000, and 8788 p a r t i c l e s were i n v e s t i g a t e d . Only t he mel t i ng curves

were i n v e s t i g a t e d f o r t he systems c o n t a i n i ng 4000 and 8788 p a r t i c l e s as

t he computat ional r equ i r ement s f o r c r y s t a l l i z a t i o n runs were enormous,

even us ing t he Cornel l Supercomputer F a c i l i t y . The runs were made a t

Page 357: Classical and Statistical Thermodynamics of Solid-Liquid

333

d i f f e r e n t s i z e s f o r t he membrane mass. The v a l ues were chosen in each

case t o g i ve a r e a s on ab l e system res pons e t o f l u c t u a t i o n s in t h e p r e s ­

s u r e . The r e s u l t s o f t he runs a r e given in F i gu r e s 12-2 t h rough 12-5.

Examinat ion of t h e f i g u r e s l e a ds t o some c o n c l u s i o n s . The f i r s t i s

t h a t our NPT mol ecu la r dynamics s i m u l a t i on s l e ad t o t h e same r e s u l t as

t h o s e o f Nose ' . Our 864 p a r t i c l e run i s a lmos t an e x a c t d u p l i c a t e of

h i s . Thi s i s i mpor t an t as a t e s t o f our computer code and i t a l s o g i ves

us a common b a s i s f o r d i s c u s s i n g any d i f f e r e n c e s observed . The only d i f ­

f e r e n c e observed between our run and h i s i s t h a t our c r y s t a l l i z e d s o l i d

i s o f a s l i g h t l y d i f f e r e n t d e n s i t y than h i s . Both h i s c r y s t a l s and ours

a r e l e s s dense than t h e p e r f e c t FCC l a t t i c e s used as t h e s t a r t i n g p o i n t s

f o r t h e me l t i ng runs . Thi s means t h a t t he s o l i d s o b t a i n e d by c r y s t a l l i ­

z a t i o n of t h e l i q u i d c o n t a i n d e f e c t s . The number o f d e f e c t s can be e s t i ­

mated e a s i l y by t a k i n g t he r a t i o o f t he pure l a t t i c e d e n s i t y t o the

" r ea l s o l i d " d e n s i t y and t a k i n g i n t o account t h e number o f p a r t i c l e s in

t h e system. The second c o n c l u s i o n t h a t i s obvious from t h e f i g u r e s i s

t h a t t he system s i z e does indeed a f f e c t t h e c r y s t a l l i z a t i o n and me l t i ng

c h a r a c t e r i s t i c s o f t h e system. The runs made wi t h 108 p a r t i c l e s showed

l e s s h y s t e r e s i s between f r e e z i n g and me l t i ng than any o f t h e o t h e r r uns .

The 256 p a r t i c l e runs were n e x t , e t c . For t h e e f f e c t o f system s i z e f o r

systems l a r g e r than NoseM s , we must r e l y on t he me l t i ng cu rves only .

Based on t h e s e c u r v e s , i t would appea r t h a t t h e s u p e r h e a t i n g ob t a i n e d

i n c r e a s e s wi t h system s i z e up t o a s i z e of about 1000 p a r t i c l e s and i s

r e l a t i v e l y i n s e n s i t i v e t o i t f o r systems l a r g e r than t h a t . Th i s r e s u l t

l e a d s us t o t he c on c l us i on t h a t Andersen, e t c . a r e p a r t l y c o r r e c t in

t h e i r a s s e r t i o n t h a t t h e p e r i o d i c boundary c o n d i t i o n s l e ad t o t h e phase

Page 358: Classical and Statistical Thermodynamics of Solid-Liquid

V/S

IGM

A**3

1 . 3 5 -

1 . 3 0 -

NUMBER OF PARTICLES

M* = 8 .0 0 0 5

SIGMA 8 3. 405 Ang.

e /k ■ 125 K

1 . 2 5 -

1. 20-

1 . 1 5 -

1. 10-

5 . 1 . 0 5 -

liquidc r y s t a l • g l a s s s o l td

80 110 120

Figure 12-2: REPEAT OF S. NOSE' WITH DIFFERENT VALUE FOR M* AND WITH SUBSEQUENT REMELTING

OF THE REAL CRYSTAL

334

Page 359: Classical and Statistical Thermodynamics of Solid-Liquid

V/SI

GMA*

*31.40

1.35

1.30-

1. 25-

1. 20-

1.15

u

* 1-05-

1. 00-

0. 95-

0.90-

g l a s s

■fl" 11 qu i d CM*

l iq u i d CM*

c r y s t a l

0. 0001) 0. 01)

j

NUMBER OF PARTICLES e/fc = 125 K SIGMA = 3 .4 0 5 Ang.

T31

X48

T88

TM

T78

T/KT T

98TIN

Tlift 1X9

Figure 12-3: 108 PARTICLE RUNS. COMPARISON OF MELTING AND FREEZING POINTS TO 864 PARTICLE

RUNS. SHOWS EFFECT OF PERIODIC BOUNDARIES.

335

Page 360: Classical and Statistical Thermodynamics of Solid-Liquid

V/SI

GMA*

»31.35

* g l a s s1.25-Liouid

c r y s t a l

1.15-

1. 10-

1.05-

1. 00- Nuntbar o f p a r t i c l e s « /k - 125 K SIGMA - 3 .4 0 5 t a g . M» - 0.001

0.95-

4 020 30i t -------r" — o----- 1------ 1------r

50 60 70 80 90 100 110 120T/K

Figure 12-4: 256 Particles* Comparison of melting and freezing points to 864 particle runs.

Shows effect of system size on results.

Page 361: Classical and Statistical Thermodynamics of Solid-Liquid

V/SI

GM

A**

31.35

1.39-- g l a s s1.25-

l iq u i d1.29-

c r y s t a l

1.15-

1.19-

1.95-

1. 00- Nunbar o f p a r t i c l a s * 599 a /k « 125 K SIGMA " 3 .4 9 5 Ang.M» - 9 .9 9 2

9.95-

i rtee n o 120

Figure 12-5: 500 Parffcles. Comparison of melting and freezing points to 864 particle runs.

Shows effect of system size on results.

Page 362: Classical and Statistical Thermodynamics of Solid-Liquid

338

t r a n s i t i o n s . Our r e s u l t s i n d i c a t e t h a t p e r i o d i c boundary c o n d i t i o n s w i l l

enhance th e d r i v i n g f o r c e f o r a phase t r a n s i t i o n , th u s l e a d in g to the

d e c re a se d h y s t e r e s i s e f f e c t s f o r s m a l l e r system s i z e s . I f th e y were t o ­

t a l l y c o r r e c t in t h e i r h y p o t h e s i s , however, th e co nverse should a l s o be

t r u e . The s i z e o f t h e h y s t e r e s i s loop should grow f o r systems l a r g e r

th a n 1000 p a r t i c l e s . Based on th e m e l t i n g r e s u l t s we o b ta i n e d , t h i s i s

no t t r u e . In f a c t , t h e 8788 p a r t i c l e system appea rs t o have melted a t a

lower t e m p e ra tu r e th a n th e 4000 p a r t i c l e system. This f a c t l e a d s us t o

b e l i e v e t h a t th e e f f e c t of t h e p e r i o d i c boundary c o n d i t i o n s , w h i le hav­

ing a s i g n i f i c a n t enhancement e f f e c t f o r small sy s tem s , i s no t n e c e s s a ry

t o o b ta in a phase t r a n s i t i o n . The ev idence p r e s e n t e d to suppor t our con­

c l u s i o n i s by no means c o n c l u s i v e , b u t a t t h i s t ime t h e r e i s no ev idence

t h a t r e f u t e s our c l a im .

c. The E f f e c t s of C ry s ta l D e fec t s on th e M elt ing Tempera ture

The nex t t h i n g t o n o t i c e from F igu res 12-2 t o 12-5 i s t h a t t h e s o l i d s

o b ta in e d a f t e r c r y s t a l l i z a t i o n have v a ry in g d e n s i t i e s . This i s a good

i n d i c a t i o n t h a t t h e c r y s t a l l i z a t i o n p ro c e s s t h a t i s going on i s r a t h e r

a r b i t r a r y in n a t u r e . I t a l s o i n d i c a t e s t h a t a n n e a l in g o f t h e s o l i d a f t e r

i t has formed i s n o t e a s i l y accom pl i shed . Th is i s p robab ly mos tly a

f u n c t i o n o f t h e s h o r t t ime ( r e a l t im e) t h a t i s be ing s im u l a t e d . To a t ­

tempt to i n v e s t i g a t e t h e f r e e z i n g and m e l t i n g of t h e s e im p e r f e c t c r y s ­

t a l s , d e f e c t s were a r b i t r a r i l y i n t r o d u c e d i n t o t h e FCC l a t t i c e s t h a t

were used t o begin t h e ru n s . The m e l t ing cu rves were d e te rm ined f o r t h e

s o l i d s w i th v a r io u s numbers o f d e f e c t s p r e s e n t . The r e s u l t s a r e shown in

f i g u r e 12-6 . Note t h a t t h e i n s e r t i o n o f a d e f e c t c a u s e s an i n c r e a s e in

Page 363: Classical and Statistical Thermodynamics of Solid-Liquid

V/SI

GMA*

«31.48

1.35

1.30

1.25

1.20

1.15

1.10

5.1.05

1.00

0.95

0.9020 30 40 50 60 78 80 90 100 110 120

T/Kt.

Figure 12 -6 : EFFECT OF CHANGING THE NUMBER OF SITE VACANCIES ON THE MELTING POINT OF A CRYSTAL LATTICE

crystal

1 defect

2 defects

5 defects

Liquid/glass

NUMBER OF PARTICLES * 108 e/k = 125 K SIGMA = 3.495 Ang.M* * 0.01

339

Page 364: Classical and Statistical Thermodynamics of Solid-Liquid

v*, t h e volume per m olecu le , s imply because th e same volume i s d iv id e d

by fewer molecule s in t h e system. F igure 12-6 shows t h a t t h e m e l t ing

te m p e ra t u r e d e c r e a s e s as th e number o f d e f e c t s i n c r e a s e s . While t h i s has

no t been f u l l y un d e r s to o d , i t appea rs t h a t t h e m e l t ing occurs a t approx­

im a te ly th e same v* in each run (V* app rox im a te ly equal t o 1 . 1 0 ) . This

i n d i c a t e s to us t h a t t h e d r i v i n g f o r c e f o r the m e l t i n g phenomena, a t

l e a s t in th e s i m u l a t i o n s , i s a c e r t a i n amount of f r e e volume in th e sys ­

tem; t h e more d e f e c t s a v a i l a b l e , th e lower the t e m p e ra tu re a t which the

n e c e s s a ry f r e e volume i s reached . Figure 12-7 shows th e same ru n s , r e ­

p l o t t e d as V*, t h e system volume, v e r sus t e m p e r a t u r e . P l o t t e d t h i s way,

a l l o f th e s o l i d s can be seen to have e s s e n t i a l l y th e same volumes, r e ­

g a r d l e s s o f t h e number of d e f e c t s , bu t t h e l i q u i d s produced have a v o l ­

ume p r o p o r t i o n a l t o t h e number of m olecu les in the system. These two

f i g u r e s show e x a c t l y t h e same in fo rm a t io n . They a r e p l o t t e d two ways to

a l low th e r e a d e r to choose which method o f p r e s e n t a t i o n i s e a s i e r to

g r a s p .

To compare t h e s e a r t i f i c i a l l y produced im p e r f e c t s o l i d s t o t h e s o l i d s

produced in t h e f r e e z i n g r u n s , one of t h o s e s o l i d s was f i r s t annea led a t

th e f i n a l t e m p e ra tu re of t h e run (50 K) f o r 100,000 t i m e - s t e p s and then

r e m e l t e d . This s o l i d , which had melted as a p e r f e c t c r y s t a l a t 105 K,

now m e l ted a t abou t 90 K, which i s abou t where i t shou ld have melted

compared to t h e d e f e c t ru n s . These r e s u l t s were p r e s e n t e d in f i g u r e

12-2. This conf i rm s t h a t t h e s o l i d s be ing produced in t h e f r e e z i n g runs

c o n t a i n d e f e c t s and t h a t t h e y a r e p robab ly a b e t t e r s t a r t i n g p o i n t f o r

m e l t i n g runs than t h e p e r f e c t c r y s t a l s used by us (and a l l o t h e r i n v e s ­

t i g a t o r s t o d a t e ) p r e v i o u s l y .

Page 365: Classical and Statistical Thermodynamics of Solid-Liquid

V* (TO

TAL

NORM

ALIZ

ED

VOLU

ME

/ SI

GMA»

* 46

crystal

-B-- 1 defect

2 defects

•A* 3 defects

5 defects

7 defects

1. 35-

1. 30-

1 .2 5 -

1. 20-

1. 10-l i 4Uid/glass

1. 05-

1 . 8 0 H INUMBER OF PARTICLES e/k. » 125 K SIGMA 8 3.405 Ang. M8 « 0 . 0 1

120

Figure 1 2 -7 : EFFECT OF CHANGING THE NUMBER OF SITE VACANCIES ON THE MELTING POINT OF A CRYSTAL LATTICE

Page 366: Classical and Statistical Thermodynamics of Solid-Liquid

LITERATURE CITED IN CHAPTER 12.

Andersen , H.C . , Abs. Pap. Atner. Chem. S o c . , ( 1 9 8 5 ) , A p r i l , 2.

Clancy, P . , F o r e f r o n t s , ( 1987 ) , 3, 2.

Nose1, S. and Yonazawa, F . , S o l id S t a t e Comm., ( 1 9 8 6 ) , 5 6 (12 ) , 1005.

Nose1, S. and Yonazawa, F . , S o l id S t a t e Comm., ( 1 9 8 6 ) , 5 6 (12 ) , 1009.

- 3 ^ 2 -

Page 367: Classical and Statistical Thermodynamics of Solid-Liquid

CHAPTER 13

FUTURE DIRECTIONS FOR THIS RESEARCH

There a r e many d i r e c t i o n s t h a t t h e r e s e a r c h begun here cou ld l e a d .

Some o f t h e s e a r e a l r e a d y being i n v e s t i g a t e d by o t h e r s in th e group.

Sediawan and Gupta a r e d e ve lop ing p e r t u r b a t i o n t h e o r i e s ana logous to the

WCA type o f t h e o r y , f o r molecu le s obey ing 1 - c e n t e r o r 2 - c e n t e r m odi f ied

g a u s s ia n o v e r l a p p o t e n t i a l s (MGOP), along w i th t h e m o lecu la r dynamics

codes t o t e s t t h o s e t h e o r i e s . Th is i s a p a r t i c u l a r l y i n t e r e s t i n g i n t e r ­

m o lecu la r p o t e n t i a l f o r p r e d i c t i n g p r o p e r t i e s o f molecu les l i k e benzene

( 1 - c e n t e r MGOP) o r n ap h th a len e ( 2 - c e n t e r MGOP). Ex tens ion of t h e s e p e r ­

t u r b a t i o n t h e o r i e s to m ix tu r e s w i l l a l low b e t t e r p r e d i c t i o n of th e ex­

c e s s p r o p e r t i e s o f m i x tu r e s o f complex m o le c u le s , l i k e t h e ones found in

t h i s work.

At t h i s t im e , I am i n v e s t i g a t i n g ex t e n d in g the NPT m o lecu la r dynamics

code t o a l low t h e s im u l a t i o n of s im u l ta n e o u s s o l i d and l i q u i d p h a s e s .

Th is should answer some o f t h e q u e s t i o n s c r e a t e d by th e work p r e s e n t e d

in c h a p t e r 12. Ex tens ion o f t h i s code to m i x tu r e s might a l low th e simu­

l a t i o n of t h e s o l i d - l i q u i d e q u i l i b r i a o f a b i n a r y m ix tu r e . I f i t were

s u c c e s s f u l , t h i s would be a method f o r f i n d i n g th e Gibbs f r e e energy o f

a s o l i d phase of a b i n a ry system. At p r e s e n t , t h e r e i s no good way to

accompli sh t h i s . The a v a i l a b i l i t y o f t h e s e r e s u l t s would a l low s im p l e r ,

approxim ate t h e o r i e s f o r t h e e x c e s s Gibbs f r e e energy o f a b in a ry s o l i d

t o be fo rm u la te d and t e s t e d . The a p p l i c a t i o n s f o r a t h e o ry o f t h a t ty p e

a r e a lm os t e n d l e s s .

- 343 -

Page 368: Classical and Statistical Thermodynamics of Solid-Liquid

Though we have b a r e ly s c r a tc h e d the su r f a c e of th e p o s s i b i l i t i e s p r e ­

sen ted above in the work done h e re , i t i s a beg inning and each small

s tep g e t s us c l o s e r to the u l t i m a t e g o a l s . There w i l l be some l a rg e

s t r i d e s made in t h i s a rea in t h i s decade , as i n t e r e s t in t h i s a rea i n ­

c r e a s e s and a v a i l a b l e computing power keeps in c r e a s i n g . The r e s u l t s of

t h a t work w i l l be very i n t e r e s t i n g .

Page 369: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 1

STRUCTURES FOR THE COMPOUNDS USED IN THIS STUDY

- 345 -

Page 370: Classical and Statistical Thermodynamics of Solid-Liquid

S o l u t e s

B ip heny l A c e n a p h th e n eN a p h t h a le n e

Fluorene P h e n a n th re n eA n t h r a c e n e

H e te r o a to m A n a lo g o f - I ) F lu o re n e

D ib e n z o fu r o n D ibenzoth iophene C o r b a z o le

Z ) A n th r a c e n e

X a n t h e n e T h i oxo n th en e -Acridine

Page 371: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 2

PURITIES OF THE COMPOUNDS USED IN THIS STUDY

Page 372: Classical and Statistical Thermodynamics of Solid-Liquid

348

Appendix 2

P u r i t i e s o f C hem icals Used

P u r i t y O btained F u r th e rChemical by G.C, A n a ly s i s S ou rce P u r i f i c a (

Benzene 99.9+% A ld r ic h "Gold Label"C yclohexane 99.9+% A ld r ic h "Gold Label"P y r id in e 99.9+% A ld r ic h "Gold Label"T hiophene 99.9+% A ld r ic h "Gold Label"T e t r a l i n 99.6+% A ld r ic hD e c a l in (Isom er m ix . ) 99+% A ld r ic hB ip h e n y l 99.67% A ld r ic h 2 .N ap h th a len e 99.21% A ld r ic h 2 .P henanthrene 98.67% A ld r ic h 2 .A cenaphthene 99.2% A ld r ic h 2 .F lu o r e n e 99.6% A ld r ic h 2 .C arbazo le — A tom erg ic Chem etals Corp. NoneD ib en zo fu ra n 99.55% A ld r ic h 3 .D ib e n z o th io p h e n e 99.45% A ld r ic h 3 .A nthracene 99.99+% A ld r ic h "Gold Label" NoneA c r id in e 99.87% Kodak 4 .T h ioxanthene 99.24% S y n t h e s iz e d 5 .Xanthene 99.64% A ld r ic h None

1. S to r ed over m o le c u la r s e i v e t o e l i m i n a t e w a te r .2 . E lu te d through an alumina column, th en r e c y s t a l l i z e d from s o l u t i o n .3 . R e c r y s t a l l i z e d from s o l u t i o n .4 . S u b lim ated a t 100 °C.5 . F i l t e r e d in s o l u t i o n and r e c r y s t a l l i z e d .

Page 373: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 3

VAPOR PRESSURE DATA FOR THE SOLVENTS USED IN THIS STUDY

Our f i r s t expe r im en ta l e f f o r t s w ith our VLE s t i l l were t o de te rm ine

th e vapor p r e s s u r e cu rves f o r some of t h e s o l v e n t s . These vapor p r e s ­

s u r e s (a lo n g w i th t h e l i t e r a t u r e r e s u l t s a v a i l a b l e ) were used as a t e s t

o f our measurement a b i l i t y . The vapor p r e s s u r e s v e r s u s t e m p e ra tu re a re

g iven in t a b l e A3-1. Table A3-2 g i v e s th e r e g r e s s e d v a lues o f the

A n t o i n e ' a eq u a t io n p a r a m e te r s . Figure A3-1 shows th e d e v i a t i o n s between

our vapor p r e s s u r e s and two l i t e r a t u r e s o u r c e s , one a 3 -p a ra m e te r

A n t o i n e ' s eq u a t io n (Reid e t a l . (1977)) and one a 7 -p a ram e te r ex tended

A n t o i n e ' s eq u a t io n (PROPY d a t a b a s e , LSU) I t a l s o g iv e s th e d e v i a t i o n be­

tween th e p r e d i c t i o n s o f t h e two s e t s o f l i t e r a t u r e v a l u e s . As f i g u r e

A3-1 shows, our vapor p r e s s u r e s d e v i a t e d from th e l i t e r a t u r e v a lu e s only

s l i g h t l y more than the l i t e r a t u r e v a l u e s d e v i a t e from each o t h e r . We

c o n s i d e r t h i s e x c e l l e n t agreement , c o n s i d e r i n g t h a t our a p p a ra tu s i s not

s p e c i f i c a l l y des igned f o r vapor p r e s s u r e measurements.

- 349 -

Page 374: Classical and Statistical Thermodynamics of Solid-Liquid

Table A3-1

Vapor P re s su re Data on Pure S o lven ts

Cyclohexane Benzene TolueneT/K P/mm Hg T/K P/mm Hg T/K P/mm Hg

352.8 735.2 352.7 742.4 373.1 554.2351.1 699 .4 350.7 697.4 370.9 518.1349.4 663.1 349.0 661.3 368.5 481.3347.6 627.4 347.2 625.3 366.0 445.6345.7 591.4 345.3 589.3 363.3 409.8343.7 555.3 343.4 552.9 360.3 371.3341.7 519.4 341.3 516.8 357.3 335.7339.5 483.1 339.1 480.0 353.9 298.8337.2 447.0 336.8 443.8 352.7 287.2334.7 410.5 334.3 407.0 350.1 262.5332.0 374.2 331.6 371.0 345.9 225.9329.0 337.3 329.0 334.3 341.2 188.7325.9 301.0 325.6 297.8 335.6 152.2322.4 264.5 322.1 261.1 328.8 115.3318.5 227.9 318.3 224.6 320.6 79.5314.0 190.9 313.8 187.6308.8 154.7 308.6 151.0

Decal in Mixture T e t r a l i n P y r id ineT/K P/mm Hg T/K P/mm Hg T/K P/mm Hg

443.1 439.0 466.6 506.4 383.5 659.0440.9 414.6 462.2 488.4 381.5 622.6438.9 392.7 460.7 470.4 379.6 586.1436.7 371.1 459.3 453.5 377.5 549.8434.4 349.1 457.6 434.3 375.3 513.7433.1 336.5 455.7 412.5 372.9 476.9432.0 327.0 454.0 394.5 370.5 440.7

Page 375: Classical and Statistical Thermodynamics of Solid-Liquid

351

Table A3-1 (Continued)

Vapor P res su re Data on Pure So lven ts

Decal in Mixture T/K P/mm Hg

429,,5 305,,2426,,8 282,,9424,,0 261,,1423,,1 253,,8421,,1 238,.9417,,8 217,,2414,,2 195,,2410,.3 173,,0406,.0 151,,2401,,1 129,.1395.,6 107,,1

T e t r a l i nT/K P/mm Hg

443.2 387.1449.9 354.4447.9 336.4446.0 318.5443.4 297.1440.7 274.9437.2 249.2434.0 226.7433.2 221.3428.4 191.9425.6 176.9423.1 163.3418.4 140.9413.1 118.9

P yr id ineT/K P/mm Hg

367.7 404.0364.8 367.5361.8 331.1358.4 294.8354.7 258.0350.5 221.5345.9 184.6

Page 376: Classical and Statistical Thermodynamics of Solid-Liquid

352

T a b l e A3-2

Regressed Cons tan ts f o r th e Vapor P res su re Data on Pure So lven ts

A n to in e ' s Equation Constants

Compound A B C

Cyclohexane 16.8073 3403.173 -19.344

Benzene 16.8344 3363.721 -23.700

Toluene 16.3638 3308.176 -43 .774

P yr id ine 16.3557 3269.872 -51 .938

T e t r a l i n 17.5861 5088.330 -15 .620

Decal in Mixture 17.1635 4682.717 -20 .412

A n t o i n e ' s Equation i s given by

*£n PS a t (mm Hg) = A - T(K)V c

where P i s in mm Hg and T i s in K.

Page 377: Classical and Statistical Thermodynamics of Solid-Liquid

{P(p

redf

cted

) -

P(ex

perim

enta

l)}/

mm

Hg 2.00-

-0 .50J

- 1.00-

-1 .50-

Expanded Antoine's - Experimental

Antoine's - Experimental1.50-Antoine's - Expanded Antoine's

1.00-

0.50-

ii i i * r i i i i305 310 315 320 325 330 335 340 345 350 355

Tem perature / K

F igure A 3 -1 : C om parison of C yclohexane V apor P re ssu re s From Our Still a n d Two S e ts of L iterature C o n stan ts .

Page 378: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 4

COMPARISON OF OUR VLE RESULTS TO THOSE OF WILLMAN ( 1 9 8 3 ) .

To t e s t our e x p e r im en ta l VLE p r o c e d u r e s , we have d u p l i c a t e d t h e r e ­

s u l t s o f B. Willman (1983 ) , f o r th e b e n z e n e - to lu e n e system a t 79 .6 C.

The d a t a produced a r e g iven in Table A4-1, a long with W i l lm an ' s d a t a .

The d a t a a r e p r e s e n t e d g r a p h i c a l l y in f i g u r e A4-1. The ex per im en ta l a c ­

t i v i t y c o e f f i c i e n t s a re p r e s e n t e d in f i g u r e s A4-2 and A4-3. Examination

of t h e s e f i g u r e s i n d i c a t e s t h a t our d a t a i s o f about th e same q u a l i t y as

W i l lm an 's d a t a and a l s o g iv e s a good i n d i c a t i o n of th e e r r o r b a r s a s s o ­

c i a t e d w i th t h e a p p a r a t u s , as t h i s system i s known to be e s s e n t i a l l y

i d e a l .

- 354 -

Page 379: Classical and Statistical Thermodynamics of Solid-Liquid

355

Table A4-1

VLE Data o f Willman (1983) f o r th e Benzene (1 ) - Toluene (2 ) System a t 79 .6 C.

„ Data o f Willman (1983) Our DataP/mm Hg x l y l P/mm Hg x l y l

288.67 0 .0 0 .0 . 287.2 0 .0 0 .0331.20 0.1245 0.2307 366.4 0.1871 0.3594407.56 0.2661 0.4684 393.7 0.2669 0.4380478.37 0.4184 0.6428 404.1 0.3107 0.4713556.23 0.5987 0.7817 411.5 0.3738 0.4789634.65 0.7723 0.8883 416.6 0.3907 0.4802656.78 0.8072 0.9131 474.4 0.4081 0.6028723.41 0.9346 0.9821 509.0 0.4905 0.6865745.81 1.0 1.0 513.0 0.4933 0.6710

622.7 0.7326 0.8747689.6 0.9030 0.8594748.3 1.0 1.0

Page 380: Classical and Statistical Thermodynamics of Solid-Liquid

PR

ES

SU

RE

/

mm

Hg

TEMPERATURE * 7 9 .6 °C7 0 0

6 0 0

500

4 0 0 O VAPOR(OURS)□ LIQUID (OURS)

• VAPOR (WILLMAN) ■ LIQUID ( WILLMAN)300,

. 0 0 .1 0 .2 0 .3 0 .4 0 .50 .6 0 .70 .8 0 . 9 0 1.00MOLE FRACTION BENZENE

FIGURE A 4 - I . COMPARISON OF OUR VLE DATA TO THOSE OF WILLMANCl 9 8 3 ) FOR THE BENZENE-TOLUENE TEST SYSTEM

Page 381: Classical and Statistical Thermodynamics of Solid-Liquid

log

of ac

tivi

ty

coef

fici

ent

1.08

0. 80-

0 .4 0 -

0. 20-

In Cgamma2)

In(gammal)40-

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0. b 0 .7 0 .8 0 .9 1 .0liquid mole frac t ion of component 1

F igure A4-2s Benzene Cl) - Toluene (2) a t 79.6 CData o f Wiliman (1983)

cocn

Page 382: Classical and Statistical Thermodynamics of Solid-Liquid

Figure A

4-3: Benzene

Cl) -

Toluene (2)

at 79.6

C

log of a c t iv i ty co e ff ic ien t■ i i i i

h » C B e B n 9 9 S » S S S I ^• a a a a a a a a a a -crIS

coOD03

ooeo

crOD OBOB

XU1

c b

CD

(O

8S£

Page 383: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 5

ADDITIONAL VLE RESULTS

Chapter 6 p r e s e n t s the paper based on our VLE work. I t i s a long

paper and c o n t a in s a g r e a t deal of i n fo rm a t io n . In s p i t e of i t s l e n g th ,

however, some of th e VLE work, was om i t ted from the paper to t r y and keep

i t a t a r ea so n ab le l e n g th . As s t a t e d in t h a t c h a p t e r , t h e VLE were a l s o

found f o r two o t h e r systems: t e t r a l i n - d e c a l in a t 423 .15 , 433 .15 , and

443.15 K. These d a t a were not p u b l i sh e d because the d e c a l i n used was an

i som er ic mix tu re c o n ta in in g 60.4 % c i s - and 39.6 % t r a n s - d e c a l i n . Since

th e m ix tu res s tu d ie d were not t r u e b i n a r i e s , they were not cons ide red

a p p r o p r i a t e f o r p u b l i c a t i o n . They a re given here f o r com ple teness . The

r e s u l t s o f the thermodynamic c o n s i s t e n c y t e s t no t given in t a b l e 6-4 a re

given in t a b l e A5-1. No t e s t was done on th e VLE d a t a o f Baxendale e t

a l . The r e s i d u a l s f o r each of those systems when r e g r e s s e d us ing each

of the s o l u t i o n models a re given in t a b l e A5-2, us ing the s tan d a rd d e v i ­

a t i o n s given in c h a p t e r 6. For th e t e t r a l i n - d i b e n z o t h i o p h e n e system a t

433.15 K, t a b l e A5-3 g ives the same in fo rm at ion when th e r e g r e s s i o n s

were performed using d i f f e r e n t va lues f o r th e s t a n d a rd d e v i a t i o n s of the

v a r i a b l e s . These t a b l e s should g ive some idea of th e s e n s i t i v i t y of the

r e s u l t s to th e v a lues chosen.

The comparisons d i s c u s s e d in c h a p t e r 6, s e c t i o n b f o r the

b ipheny l -benzene system were based on our a n a l y s i s of th e VLE d a t a of

Baxendale e t a l . (1951) . The a c t u a l VLE d a t a a re given in t a b l e A5-4.

The r e s i d u a l s r e s u l t i n g from our a n a l y s i s a re given in Table A5-5.

- 359 -

Page 384: Classical and Statistical Thermodynamics of Solid-Liquid

360

Also inc luded in t h i s appendix a r e th e r e s t o f th e t a b l e s ( t a b l e s

A5-6 to A5-9) o f b in a ry i n t e r a c t i o n p a ram e te r s o b ta in e d from a n a l y s i s of

t h e VLE d a t a . For t h e Baxendale d a t a , only UNIQUAC and extended r e g u l a r

s o l u t i o n th e o ry were used so t h e r e a r e no e n t r i e s in t h e o t h e r t a b l e s

f o r t h i s system.

Also given in t h i s appendix a r e two examples of t h e co n f id e n ce e l ­

l i p s e s o b ta in ed f o r the b in a ry p a ram e te r s f o r th e s e sys tems. These a r e

shown in f i g u r e s A5-1 and A5-2. The e l l i p s e s in f i g u r e A5-2 show th e e f ­

f e c t o f us ing a two pa ram e te r eq u a t io n to c o r r e l a t e r e l a t i v e l y id e a l

systems when th e p a r a m e te r s a re based on energy d i f f e r e n c e s . In t h e s e

c a s e s , a one pa ram e te r s o l u t i o n model would g ive as good a f i t t o the

d a t a as the two pa ram e te r ones do. This e f f e c t has been noted p r e v io u s l y

and tho ro u g h ly d i s c u s s e d ( F a b r i e s and Renon (1975) , Willman (19 8 3 ) ) .

Page 385: Classical and Statistical Thermodynamics of Solid-Liquid

361

T a b l e A5-1

R es u l t s o f th e Thermodynamic Cons is tency Tes t of Fredenslund Using a 3-Parameter Legendre

Polynomial f o r Excess Gibb‘ s Free Energy

RMSD RMSD AADSystem T/K P/mm Hg y l y l

RMSD = Root Mean Square Devia t ion

RMSD P = <1 (Pcalc - Pexpt. ) 2/

AAD = Average A bso lu te D evia t ion

^ “ n l ^ l f c a l c . ) ^ l ( e x p t .

T e t r a l i n 423.15 2.05 0.0106 0.0091Decal in 433.15 2.73 0.0100

443.15 3.60 0.0439

Decal in 423.15 1.30 0.0092Biphenyl 433.15 2.83 0.0109 0.0091

453.15 5 .89 0.0232

Passes T e s t ?

YesYesNo

YesYesNo

Page 386: Classical and Statistical Thermodynamics of Solid-Liquid

362

T a b l e A5-2

Summary of t h e Root Mean Square D e v ia t io n s o f The R e s id u a l s O b ta ined f o r t h e T e t r a l i n - D e c a l i n ,

and D eca l in -B ipheny l Systems.

S o l u t i o n RMSD RMSD RMSD RMSDSystem Model T/K P/mm Hg xl y i

T e t r a l i n- UNIQUAC 0.01 2 .05 0.010 0.009Decal i n Wi1 s o n 1 s 0.01 2.73 0.010 0.009423.15 K NRTL 0.01 3.60 0.043 0.009

Van Laar 0 .01 3.60 0.043 0.009

T e t r a l i n- UNIQUAC 0.01 2.05 0.010 0.009Decal i n Wi1 s o n 1s 0 .01 2.73 0.010 0.009433.15 K NRTL 0.01 3.60 0.043 0.009

Van Laar 0 .01 3.60 0.043 0.009

T e t r a l i n- UNIQUAC 0.01 2.05 0.010 0.009Decal i n Wi1 s o n 1 s 0 .01 2 .73 0.010 0.009443.15 K NRTL 0.01 3 .60 0.043 0.009

Van Laar 0 .01 3 .60 0.043 0.009

Deca li n- UNIQUAC 0.01 2 .05 0.010 0.009Biphenyl Wi1 s o n 1 s 0 .01 2 .73 0.010 0.009423.15 K NRTL 0.01 3.60 0.043 0.009

Van Laar 0 .01 3 .60 0.043 0.009

Decal i n- UNIQUAC 0.01 2 .05 0.010 0.009Biphenyl W i l s o n ' s 0 .01 2 .73 0.010 0.009433.15 K NRTL 0.01 3.60 0.043 0.009

Van Laar 0 .01 3 .60 0.043 0.009

D e c a l in - UNIQUAC 0.01 2 .05 0.010 0.009Biphenyl Wi Tson1 s 0 .01 2.73 0.010 0.009453.15 K NRTL 0.01 3.60 0.043 0.009

Van Laar 0 .01 3.60 0.043 0.009

RMSD = Root Mean Square D e v ia t io n

Page 387: Classical and Statistical Thermodynamics of Solid-Liquid

363

S e n s i t i v i t y of D e v ia t i o n s Chosen f o r th e

System a t 433.15 K.

Table A5-3

R e s u l t s t o th e S tandard T e t r a l i n (1 ) - D ibenzoth iophene i

, Using th e UNIQUAC Equa t ion .

Run Sigma Sigma Sigma S i gmaNumber T/K P/mm Hg xl y l

1 0.05 1.00 0.001 0,0032 0.10 1.00 0.001 0.0033 0.05 1.00 0.003 0,0034 0.05 1.00 0.001 0.001

Run RMSD RMSD RMSD RMSDNumber T/K P/mm Hg xl y l

1 0.05 2.82 0.0012 0.00752 0.15 2.73 0.0010 0.00753 0.03 3.60 0.0053 0.00704 0.06 3.60 0.0022 0.0059

Run UNIQUAC Param e te rs ( J /m o l )Number . A12 A21

1 5528. 42 -3069 .142 5552. 77 -3077 .273 5451. 54 -3042 .804 5886. 21 -3198 .46

Page 388: Classical and Statistical Thermodynamics of Solid-Liquid

364

T a b l e A5-4

Baxendale e t a l . (1951) VLE Data f o r the Benzene (1) - Biphenyl (2) System.

T/K P/mm Hg xl T/K P/mm Hg xl

303.15 73.48 0.6000303.15 84.84 0.7000303.15 95.86 0.7990303.15 107.46 0.8995

323.15 111.73 0.3963323.15 139.79 0.5004323.15 165.81 0.5990323.15 192.03 0.6994323.15 216.74 0.7957323.15 244.01 0.8986

343.15 58.67 0.0966343.15 117.41 0.2006343.15 169.66 0.2952343.15 223.63 0.3937343.15 280.83 0.4982343.15 334.08 0.5974343.15 387.75 0.6984343.15 435.46 0.7899343.15 494.00 0.8970

313.15 94 .78 0.5012313.15 112.16 0.5996313.15 129.70 0.6998313.15 146.51 0.7976313.15 164.59 0.8991

333.15 84.17 0.2019333.15 121.69 0.2966333.15 160.26 0.3951333.15 200.73 0.4994333.15 238.38 0.5983333.15 276.34 0.6989333.15 311.50 0.7932333.15 351.99 0.8979

353.15 77.22 0.0956353.15 157.09 0.1990353.15 228.59 0.2933353.15 303.37 0.3919353.15 382.01 0.4967353.15 456.06 0.5962353.15 530.76 0.6977353.15 594.87 0.7857353.15 677.81 0.8959

Page 389: Classical and Statistical Thermodynamics of Solid-Liquid

Summary of t h e Root Mean Square D e v ia t io n s o f The R e s id u a l s Obta ined f o r t h e Benzene-Biphenyl Systems.

RMSD RMSD RMSD RMSDSystem T/K T/K P/mm Hg xl y l

Benzene 303.15 0.00 0 .06 0.00 -Biphenyl 313.15 0 .00 0 .08 0.00 -

(UNIQUAC) 323.15 0.00 0.11 0.00 -

333.15 0.00 0.23 0.00 -

343.15 0.00 0 .37 0.00 -

353.15 0.00 0.31 0.00 -

RMSD = Root Mean Square D ev ia t ion

RMSD P = ( i (Pcalc - Pexpt. ) 2/

The Benzene-Biphenyl System was only Analyzed Using UNIQUAC.

Page 390: Classical and Statistical Thermodynamics of Solid-Liquid

366

T a b l e A5-6

UNIQUAC Binary Pa ram ete rs ( J / m o l ) O bta ined by Regress ion of t h e VLE Data Using th e Method of Maximum L ike l ihood .

T/K

System P aram eter 303.15 313.15 323.15

Benzene (1 ) A12 -501 .39 -305 .99 -179 .51Biphenyl (2 ) A21 851 .70 587.21 437.79(Baxenda le d a t a )

333.15 343.15 353.15

Benzene (1) A12 -2 5 7 .3 8 -298 .19 -230 .36Biphenyl (2 ) A21 528.75 571.32 489.96(Baxenda le d a t a )

423.15 433.15 443.15

T e t r a l i n (1 ) A12 34 .59 914.33 3048.58D eca l in (2 ) A21 11.74 -779 .07 -2114 .12

423.15 433.15 453.15

D eca l in ( 1 ) A12 1821.18 2439.99 2239.77Biphenyl ( 2 ) A21 -1128 .09 -1542 .30 -1507.86

Page 391: Classical and Statistical Thermodynamics of Solid-Liquid

W i ls o n ' s B ina ry Paramete rs ( J /m o l ) Obta ined by Regress ion of th e VLE Data Using th e Method o f Maximum L ike l ihood .

System

T e t r a l i n (1 ) Deca l in (2 )

T/K

P aramete r 423.15 433.15

B12 -263 .27 -820 .80B21 556.70 1269.51

423.15 433.15

443.15

-2719 .055634.58

453.15

Deca l in (1 ) Biphenyl (2 )

B12B21

-193 .62 -914 .15 -1061.022311.06 3378.32 3013.71

Page 392: Classical and Statistical Thermodynamics of Solid-Liquid

368

Table A5-8

NRTL Binary Parameters ( J /m o l ) Obtained by Regression o f th e VLE Data Using th e Method of Maximum Like l ihood .

T/K

System Parameter 423.15 433.15 443.15

T e t r a l i n (1) C12 504.35 988.04 2964.82Decal in (2 ) C21 -243 .54 -625.81 -1461.76

423.15 433.15 453.15

Decal in (1 ) C12 1851.50 2381.48 2040.90Biphenyl (2) C21 241.29 -185.92 -375.10

Page 393: Classical and Statistical Thermodynamics of Solid-Liquid

369

Table A5-9

Van Laar Binary P a ram ete rs Obta ined by Regress ion o f t h e VLE Data Using th e Method o f Maximum L ik e l ih o o d .

T/K

System Parameter 423 .15 433.15 443.15

T e t r a l i n ( 1 ) 012 0.0583 0.0400 0.0124D ecal in ( 2 ) D21 0 .0640 0.0614 5.5847

423.15 433.15 453.15

D ecal in (1 ) D12 0 .3732 0 .2962 0.2196Biphenyl (2 ) D21 0.5864 0.6120 0.4422

Page 394: Classical and Statistical Thermodynamics of Solid-Liquid

A 21

(

J/g

mol

)

6 0 0 0

Tetralin—Biphenyl System at I 80°C4000

2000

9 9 % Confidence Ellipse 3 2 % Confidence Ellipse Best-Fit Values of Parameters

-2000

- 4 0 0 0- 4 0 0 0 -2000 0

A 12 ( J / g m o l )

2000

FIGURE A 5 - I . CONFIDENCE ELLIPSES FOR THE REGRESSED UNIQUAC PARAMETERS

Page 395: Classical and Statistical Thermodynamics of Solid-Liquid

A 21

(J

/gm

ol)

-IOOO

-1200

- 1400

-1 6 0 0

- 1 8 0 0

- 2 0 0 0

- 2 2 0 01000 1500 2 0 0 0 25 0 0 3 0 0 0 3500 4 0 0 0 4 5 0 0 5 0 0 0

A 12 ( J / g m o l )

FIGURE A 5 - 2 . CONFIDENCE E L L I P S E S FOR THE RE GRE S SE D NRTL PARAMETERS

Tetralin—Fluorene System a t I 60°C

N.

9 9 % Confidence Ellipse 32% Confidence Ellipse Best-Fit Values of Parameters

371-

Page 396: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 6

PREDICTION OF FL^SH POINTS FOR MIXTURES

While in v e s t ig a t in g s u i t a b le f lu id s to be used as heat ing f lu id s in our

cons tan t temperature ba ths , we learned th a t no su i t a b le method ex i s t ed for the

p r e d ic t io n of the f la s h po in t s of m a te r i a l s . This turned out to be r e l a t i v e l y

unimportant because the National Fire Safety Handbook (1965) and the CRC Labo­

r a to r y Safety Handbook (1977) both contain ex tensive l i s t s of the f lash po in ts

of flammable m a te r ia l s commonly encountered in labora tory research. These same

l i s t s show, however, t h a t almost no da ta e x i s t on the f la sh poin ts of mixtures

of the se components, except fo r a few very common ones l i ke ethanol and water

or ga so l ine . This seemed l ik e a very u n s a t i s f a c to ry s i tu a t io n so we decided to

t r y and p r e d ic t the f la sh po in ts of both pure and mixed l i q u id s .

The 'ash poin t i s defined as the temperature a t which the a i r above an

open su rface of a flammable l iq u id wil l support combustion and t r a n s f e r i t to

the l i q u id sur face . There are two commonly used f lash p o in t s , open cup and

c losed cup. The names r ep re sen t the experimental technique used to measure

each. Open cup f lash poin ts are measured by passing a flame across the surface

of a l i q u id (without touching the sur face) t h a t is open to the room. Closed

cup f l a s h po in ts are measured by in s e r t in g a flame in to a closed con ta iner

above the l iq u id in t e r f a c e . Closed cup f lash po in ts are usual ly used fo r l i q ­

uids with f la s h po in ts below 40 degrees Fahrenheit and open cup f la s h points

are measured fo r l i q u id s with f la sh po in ts above 40 degrees Fahrenheit though

e i t h e r method can be used f o r a l l l i q u id s . Where both measurements have been

made fo r the same m a te r i a l , the closed cup value i s somewhat lower than the

open cup value.

- 372 -

Page 397: Classical and Statistical Thermodynamics of Solid-Liquid

373

To begin to inves t iga te the question of predic t ion of f lash po in t s , we made

two simple and obvious observations. Materials with high vapor pressures had

low f la sh points and combustion stoichiometry must somehow be involved. With

these observations as a guide, we began t ry ing to co r r e l a t e the known values

of f la sh points with these two observa tions. The f i r s t thing we discovered

was th a t f lash points and lower explosive l im i t s were very d e f i n i t e l y co r re ­

la ted with each other. This i s a very p laus ib le r e s u l t as the r e s u l t s of the

two phenomena are e s s e n t i a l ly the same. When the experimental ly observed lower

explosive l imit s were co r re la ted with combustion stoichiometry and vapor pres ­

sure, a strong co r re la t ion was obtained. Most mater ia ls have a lower explosive

l im i t th a t is approximately 60% of the combustion stoichiometry, meaning tha t

i f the amount of th a t material in a i r reaches 60% of the sto ich iometr ic

amount, and a source of ign i t ion is ava i lab le , the mixture wil l i g n i t e v i o l ­

en t ly . While we do not know the spec i f i c reason why th i s p a r t i c u l a r proportion

should be so c r i t i c a l , i t is a very strong c o r re l a t i o n . When the p a r t i a l p res ­

sure of material th a t t h i s s toichiometry represents i s t r a n s l a t e d to vapor

pressure for th a t mate r ia l , a temperature is obtained where t h a t concentrat ion

wil l occur. That temperature i s the closed cup f lash point . When a program was

w r i t t en th a t ca lcula ted the lower explosive l im i t and the closed cup f lash

poin t by t h i s co r re la t io n , i t predic ted most of the values l i s t e d in the hand­

books within the experimental e r ro r of measuring f lashpoin t . There were a few

notable exceptions l ike hydrogen th a t were poorly predic ted but these were few

in number and always very l i g h t , very explosive m a te r ia l s . For a l l of the ma­

t e r i a l s t h a t were l i qu ids or so l ids a t room temperature, the p red ic t ions were

ex ce l le n t .

Page 398: Classical and Statistical Thermodynamics of Solid-Liquid

374

Happy with our success a t co r re l a t i n g pure component lower explosive l imi t s

and f l a s h p o in t s , we decided to extend our program to mixtures. We reasoned

t h a t the f lashpo in t of a mixture would be determined by the stoichiometry of

a l l the components in a i r and the composition of the vapor phase a t a given

temperature. This made the p red ic t ion of mixture f lashpoin ts a simple problem

in vapor- l iquid equil ibrium. As a s t a r t in g exerc ise, we decided to use

Raoul t ' s law to pred ic t the VLE of the system. We then applied the value of

60?o of a s to ichiometric mixture in a i r and solved the problem to f ind the tem­

pera ture a t which those condit ions ex is ted . When the program was te s t ed using

a "pseudo-gasoline" we concocted based on our experience, the f la shpoin t pre­

d ic ted was within the range given fo r the experimental values. This was a very

good r e s u l t and we proceeded to t e s t the program on other multicomponent sys­

tems for which data ex i s ted . The only multicomponent system th a t was not pre­

dic ted very well (though i t was s t i l l predicted in the r igh t ballpark.) was the

ethanol-water system. The presence of water which has no f lashpoin t should not

have been a problem but the f la shpo in t versus composition curve for th a t mix­

tu re has an "s" shaped curve t h a t i s not predicted by the program. Believing

t h a t the discrepancy was due to using Raoult 's law for the VLE, we extended

the program to use Wilson's equation to p red ic t the l iqu id phase nonideal i­

t i e s . This modificat ion did change the predicted curve for t h i s system, but i t

did not improve the f i t to the data. The reason for th i s is not known but i t

could be th a t water plays some ac t ive ro le in the combustion in t h i s system

which the program cannot account fo r . In sp i te of t h i s exception, the few

o ther mixtures th a t could be t e s t ed were predic ted to within experimental ac ­

curacy and the choice of Raoul t ' s law or Wilson's equation fo r the l iqu id

phase had minimal e f f e c t on the r e s u l t s , s ince most of the mixtures for which

data e x i s t are quit e idea l .

Page 399: Classical and Statistical Thermodynamics of Solid-Liquid

375

Afte r congra tu la t ing ourselves on our discovery , we decided to check the

l i t e r a t u r e fo r any work done in t h i s area prev ious ly . I t did not take long to

d iscover t h a t our "discovery" of the 60fi value fo r the lower explosive l imit

of a ma teria l has been known for about 60 years , though the value usually

c i t e d in the k in e t ic s books i s 50%. This be la ted discovery has n u l l i f i e d the

p o s s i b i l i t y of publishing t h i s work but we s t i l l bel ieve i t is worth recording

here because no one we discussed our f indings with as they were being formed

was aware of t h i s well known (but mostly fo rgo t ten ) " ru le of thumb" and none

of the older k in e t ic s textbooks used the pred ic ted lower explosive l i m i t to

determine the f l a shpo in t of the m a te r ia l . Also, the extension of the " ru le of

thumb" to mixtures fo r the purpose of p red ic t ing t h e i r f l a s h p o in t s and lower

explosive l im i t s seems to have been ignored, a t l e a s t based on our l imited

search of the l i t e r a t u r e .

The program used to perform these ca lc u la t io n s is given below. I t i s w r i t ­

ten in Fortran and i s intended to be se l f -exp lana to ry when run. The program

requ i re s th a t you know the s t r u c tu ra l formula of the mater ia l you are consid­

e r ing as well as i t s vapor pressure versus temperature. To use i t fo r mix­

t u r e s , the Antoine 's cons tan ts of a l l components must be’ known, along with

t h e i r s t r u c tu ra l formulas. To apply Wilson's equation fo r the VLE p re d ic t io n s ,

the usual molar volumes and binary i n t e r a c t io n parameters must be known. We

hope t h a t the program wil l be useful to someone.

Page 400: Classical and Statistical Thermodynamics of Solid-Liquid

376

Table A6-1

Comparison of Calcu la ted and Experimental Flash Points fo r Pure Substances.

Li t e r a t u r e Values Predicted ValuesCompound Flash Point L.E.L. Flash Point L.E.L

Methane GAS 5.0 -305.6 5.034Ethylene GAS 2.7 -227.2 3.424n-Butane GAS 1.9 - 99.9 1.614Toluene 40 1.2 44.5 1.173Ethanol 55 3.3 57.0 3.423Naphthalene 174 0.9 178.8 0.884n-Decane 115 0 .8 119.9 0.687Carbon Dioxide NONE NONE NONE NONEPhenol 175 NA 171.9 1.506T e t r a l i n 160 0 .8 161.7 0.816Dibutyl amine 125(oc) NA 109.1 0.796Phtha l ic Anhydride NA NA 286.5 1.410p—Di chiorobenzene 150 NA 141.9 1.612Cyclopentane LT 20 NA - 35.1 1.407Anthracene 250 0 .6 321.0 0.643Ethylbenzene 59 1.2 74.9 1.000m-Xylene 77 1.1 79.2 1.010

L.E.L. = Lower Explosive Limit.

NA = Not Available

NONE = Not Flammable

LT = Less Than

(oc) - Open Cup Flash Point

All Flash Points Listed are in Degrees Fahrenhe it .

All Lower Explosive Limits are in Volume Percents .

Page 401: Classical and Statistical Thermodynamics of Solid-Liquid

377

Table A6-2

Comparison of Calculated and Experimental Flash Points for Mixtures.

Flash Points L.E.L.Mixture L i t . Raoult Wilson Lit . Raoult Wilson

Ethanol-Water

Water NONE NONE NONE NONE NONE NONE1% Ethanol NA 203.2 166.2 NA 72.6 35.8

3.2% Ethanol NA 184.6 119.1 NA 50.4 13.25% Ethanol 144 170.3 105.0 NA 37.4 9.9

10% Ethanol 120 140.9 88.8 NA 19.6 7.330% Ethanol 85 96.1 74.4 NA 7.1 5.650% Ethanol 75 78.5 69.4 NA 4.9 5.170% Ethanol 70 67.8 65.0 NA 4.0 4.695% Ethanol 63 58.6 58.6 NA 3.5 3.7

Ethanol 55 57.0 57.0 NA 3.4 3.4

Gasoli ne

C5 to C9 -36 1.4100 Octane

Model Composition No. 1

2% nC5 5% iC6 2% BZ

10% iC7 15% TOL 20% iC8 35% m-X 11% iC9 13 .2 1.081

Page 402: Classical and Statistical Thermodynamics of Solid-Liquid

378

Model Composition No. 2

35 nC4 65 iC5 45 nC5

125 iC6 205 iC7 155 TOL 155 iC8 155 m-X105 iC9 -38 .1

L.E.L. = Lower Explosive Limit.

NA = Not Available

NONE = Not Flammable

All Flash Points Listed are in Degrees Fahrenheit.

All Lower Explosive Limits are in Volume Percents.

1.345

Page 403: Classical and Statistical Thermodynamics of Solid-Liquid

C 2 3 4 5 6 7 8 9 0DIMENSION A ( 1 0 ) , B ( 1 0 ) , C ( 1 0 ) , FRAG( 1 0 ) , WEIGHT( 1 0 ) ,V P ( 1 0 ) , P P A R T ( 1 0 ) ,

1 GAMMA( 1 0 ) , V ( 1 0 ) , ARG( 1 0 ) , T E R M 3 ( 1 0 ) , A I J ( 1 0 , 1 0 ) , XLAMB( 1 0 , 1 0 ) ,2 XINERT (1 0 )

OPEN ( 6 , F I L E = ' P R N : ' )WRITE( * , 5 )

5 FORMAT ( I X , 'ENTER THE NUMBER OF RUNS TO BE MADE AS AN INTEGER') READ ( * , 1 1 0 ) J

110 FORMAT ( 1 5 )DO 1 0 0 1 = 1 , J WRITE ( * , 6 )

6 FORMAT ( IX , 'E N T E R NUMBER OF COMPONENTS AS INTEGER')READ ( * , 1 1 0 ) NUMDO 2 2 0 K = 1 , NUM WRITE ( * , 8 ) K

8 FORMAT ( I X , / / , I X , 'C O M P O N E N T ' , 1 4 )WRITE ( * , 9 )

9 FORMAT ( I X , ' I N P U T FORMULA: C ,H ,0 ,H A L O G E N S,N ,S : AS F 5 . 2 REALS') READ( * , 1 0 ) CARBON, HYDRO, OXYGEN, HALS, XNITRO, SULFUR

10 FORMAT ( 6 F 5 . 2 )WRITE ( * , 1 1 )

11 FORMAT ( I X , ' I N P U T ANTOINES C O N S T .,A ,B , AND C, AND MOLE FRACTION' 1 ' IN F 1 0 . 5 REALS')

READ ( * , 1 2 ) A ( K ) ,B ( K ) ,C ( K ) ,F R A C ( K )12 FORMAT ( 4 F 1 0 . 2 )

T E S T = 1 0 0 0 0 . 0*CARBON+1000. 0*HYDRO+100. 0*OXYGEN 1 +HALS+XNITR0+10. 0*SULFUR

T F = - 2 0 0 . 0I F (T E S T .E Q .2 0 0 0 . 0 ) THEN WEIGHT(K)= 2 . 5 TF = - 4 5 0 .WRITE ( * , 5 0 1 )ELSEI F (T E S T .E Q .1 0 1 0 0 . 0 ) THEN WEIGHT(K)= 0 . 7 3 TF = - 4 1 0 . 0 ELSEI F (T E S T .E Q .2 2 0 0 0 . 0 ) THENWEIGHT(K)= 4 . 1 5ELSEI F (T E S T .E Q .1 0 0 2 0 . 0 ) THENWEIGHT(X)= 8 . 1ELSEWEIGHT(K)=CARBON+0. 2 5 * (HYDRO-HALS)+ 0 . 5 * (XNITRO-OXYGEN)

1 +SULFUR ENDIF ENDIF ENDIF ENDIF TSAV£=TFWRITE ( * , 1 3 ) K,WEIGHT(K)

13 FORMAT ( I X , 'T H E WEIGHT OF COMP. ' , 1 4 , ' I S ' , F 1 0 . 2 )I F (W E IG H T (K ) .E Q .0 .0 ) THENXINERT(K)= 1 . 0ELSEXINERT(K)= 0 . 0 ENDIF

2 2 0 CONTINUET = ( T F + 4 6 0 . 0 ) / I .8 XN=1. 0

Page 404: Classical and Statistical Thermodynamics of Solid-Liquid

380

2122

23

24 111

25

26 113112

43

1 1 5114

117 116

118

119

20

330

4 40

33

DELT=1.0WRITE( * , 2 1 ) ' ;FORMAT( I X , ' I N S E R T 0 FOR RAOULTS LAW OR 1 FOR WILSONS E Q N . ' )READ ( * , 2 2 ) IP IC KFORMAT ( 1 5 ) II F ( I P I C K . E Q . l ) THEN DO 1 1 1 K=l,NUM WRITE( * , 2 3 ) KFO R M A T (IX , 'IN PU T THE MOLAR VOLUME FOR COMP. ' , 1 4 , ' IN ML/GMOL')READ( * , 2 4 ) V(K)FORMAT(FI0 . 4 )CONTINUE DO 1 12 L = 1 rNUM DO 1 13 K=1,NUM WRITE( * , 2 5 ) L ,KFORMAT ( I X , ' I N S E R T A ( ' , 1 2 , ' , ' , 1 2 , 1) IN CAL/GMOL')READ ( * , 2 6 ) A I J ( L , K )FORMAT ( F 1 0 . 4)CONTINUECONTINUEENDIFI F ( I P I C K . E Q . l ) THEN DO 114 M=1,NUM ARG(M)= 0 . 0 DO 1 1 5 K=1,NUMXLAMB(M,K)= ( V ( K ) / V ( M ) ) * E X P ( - A I J ( M ,K ) / ( 1 . 9 8 7 * T ) )ARG(M)=ARG(M)+ (F R A C (K )*XLAMB(M,K))CONTINUE CONTINUE DO 1 1 6 K=1,NUM TERM3(K)= 0 . 0 DO 1 1 7 M=1,NUMTERM3(K) "=TERM3(K) + (FRAC(M)*XLAMB(M, K )/A R G (M ))CONTINUE CONTINUE DO 1 18 M=1,NUMGAMMA(M)= E X P ( 1 . O-ALOG(ARG(M)) -T E R M 3(M ))CONTINUEELSEDO 119 M=1,NUM GAMMA(M)= 1 . 0 CONTINUE ENDIF P R E S S = 0 . 0 WT=0. 0 V INER T=0. 0 DO 3 3 0 K=1,NUMV P (K )= E X P (A (K )- ( B ( K ) / ( T + C ( K ) ) ) )PRESS=PRESS+VP(K)*FRAC(K)*GAMMA(K)CONTINUE DO 4 4 0 K = 1 , HUMPPART(K)=VP(K)*FRAC(K)*GAM M A(K)/PRESS YINERT=YINERT+XINERT(K)*PPART(K)WT=WT+PPART(K)*WEIGHT(K)CONTINUEIF (W T .E Q .O .O ) THEN WRITE( * . 3 7 ) WT W RITE( * , 3 3 )FORMAT ( I X , ' T H I S MIXTURE HAS NO FLASHPOINT OR LOWER EX. L I M I T . ' )GOTO 1 0 0

Page 405: Classical and Statistical Thermodynamics of Solid-Liquid

381

ENDIFWRITE( * , 3 7 ) WTERATIO= Y IN E R T *1.4 8 * P R E S S / (7 6 0 . 0 -F R E S S * ( 1 . O - Y I N E R T ) ) + 0 .6 TOTP=( ( 0 . 21*E R A T IO )/ (WT+( 0 . 2 1*E R A T IO )) ) * 7 6 0 . 0 WRITE( * , 3 5 ) TOTP,PRESS

35 FORMAT ( I X , ’ TOTP=' , F 1 0 . 4 , ' AND P R E S S = ' , F 1 2 .2 )I F (A B S (T O T P -P R E S S ) .L T .0 ,0 5 ) THEN XLEL=0. 8 5 * P R E S S /7 . 6 T F = 1 . 8 * T - 4 6 0 . 0 WRITE ( * , 3 7 ) WT

37 FORMAT (1 X , 'T H E WEIGHTING FACTOR FOR THE MIXTURE I S ' , F 1 0 . 5 )WRITE ( * , 1 5 ) TF

15 FORMAT ( I X , 'T H E ESTIMATED FLASHPOINT I S ' , F 1 0 . 4 , ' DEG. F ' )WRITE ( * , 1 6 ) XLEL

16 FORMAT ( I X , 'T H E LOWER EXPLOSIVE LIMIT I S ' , F 1 0 . 5 , ' MOL % IN A I R ' , / / / )WRITE ( * , 1 7 ) ERATIO

17 FORMAT ( I X , 'T H E EQUIVALENCE RATIO I S ' , F 8 . 4 )GOTO 88ENDIFI F (T O TP.G T.PRESS) THEN T=T+(DELT*XN)XN=XN+1.0 WRITE ( * , 9 7 ) T

97 FORM AT(IX,'T(BELOW )= ' , F 1 0 . 2 )I F ( I P I C K . E Q . 0 ) THENGOTO 20ELSEGOTO 43ENDIFELSET=T-(DELT*XN)DELT=0. 500*DELT XN=1. 0WRITE( * , 9 8 ) T

98 FORMAT ( I X , 'T (A B O V E )= ' , F 1 0 , 2 )I F ( I P I C K .E Q .O ) THENGOTO 20ELSEGOTO 43ENDIFENDIF

501 FORMAT(IX,'WARNING: THE PRESENCE OF HYDROGEN IN MIXTURES C AN ',1 / , ' NOT BE ACCURATELY HANDLED BY THIS PROGRAM'//)

88 WRITE ( * , 8 1 )81 FORMAT ( I X , 'T O RERUN SAME SYSTEM AT D IF F . COM POSITIONS,' ,

1 ' INSERT 1 . TO CONTINUE, INSERT 0 . ' )READ ( * , 8 2 ) NAGAIN

82 FORMAT ( 1 4 )I F (N A G A IN .E Q .l) THEN DO 183 K=1,NUM WRITE ( * , 8 3 ) K

83 FORMAT ( I X , ' I N P U T NEW MOL. FRAC, FOR COMP. ' , 1 4 )READ ( * , 8 4 ) FRAC(K)

84 FORMAT ( F 1 0 . 4 )183 CONTINUE

T =(T S A V E +460 . 0 ) / I .8 X N = 1 .0 DELT=1. 0I F ( IP IC K .E Q .O ) THEN GOTO 20

Page 406: Classical and Statistical Thermodynamics of Solid-Liquid

382

ELSEGOTO 4 3ENDIFENDIFCONTINUESTOPEND

Page 407: Classical and Statistical Thermodynamics of Solid-Liquid

APPENDIX 7

SOLUTION MODELS USED IN THE STUDY

- 383 -

Page 408: Classical and Statistical Thermodynamics of Solid-Liquid

384

The fol lowing a c t i v i t y c o e f f i c i e n t equa t ions were used in the data a n a ly s i s :1) Regula r S o l u t i o n Theory ( S c a t c h a r d - H i ld e b r a n d )

Binary Form

hT £n Vj - Vj * * (61 - 62 ) 2

RT £n y2 = 4 + * C6 1 - & J 2

£V . X i

1 J*where 4*. =1 v ^2. x . v . l il

. vAu . 1and 6^“ ( -----1

V .1

Mult icomponent form

RT £n % = v . 2 (6 . - 6 ) 2i l l where 6 = Z.4>.6.i l l

2) Extended S c r a t c h e d - H i l d e b r a n d Theory Bina ry form

v 2 4> 2

2n *1 = RT *( 6 1 " 62^ + 22126 162^

v 2 <t> 2£n y2 = [Cfij “ ^ 2 ) + 2£ !26 i 62^

where £ ^ = a d j u s t a b l e b i n a r y p a ra m e t e r

Mult icomponent form

RT £n Y,, = v . £ [D., - h D . . ]k k . . i j 1 ik i ji j

where D. . = (6 . - 6 . 12 + 2 £ . . 6 . 6 .1 J ‘ i j i J

and £ . . = D . . = 0i i i i

Page 409: Classical and Statistical Thermodynamics of Solid-Liquid

3) Wilson's EquationBinary form

£n Yj = - £n (x1 + x2 G ^ ) + x2

£n Y2 = + Xj G21) - x l

12

X1 + X2

12

X1 + X2

where Gij = exp ( " ^ )v.l

Multicomponent form

UnY- = 1 - £ n (Z x . G. . ) - Z 1 j i j ,J k

Xk Gki Z x . G, . j J kj

The \ a re the a d ju s t a b l e b inary pa ram ete rs .

4) UNIQUAC Equat ion Binary form

Page 410: Classical and Statistical Thermodynamics of Solid-Liquid

386

*2 z 02i n V2 = i n ( ~ ) + ( j )q2 t n ( J - ) +

2 2

*2 l i2 * ^ V

-<)2 2 n C02 * 0 j t 1 2 ) +

6 1 *2 ( — ) - ( — )02 + V l2 01 + V21

where 2. = C J 5

and T . j = exp

q i> ( r . - I )

q . x .and 0. = _ 1 1x Z q .x .

and <t>, =r . x . x 1

x _ Z r . x .x xx

Multicomponent form

4*. ©.£n v £ = ^ ) + ( | ) q i £n ( ) +

i i

4>.£ . I x .£ .

1 Xx j "

■«i *” « ej V + ’ i - % 1J J k k k j

The A „ a r e t h e a d j u s t a b l e b i n a r y p a r a m e t e r s .

The q. and r . a r e p u r e component p a r a m e t e r s t h a t a r e c a l c u l a t e d us ing ' Van d e r Waal^s r a d i i and volumes.

Page 411: Classical and Statistical Thermodynamics of Solid-Liquid

5 ) NKTL Eq ua t io n

B in a r y form

J2n y J = x . T21 (

V2 = x ] *21 C

where 1212

RT

_ _21 C21 RT

and = exp

G21 = exp C - « 21)

6) Van Laar Equat ion

Binary Form

Page 412: Classical and Statistical Thermodynamics of Solid-Liquid

VITA

John Edward Coon was born in F u l to n , New York in 1955. He r e c e iv e d h i s

B.S. degree in Chemical Engineer ing from Clarkson Co l lege of Technology in

1977 and h i s M.S. degree in Chemical Engineer ing from Clarkson Col lege of

Technology in 1979.

He worked f o r Exxon Chemical Company from 1978 to 1982. He i s r e c e i v i n g

h i s Ph.D. in 1988. He i s m arr i ed to I l e a n a Perez Monrouzeau and i s p r e s e n t l y

l i v i n g in C a l i f o r n i a where he works f o r S im u la t ion S c ie n ces I n c o r p o r a t e d .

- 3 8 8 -

Page 413: Classical and Statistical Thermodynamics of Solid-Liquid

PUBLICATIONS, PRESENTATIONS AND REPORTS RESULTING FROM THIS RESEARCH EFFORT

PUBLICATIONS

Gupta, S . , Coon, J . E .

" S t r u c t u r e and Thermodynamics of M o lecu la r L iqu id M ix tu re s" ,Molec. P h y s . , 5 7 ( 5 ) , 1049-1061, (1 9 8 6 ) .

Coon, J . E . , Gupta, S . , McLaughlin, E.

" I s o t h e r m a l - i s o b a r i c M olecu la r Dynamics S im u la t io n o f Diatomic L iqu ids and T h e i r M ix tu r e s " , Chemical P h y s i c s , 113, 43-52, ( 1 9 8 7 ) .

Coon, J . E . , T r o t h , M., McLaughlin, E.

" S o l u b i l i t i e s o f P o l y n u c l e a r Aromat ic Hydrocarbons in Mix tu res o f Common Organ ic S o l v e n t s " , J . Chem. Eng. D ata , 32, 233-240, ( 1 9 8 7 ) .

Coon, J . E . , Sediawan, W.B., A uwaer te r , J . E . , McLaughlin, E.

" S o l u b i l i t i e s o f S e r i e s o f H e t e r o c y c l i c P o ly n u c l e a r A rcmat ics in Organic S o lv e n t s and T h e i r M ix tu r e s " , Accepted f o r p u b l i c a t i o n in t h e J . S o l u t i o n Chem. (1 9 8 8 ) .

Coon, J . E . , A uw aer te r , J . E . , McLaughlin, E.

"Comparison o f S o l i d - L i q u i d E q u i l i b r i u m and V apor -L iqu id E q u i l ib r iu m f o r P r e d i c t i o n o f A c t i v i t y C o e f f i c i e n t s in Systems C o n ta in in g P o l y n u c l e a r A ro m a t i c s " , Accep ted f o r p u b l i c a t i o n in F lu id Phase E q u i l . , ( 1988 ) .

PRESENTATIONS

Gupta, S . , Coon, J . E . , W i l l i a m s , C . P . , McLaughlin, E.

"M olecu la r Dynamics S im u l a t i o n s of M ix tu re s of Dia tomic F l u i d s " , p r e s e n t e d a t AIChE S p r in g M eet ing , A p r i l 8 , 1986, New O r le a n s , LA.

Coon, J . E . , T r o t h , M., McLaughlin, E.

" S o l u b i l i t i e s o f P o l y n u c l e a r Aromat ic Hydrocarbons in Organic S o lv e n t s and T h e i r M ix t u r e s " , p r e s e n t e d a t 2nd. IUPAC I n t e r n a ­t i o n a l Conference on S o l u b i l i t i e s , Augus t 13, 1986, Newark, NJ.

- 389 -

Page 414: Classical and Statistical Thermodynamics of Solid-Liquid

5 9 0

Auwaerter . J . E . , Coon, J . E . , McLaughlin, E.

"Vapor-Liauid Equi l ibr ium S tud ie s of Polynuclear Aromatic Hyarocaroons" , p resen ted a t the Louisiana Engineering Society Annual Meeting, Marcn 20, 1987, Monroe, LA.

Coon, J . E . , McLaughlin, E.

"So l id -L iq u id Equi l ibr ium as an A l t e r n a t i v e to Vapor-Liquid Equi l ibr ium fo r Determinat ion of Liquid Phase N o n id e a l i t i e s in Coal L iqu ids" , p resen ted a t AIChE Spring Meeting, March 1988, New O r leans , LA

REPORTS

McLaughlin, E. . Cco.n, J .E .

" S o l u b i l i t i e s and Liquid Phase N o n id e a l i t i e s in Coal Liquids", Final Reoort to DOE-PETC f o r Grant # DE-FG22-84PC7Q784-A000, fo r the Period from 7-30-84 tc 7-30-87.

McLaughlin, E . , Coon, J . E.

" S o l u b i l i t i e s and Thermodynamic P r o p e r t i e s of Po lynuc lear Aromatic Hydrocaroons in Organic S o lv en t s " , Final Report to NSF for Grant # CPE S3-34224, f o r the Per iod from 1-30-84 to 1-30-85.

Page 415: Classical and Statistical Thermodynamics of Solid-Liquid

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: John E. Coon

Major Field: Chemical E n g i n e e r in g

T itle o f D issertation: C l a s s i c a l and S t a t i s t i c a l Thermodynamics o f S o l i d - L i q u i dE q u l i b r i a

Approved:

Major Professor anfr Chairman

Dean of the Graduate School

EXAMINING COMMITTEE

Date of Examination: