62
Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Embed Size (px)

Citation preview

Page 1: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Classical Mechanics Lecture 6

Today’s Concept:Friction

Mechanics Lecture 6, Slide 1

Page 2: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Midterm Redux

Mechanics Lecture 6, Slide 2

Average=18.6/20

Seems like time is a big issue!!!Practice makes faster…

Page 3: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 3

Page 4: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 4

Page 5: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 5

Page 6: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Always opposes the relative motion of two surfacesMechanics Lecture 6, Slide 6

Page 7: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 7

Page 8: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Static Friction

Mechanics Lecture 6, Slide 8

Page 9: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Static Friction

Mechanics Lecture 6, Slide 9

Page 10: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Static Friction

Mechanics Lecture 6, Slide 10

Page 11: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Without Friction

Mechanics Lecture 6, Slide 11

sin

sing

m

mg

m

Fa net

Page 12: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 12

Page 13: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 13

Page 14: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 14

Page 15: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 15

Page 16: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 16

Page 17: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 17

Page 18: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Friction

Mechanics Lecture 6, Slide 18

Page 19: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 19

Page 20: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Main Points

Mechanics Lecture 6, Slide 20

Page 21: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Main Points

Mechanics Lecture 6, Slide 21

Page 22: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Pre-lecture thoughts

Mechanics Lecture 6, Slide 22

Page 23: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Microscopic explanation of Friction

What is Friction?Why can’t we walk through walls?

Basically the same answer to both questions…

Electron clouds of atoms repel (or bond to) each other

http://www.virneth.co.uk/topFriction/friction0.phphttp://astro1.panet.utoledo.edu/~vkarpov/Static_Friction_nature.pdf

Mechanics Lecture 6, Slide 23

Page 24: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 24

Page 25: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 25

Page 26: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 26

Page 27: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 27

Page 28: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 28

Page 29: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 29

Page 30: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 30

Page 31: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 31

Page 32: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

CheckpointA. B. C.

Mechanics Lecture 6, Slide 32

40%

13%

47%

A box sits on the horizontal bed of a moving truck. Static friction between the box and the truck keeps the box from sliding around as the truck drives.

If the truck moves with constant acceleration to the left as shown, which of the following diagrams best describes the static frictional force acting on the box:

Sa

A B C

Page 33: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

CheckPoint

If the truck moves with constant accelerating to the left as shown, which of the following diagrams best describes the static frictional force acting on the box:

A B C

A) In order to keep the box from sliding to the back of the truck as it accelerates, the frictional force needs to pull/push the box forward.

B) Friction always opposes motion/acceleration.

Mechanics Lecture 6, Slide 33

Sa

56% correct

Page 34: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Clicker Question

A box of mass M sits on a horizontal table. A horizontal string having tension T applies a force on the box, but static friction between the box and the table keeps the box from moving.

What is the magnitude of the total force acting on the box?

Since acceleration is zero.

A) MgB) mMgC) TD) 0

Mechanics Lecture 6, Slide 34

M

f T

Page 35: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Clicker QuestionA. B. C. D.

Mechanics Lecture 6, Slide 35

0% 0%

100%

0%

A box of mass M sits on a horizontal table. A horizontal string having tension T applies a force on the box, but static friction between the box and the table keeps the box from moving.

What is the magnitude of the static frictional force acting on the box?

Since the box is not moving the forces must be equal, otherwise there would be an acceleration.

A) MgB) mMgC) TD) 0

M

f T

38% correct

Page 36: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

CheckPoint

Mechanics Lecture 6, Slide 36

gmf k 11

gmf k 12

m

FamaF

47% got this right on first try

Page 37: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Checkpoint A. B. C.

Mechanics Lecture 6, Slide 37

0% 0%0%

gm

f

m

Fa k

net 1

1

11

1

gm

f

m

Fa k

net 2

2

22

2

gaa k 21

Page 38: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 38

00 nettotal FFa

38% got this right on first try

Page 39: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Checkpoint A. B. C.

Mechanics Lecture 6, Slide 39

0% 0%0%

0sin mgfFnet

Page 40: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

CheckPoint

A block slides on a table pulled by a string attached to a hanging weight. In Case 1 the block slides without friction and in Case 2 there is kinetic friction between the sliding block and the table.

In which case is the tension in the string biggest?A) Case 1 B) Case 2 C) Same

65% got this right on first try

Mechanics Lecture 6, Slide 40

Case 2(With Friction)

Case 1(No Friction)

m2

m1

g

m2

m1

g

Page 41: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Resume here

Mechanics Lecture 6, Slide 42

Page 42: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Lets work it out

Mechanics Lecture 6, Slide 43

m2

m1

g

A block (m2) slides on a table pulled by a string attached to a mass (m1) hanging over the side. The coefficient of kinetic friction between the sliding block and the table is k. What is the tension in the string?

Page 43: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Tension in String

A block (m2) slides on a table pulled by a string attached to a mass (m1) hanging over the side. The coefficient of kinetic friction between the sliding block and the table is k. What is the tension in the string?

What is the relationship between the magnitude of the tension of the string at block 2 and the magnitude of the tension in the string at block 1?

A) T1 > T2 B) T1 = T2 C) T1 < T2

Mechanics Lecture 6, Slide 44

T1

T2m2

m1

g

Page 44: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Acceleration of coupled blocks

What is the relationship between the magnitudes of the acceleration of the two blocks?

A) a1 = a2 B) a1 < a2 C) a1 > a2

Mechanics Lecture 6, Slide 45

m2

m1

g

A block (m2) slides on a table pulled by a string attached to a mass (m1) hanging over the side. The coefficient of kinetic friction between the sliding block and the table is k. What is the tension in the string?

Page 45: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 46

m2

m2g

T

N

f

m1

m1g

T

m2

m1

g

1) FBD

Page 46: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

1) FBD2) F=ma

add

N = m2g

T – m2g = m2a m1g – T = m1a

m1g – m2g = m1a + m2a

a = m1g – m2g m1 + m2

m2

m2g

T

N

f

m1

m1g

T

m2

m1

g

Mechanics Lecture 6, Slide 47

Page 47: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

T is smaller when a is bigger

m1g – T = m1a

T = m1g – m1aa = m1g – m2g m1 + m2

m2

m2g

T

N

f

m1

m1g

T

m2

m1

g

Mechanics Lecture 6, Slide 48

1) FBD2) F=ma

Page 48: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 49

Accelerating Blocks

21 mm

T

m

Fa

amf 1

Page 49: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 50

gmmT

gm

gm

m

fa

gmf

S

SS

S

)( 21max

2

2

2

2

22

max

max

Accelerating Blocks

gm

gm

m

fa

gmf

kk

k

2

2

2

2

22

21

2

mm

fT

m

Fa

Page 50: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 51

fRRv 2

maFN

RfR

va

22

2

Carnival Ride

Page 51: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 52

Rf

g

Rf

gR

v

gR

Rv

g

a

g

ma

mg

N

mg

mgNf

s

s

s

22

22

22

/

min

min

min

Carnival Ride

min

min

1

s

s

W

N

mgNf

Page 52: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 53

Accelerating Truck

t

va

maFf

ga

mamgNf

S

SS

max

maxmax

Page 53: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 54

Accelerating Truck

gm

mg

m

fa

mgNf

KKsliding

sliding

KKsliding

ga

mamgNf

S

SS

max

maxmax

Page 54: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 55

Mass on Incline

sin

sin

gm

Fa

mgF

x

x

cossin

cos

kx

k

gm

fFa

mgf

Page 55: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 56

Mass on Incline

x

mgk

m

xkg

m

xkfFa

mgf

s

sx

s

cossin

cossin)(

0

cos

Page 56: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 57

cos

)cos)((sin

)(cos)(sin)(0

sin

sin

cos

cos

2

1212

2

22121

2

21

1

2

11

222

min

min12

1

2

min

m

mmm

m

mmgmmg

m

ffFFa

gmF

gmF

gmf

gmf

ss

ssxx

x

x

s

s

Mass on Incline

Page 57: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 58

Mass on Incline 2

sin

sin

gm

Fa

mgF

x

x

cos

sin

cossin

cos

g

ag

gm

fFa

mgf

k

kx

k

Page 58: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 59

Mass on Incline 2

cos

sin

cossin)(

0

cos

gmxk

g

m

xkg

m

xkfFa

mgf

s

sx

s

Page 59: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 60

Mass on Incline 2

sincos

)cos(sin

sincos

cossin

)sincos(cossin

0

)sincos(

s

s

s

s

s

ss

mgmgmgT

TmgTmg

a

TmgNf

Page 60: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Mechanics Lecture 6, Slide 61

)cos(sin

)sincos(

)(cos)(sin

)(cos)(sin)(0

sin

sin

cos

cos

212

22121

2

22121

2

21

1

2

11

222

min

min12

1

2

min

s

s

ss

ssxx

x

x

s

s

mm

mmgmmg

m

mmgmmg

m

ffFFa

gmF

gmF

gmf

gmf

Mass on Incline 2

Page 61: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Block

Mechanics Lecture 5, Slide 62

2

22

2sinsin

sin

2

2

1

t

xgmmamgf

m

fmg

m

Fa

t

xaatx

k

knet

Page 62: Classical Mechanics Lecture 6 Today’s Concept: Friction Mechanics Lecture 6, Slide 1

Pushing Blocks

Mechanics Lecture 5, Slide 63

21

2

1223

22323

14323

1

1

1114323

1

1

4321

1

22

2)(

24

22)(

4)(

gmF

FFF

gmgmmNF

F

m

FmamammF

m

F

mmmm

Fa

hnetnetnet

net

hhnet

hh

yx

y

x

netF23