Cmos Inverter Nand Nor Gates

Embed Size (px)

Citation preview

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    1/114

    EE1411

    D

    igital Integrated Circuits2nd Combinational Circ

    IntegratedIntegrated

    CircuitsCircuits

    A DesignA DesignPerspectivePerspective

    Designing CombinationalDesigning Combinational

    Logic CircuitsLogic Circuits

    Jan M. Rabaey

    Anantha ChandrakasanBorivoje Nikoli

    November 2002.

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    2/114

    EE1412

    D

    igital Integrated Circuits2nd Combinational Circ

    om na ona vs. equen aom na ona vs. equen aLogicLogic

    Combinational Sequential

    Output =f(In) Output =f(In, Previous In)

    CombinationalLogic

    Circuit

    OutIn

    CombinationalLogic

    Circuit

    OutIn

    State

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    3/114

    EE1413

    D

    igital Integrated Circuits2nd Combinational Circ

    Static CMOS CircuitStatic CMOS Circuit

    At every point in time (except during the switchingtransients) each gate output is connected to eitherVDDorVssvia a low-resistive path.

    The outputs of the gates assumeat all timesthevalueof the Boolean function, implemented by the circuit

    (ignoring, once again, the transient effects duringswitching periods).

    This is in contrast to the dynamic circuit class, which

    relies on temporary storage of signal values on thecapacitance of high impedance circuit nodes.

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    4/114

    EE1414

    D

    igital Integrated Circuits2nd Combinational Circ

    a c omp emen ary a c omp emen ary CMOSCMOS

    VDD

    F(In1,In2,InN)

    In1

    In2

    InN

    In1

    In2

    InN

    PUN

    PDN

    PMOS only

    NMOS only

    PUN and PDN are dual logic networks

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    5/114

    EE1415

    D

    igital Integrated Circuits2nd Combinational Circ

    NMOS TransistorsNMOS Transistors

    in Series/Parallel Connectionin Series/Parallel Connection

    Transistors can be thought as a switch controlled by its gate signal

    NMOS switch closes when switch control input is high

    X Y

    A B

    Y = X if A and B

    X

    Y

    A

    B Y = X if A OR B

    NMOS Transistors pass a strong 0 but a weak 1

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    6/114

    EE1416

    D

    igital Integrated Circuits2nd Combinational Circ

    PMOS TransistorsPMOS Transistors

    in Series/Parallel Connectionin Series/Parallel Connection

    X Y

    A B

    Y = X if A AND B = A + B

    X Y

    A

    B Y = X if A OR B = AB

    PMOS Transistors pass a strong 1 but a weak 0

    PMOS switch closes when switch control input is low

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    7/114EE141

    7Digital Integrated Circuits2nd Combinational Circ

    Threshold DropsThreshold Drops

    VDD

    VDD 0PDN

    0 VDD

    CL

    CL

    PUN

    VDD

    0 VDD

    - VTn

    CL

    VDD

    VDD

    VDD |VTp |

    CL

    S

    D S

    D

    VGS

    S

    SD

    D

    VGS

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    8/114EE141

    8Digital Integrated Circuits2nd Combinational Circ

    StyleStyle

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    9/114EE141

    9Digital Integrated Circuits2nd Combinational Circ

    Example Gate: NANDExample Gate: NAND

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    10/114

    EE14110

    Digital Integrated Circuits2nd Combinational Circ

    Example Gate: NORExample Gate: NOR

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    11/114

    EE14111Digital Integrated Circuits2nd Combinational Circ

    Complex CMOS GateComplex CMOS Gate

    OUT = D + A (B + C)

    D

    A

    B C

    D

    A

    B

    C

    C t ti C lC t ti C l

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    12/114

    EE14112Digital Integrated Circuits2nd Combinational Circ

    Constructing a ComplexConstructing a Complex

    GateGate

    C

    (a) pull-down network

    SN1 SN4

    SN2

    SN3D

    FF

    A

    DB

    C

    D

    F

    A

    B

    C

    (b) Deriving the pull-up networkhierarchically by identifying

    sub-nets

    D

    A

    A

    B

    C

    VDD VDD

    B

    (c) complete gate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    13/114

    EE14113Digital Integrated Circuits2nd Combinational Circ

    Cell DesignCell Design

    Standard Cells General purpose logic

    Can be synthesized

    Same height, varying width

    Datapath Cells For regular, structured designs (arithmetic)

    Includes some wiring in the cell Fixed height and width

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    14/114

    EE14114Digital Integrated Circuits2nd Combinational Circ

    Standard Cell LayoutStandard Cell Layout

    Methodology 1980sMethodology 1980s

    signals

    Routing

    channel

    VDD

    GND

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    15/114

    EE14115Digital Integrated Circuits2nd Combinational Circ

    Standard Cell LayoutStandard Cell Layout

    Methodology 1990sMethodology 1990s

    M2

    No Routing

    channelsVDD

    GNDM3

    VDD

    GND

    Mirrored Cell

    Mirrored Cell

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    16/114

    EE14116Digital Integrated Circuits2nd Combinational Circ

    Standard CellsStandard Cells

    Cell boundary

    N Well Cell height 12 metal tracksMetal track is approx. 3 + 3Pitch =repetitive distance between object

    Cell height is 12 pitch

    2

    Rails ~10

    InOut

    VDD

    GND

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    17/114

    EE14117Digital Integrated Circuits2nd Combinational Circ

    Standard CellsStandard Cells

    InOut

    VDD

    GND

    In Out

    VDD

    GND

    With silicideddiffusion

    With minimaldiffusionrouting

    OutIn

    VDD

    M2

    M1

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    18/114

    EE14118Digital Integrated Circuits2nd Combinational Circ

    Standard CellsStandard Cells

    A

    Out

    VDD

    GND

    B

    2-input NAND gate

    B

    VDD

    A

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    19/114

    EE14119Digital Integrated Circuits2nd Combinational Circ

    Stick DiagramsStick Diagrams

    Contains no dimensionsRepresents relative positions of transistors

    In

    Out

    VDD

    GND

    Inverter

    A

    Out

    VDD

    GNDB

    NAND2

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    20/114

    EE14120Digital Integrated Circuits2nd Combinational Circ

    Stick DiagramsStick Diagrams

    C

    A B

    X = C (A + B)

    B

    A

    C

    i

    j

    j

    VDDX

    X

    i

    GND

    AB

    C

    PUN

    PDNABC

    Logic Graph

    wo ers ons owo ers ons o +

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    21/114

    EE14121Digital Integrated Circuits2nd Combinational Circ

    wo ers ons owo ers ons o +B)B)

    X

    CA B A B C

    X

    VDD

    GND

    VDD

    GND

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    22/114

    EE14122Digital Integrated Circuits2nd Combinational Circ

    Consistent Euler PathConsistent Euler Path

    j

    VDDX

    X

    i

    GND

    AB

    C

    A B C

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    23/114

    EE14123Digital Integrated Circuits2nd Combinational Circ

    OAI22 Logic GraphOAI22 Logic Graph

    C

    A B

    X = (A+B)(C+D)

    B

    A

    D

    VDDX

    X

    GND

    AB

    C

    PUN

    PDN

    C

    D

    D

    ABCD

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    24/114

    EE141 24Digital Integrated Circuits2nd Combinational Circ

    Example: x = ab+cdExample: x = ab+cd

    GND

    x

    a

    b c

    d

    VDDx

    GND

    x

    a

    b c

    d

    VDDx

    (a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

    a c d

    x

    VDD

    GND

    (c) stick diagram for ordering {a b c d}

    b

    u ngereu ngere

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    25/114

    EE141 25Digital Integrated Circuits2nd Combinational Circ

    u - ngereu - ngereTransistorsTransistors

    One finger Two fingers (folded)

    Less diffusion capacitance

    P i f C lP ti f C l t

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    26/114

    EE141 26Digital Integrated Circuits2nd Combinational Circ

    Properties of ComplementaryProperties of Complementary

    CMOS Gates SnapshotCMOS Gates Snapshot

    High noise margins:

    VOHand VOL are at VDD and GND, respectively.

    No static power consumption:

    There never exists a direct path between VDD and

    VSS (GND) in steady-state mode.

    Comparable rise and fall times:(under appropriate sizing conditions)

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    27/114

    EE141 27Digital Integrated Circuits2nd Combinational Circ

    CMOS PropertiesCMOS Properties

    Full rail-to-rail swing; high noise margins Logic levels not dependent upon the relative

    device sizes; ratioless

    Always a path to Vdd or Gnd in steady state; low

    output impedance Extremely high input resistance; nearly zero

    steady-state input current

    No direct path steady state between power and

    ground; no static power dissipation Propagation delay function of load capacitance

    and resistance of transistors

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    28/114

    EE141 28Digital Integrated Circuits2nd Combinational Circ

    Switch Delay ModelSwitch Delay Model

    AReq

    A

    Rp

    A

    Rp

    A

    Rn CL

    A

    CL

    B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn Cint

    B

    Rp

    A

    Rp

    A

    Rn

    B

    Rn CL

    Cint

    NAND2 INVNOR2

    npu a ern ec snpu a ern ec s

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    29/114

    EE141 29Digital Integrated Circuits2nd Combinational Circ

    npu a ern ec snpu a ern ec son Delayon Delay

    Delay is dependent onthe pattern of inputs

    Low to high transition

    both inputs go low delay is 0.69 Rp/2 CL

    one input goes low delay is 0.69 Rp CL

    High to low transition both inputs go high

    delay is 0.69 2Rn CL

    CL

    B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn Cint

    e ay epen ence on npue ay epen ence on npu

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    30/114

    EE141 30Digital Integrated Circuits2nd Combinational Circ

    e ay epen ence on npue ay epen ence on npuPatternsPatterns

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 100 200 300 400

    A=B=10

    A=1, B=10

    A=1 0, B=1

    time [ps]

    Voltage[V]

    Input Data

    Pattern

    Delay

    (psec)

    A=B=01 67

    A=1, B=01 64

    A= 01, B=1 61

    A=B=10 45

    A=1, B=10 80

    A= 10, B=1 81

    NMOS = 0.5 m/0.25 mPMOS = 0.75 m/0.25 m

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    31/114

    EE141 31Digital Integrated Circuits2nd Combinational Circ

    Transistor SizingTransistor Sizing

    CL

    B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn Cint

    B

    Rp

    A

    Rp

    A

    Rn

    B

    Rn CL

    Cint

    2

    2

    2 2

    1 1

    4

    4

    T i Si i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    32/114

    EE141 32Digital Integrated Circuits2nd Combinational Circ

    Transistor Sizing aTransistor Sizing a

    Complex CMOS GateComplex CMOS Gate

    OUT = D + A (B + C)

    D

    A

    B C

    D

    A

    B

    C

    1

    2

    2 2

    4

    4

    8

    8

    6

    3

    6

    6

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    33/114

    EE141 33Digital Integrated Circuits2nd Combinational Circ

    Fan-In ConsiderationsFan-In Considerations

    DCBA

    D

    C

    B

    A CL

    C3

    C2

    C1

    Distributed RC model(Elmore delay)

    tpHL = 0.69 Reqn (C1+2C2+3C3+4CL)

    Propagation delay deteriorates

    rapidly as a function of fan-in

    quadratically in the worst case.

    pp

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    34/114

    EE141 34Digital Integrated Circuits2nd Combinational Circ

    pp --InIn

    tpLH

    t p(psec)

    fan-in

    Gates with a

    fan-ingreater than

    4 should be

    avoided.0

    250

    500

    750

    1000

    1250

    2 4 6 8 10 12 14 16

    tpHL

    quadratic

    linear

    tp

    pp

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    35/114

    EE141 35Digital Integrated Circuits2nd Combinational Circ

    pp --OutOut

    2 4 6 8 10 12 14 16

    tpNOR2

    t p(psec)

    eff. fan-out

    All gates

    have the

    same drive

    current.

    tpNAND2

    tpINV

    Slope is a

    function of

    drivingstrength

    pp

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    36/114

    EE141 36Digital Integrated Circuits2nd Combinational Circ

    pp --and Fan-Outand Fan-Out

    Fan-in: quadratic due to increasing resistance

    and capacitance

    Fan-out: each additional fan-out gate adds two

    gate capacitances to CL

    tp = a1FI + a2FI2 + a3FO

    Fast Complex Gates:Fast Complex Gates:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    37/114

    EE141 37Digital Integrated Circuits2nd Combinational Circ

    Fast Complex Gates:Fast Complex Gates:

    Design Technique 1Design Technique 1

    Transistor sizing

    as long as fan-out capacitance dominates

    Progressive sizing

    InN CL

    C3

    C2

    C1In1

    In2

    In3

    M1

    M2

    M3

    MNDistributed RC line

    M1 > M2 > M3 > > MN

    (the fet closest to the

    output is the smallest)

    Can reduce delay by more than

    20%; decreasing gains as

    technology shrinks

    F t C l G tFast Complex Gates:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    38/114

    EE141 38Digital Integrated Circuits2nd Combinational Circ

    Fast Complex Gates:Fast Complex Gates:

    Design Technique 2Design Technique 2

    Transistor ordering

    C2

    C1In1

    In2

    In3

    M1

    M2

    M3 CL

    C2

    C1In3

    In2

    In1

    M1

    M2

    M3 CL

    critical path critical path

    charged1

    01 charged

    charged1

    delay determined by time to

    discharge CL, C1 and C2

    delay determined by time to

    discharge CL

    1

    1

    01 charged

    discharged

    discharged

    Fast Complex Gates:Fast Complex Gates:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    39/114

    EE141 39Digital Integrated Circuits2nd Combinational Circ

    Fast Complex Gates:Fast Complex Gates:

    Design Technique 3Design Technique 3

    Alternative logic structures

    F = ABCDEFGH

    Fast Complex Gates:Fast Complex Gates:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    40/114

    EE141 40Digital Integrated Circuits2nd Combinational Circ

    Fast Complex Gates:Fast Complex Gates:

    Design Technique 4Design Technique 4

    Isolating fan-in from fan-out using buffer

    insertion

    CLCL

    Fast Complex Gates:Fast Complex Gates:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    41/114

    EE141 41Digital Integrated Circuits2nd Combinational Circ

    Fast Complex Gates:Fast Complex Gates:

    Design Technique 5Design Technique 5

    Reducing the voltage swing

    linear reduction in delay

    also reduces power consumption

    But the following gate is much slower!

    Or requires use of sense amplifiers on thereceiving end to restore the signal level (memorydesign)

    tpHL = 0.69 (3/4 (CL VDD )/ IDSATn )

    = 0.69 (3/4 (CL Vswing )/ IDSATn )

    z ng og c a s orz ng og c a s or

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    42/114

    EE141 42Digital Integrated Circuits2nd Combinational Circ

    z ng og c a s or z ng og c a s or SpeedSpeed

    Frequently, input capacitance of a logic path isconstrained

    Logic also has to drive some capacitance

    Example: ALU load in an Intels microprocessoris 0.5pF

    How do we size the ALU datapath to achievemaximum speed?

    We have already solved this for the inverterchain can we generalize it for any type oflogic?

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    43/114

    EE141 43Digital Integrated Circuits2nd Combinational Circ

    Buffer ExampleBuffer Example

    ( )=

    +=N

    i

    iii fgpDelay1

    For given N: Ci+1 /Ci = Ci/Ci-1To find N: Ci+1 /Ci ~ 4

    How to generalize this to any logic path?

    CL

    In Out

    1 2 N

    (in units of inv)

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    44/114

    EE141 44Digital Integrated Circuits2nd Combinational Circ

    Logical EffortLogical Effort

    ( )fgp

    C

    CCRkDelay

    in

    Lunitunit

    +=

    +=

    1

    p intrinsic delay (3kRunit Cunit ) - gate parameter f(W)

    g logical effort (kRunit Cunit ) gate parameter f(W)f effective fanout

    Normalize everything to an inverter:

    ginv =1,pinv = 1

    Divide everything by inv(everything is measured in unit delays inv)

    Assume = 1.

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    45/114

    EE141 45Digital Integrated Circuits2nd Combinational Circ

    Delay in a Logic GateDelay in a Logic Gate

    Gate delay:

    d= h +p

    effort delay intrinsic delay

    Effort delay:

    h = g f

    logicaleffort

    effective fanout =Cout/Cin

    Logical effort is a function of topology, independent of sizing

    Effective fanout (electrical effort) is a function of load/gate size

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    46/114

    EE141

    46Digital Integrated Circuits2nd Combinational Circ

    Logical EffortLogical Effort

    Inverter has the smallest logical effort and

    intrinsic delay of all static CMOS gates

    Logical effort of a gate presents the ratio of its

    input capacitance to the inverter capacitancewhen sized to deliver the same current

    Logical effort increases with the gate

    complexity

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    47/114

    EE141

    47Digital Integrated Circuits2nd Combinational Circ

    Logical EffortLogical Effort

    Logical effort is the ratio of input capacitance of a gate to the inputcapacitance of an inverter with the same output current

    g= 1 g= 4/3 g= 5/3

    B

    A

    A B

    F

    VDDVDD

    A B

    A

    B

    F

    VDD

    A

    A

    F

    1

    2 2 2

    2

    2

    1 1

    4

    4

    Inverter 2-input NAND 2-input NOR

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    48/114

    EE141

    48Digital Integrated Circuits2nd Combinational Circ

    Logical Effort of GatesLogical Effort of Gates

    Fan-out (h)

    Normaliz e

    ddela

    y(d)

    t

    1 2 3 4 5 6 7

    pINV

    tpNAND

    F(Fan-in)

    g=p =

    d=

    g=

    p =

    d=

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    49/114

    EE141

    49

    Digital Integrated Circuits2nd Combinational Circ

    Logical Effort of GatesLogical Effort of Gates

    Fan-out (h)

    Normaliz e

    ddela

    y(d)

    t

    1 2 3 4 5 6 7

    pINV

    tpNAND

    F(Fan-in)

    g= 1p = 1

    d= h+1

    g= 4/3

    p = 2

    d= (4/3)h+2

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    50/114

    EE141

    50

    Digital Integrated Circuits2nd Combinational Circ

    Logical Effort of GatesLogical Effort of Gates

    IntrinsicDelay

    EffortDelay

    1 2 3 4 5

    Fanoutf

    1

    2

    3

    4

    5

    Inve

    rter: g

    =1; p

    =1

    2-in

    putNAN

    D:g=

    4/3;

    p=2

    NormalizedD

    elay

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    51/114

    EE141

    51

    Digital Integrated Circuits2nd Combinational Circ

    Add Branching EffortAdd Branching Effort

    Branching effort:

    pathon

    pathoffpathon

    C

    CCb

    +=

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    52/114

    EE141

    52

    Digital Integrated Circuits2nd Combinational Circ

    Multistage NetworksMultistage Networks

    Stage effort: hi = gifi

    Path electrical effort: F= Cout/Cin

    Path logical effort: G = g1g2gN

    Branching effort: B = b1b2bN

    Path effort: H= GFB

    Path delay D = di = pi + hi

    ( )=

    +=N

    i

    iii fgpDelay1

    p mum or perp mum or per

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    53/114

    EE141

    53

    Digital Integrated Circuits2nd Combinational Circ

    p mum or per p mum or per StageStage

    HhN =

    When each stage bears the same effort:

    N

    Hh =

    ( ) PNHpfgD Niii +=+= /1Minimum path delay

    Effective fanout of each stage:ii ghf =

    Stage efforts: g1f1 = g2f2 = = gNfN

    p ma um er op ma um er o

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    54/114

    EE141

    54

    Digital Integrated Circuits2nd Combinational Circ

    p ma um er o p ma um er oStagesStages

    For a given load,and given input capacitance of the first gate

    Find optimal number of stages and optimal sizing

    invN NpNHD += /1

    ( ) 0ln /1/1/1 =++=

    inv

    NNN pHHHN

    D

    NHh/1=Substitute best stage effort

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    55/114

    EE141

    55

    Digital Integrated Circuits2nd Combinational Circ

    Logical EffortLogical Effort

    From Sutherland, Sproull

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    56/114

    EE141

    56

    Digital Integrated Circuits2nd Combinational Circ

    Example: Optimize PathExample: Optimize Path

    Effective fanout, F=

    G =

    H=h =

    a =

    b =

    1a

    b c

    5

    g = 1

    f= a

    g = 5/3

    f= b/a

    g = 5/3

    f= c/b

    g = 1

    f= 5/c

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    57/114

    EE141

    57

    Digital Integrated Circuits2nd Combinational Circ

    Example: Optimize PathExample: Optimize Path

    1a

    b c

    5

    g = 1

    f= a

    g = 5/3

    f= b/a

    g = 5/3

    f= c/b

    g = 1

    f= 5/c

    Effective fanout, F= 5

    G = 25/9

    H= 125/9 = 13.9

    h = 1.93a = 1.93

    b = ha/g2 = 2.23

    c= hb/g3 = 5g4/f= 2.59

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    58/114

    EE141

    58

    Digital Integrated Circuits2nd Combinational Circ

    Example: Optimize PathExample: Optimize Path

    1

    ab c

    5

    Effective fanout, H= 5

    G = 25/9

    F= 125/9 = 13.9

    f= 1.93a = 1.93

    b = fa/g2 = 2.23

    c= fb/g3 = 5g4/f= 2.59

    g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    59/114

    EE141

    59

    Digital Integrated Circuits2nd Combinational Circ

    Example 8-input ANDExample 8-input AND

    e o o og cae o o og ca

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    60/114

    EE141

    60

    Digital Integrated Circuits2nd Combinational Circ

    e o o og cae o o og caEffortEffort

    Compute the path effort: F= GBH

    Find the best number of stages N~ log4F

    Compute the stage effort f= F1/N

    Sketch the path with this number of stages

    Work either from either end, find sizes:

    Cin= C

    out*g/f

    Reference: Sutherland, Sproull, Harris, Logical Effort, Morgan-Kaufmann 1999.

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    61/114

    EE141

    61

    Digital Integrated Circuits2nd Combinational Circ

    SummarySummary

    Sutherland,

    Sproull

    Harris

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    62/114

    EE141

    62

    Digital Integrated Circuits2nd Combinational Circ

    RatioedRatioed

    LogicLogic

    i d iR ti d L i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    63/114

    EE141

    63

    Digital Integrated Circuits2nd Combinational Circ

    Ratioed LogicRatioed Logic

    VDD

    VSS

    PDNIn1In2In3

    F

    RLLoad

    VDD

    VSS

    In1In2In3

    F

    VDD

    VSS

    PDNIn1In2In3

    F

    VSS

    PDN

    Resistive DepletionLoad

    PMOSLoad

    (a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

    VT< 0

    Goal: to reduce the number of devices over complementary CMOS

    R i d L iR ti d L i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    64/114

    EE141

    64

    Digital Integrated Circuits2nd Combinational Circ

    Ratioed LogicRatioed LogicVDD

    VSS

    PDN

    In1

    In2

    In3

    F

    RLLoad

    ResistiveN transistors + Load

    VOH = VDD

    VOL

    = RPN

    RPN + RL

    Assymetrical response

    Static power consumption

    tpL= 0.69 RLCL

    A i L dA ti L d

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    65/114

    EE141

    65

    Digital Integrated Circuits2nd Combinational Circ

    Active LoadsActive LoadsVDD

    VSS

    In1In2In3

    F

    VDD

    VSS

    PDNIn1In2In3

    F

    VSS

    PDN

    DepletionLoad

    PMOSLoad

    depletion load NMOS pseudo-NMOS

    VT< 0

    d OS

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    66/114

    EE141

    66

    Digital Integrated Circuits2nd Combinational Circ

    Pseudo-NMOSPseudo-NMOS

    VDD

    A B C D

    F

    CL

    VOH= VDD (similar to complementary CMOS)

    kn

    VDD

    VTn

    ( )VOLV

    OL2

    2-------------

    kp

    2------ V

    DDV

    Tp( )

    2=

    VOL

    VDD

    VT

    ( ) 1 1k

    p

    kn

    ------ (assuming that VT

    VTn

    VTp

    )= = =

    SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    67/114

    EE141

    67

    Digital Integrated Circuits2nd Combinational Circ

    Pseudo-NMOS VTCPseudo-NMOS VTC

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Vin [V]

    Vout

    [V]

    W/Lp = 4

    W/Lp = 2

    W/Lp = 1

    W/Lp = 0.25

    W/Lp = 0.5

    I d L dI d L d

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    68/114

    EE141

    68

    Digital Integrated Circuits2nd Combinational Circ

    Improved LoadsImproved Loads

    A B C D

    F

    CL

    M1M2 M1 >> M2Enable

    VDD

    Adaptive Load

    d d (2)I d L d (2)

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    69/114

    EE141

    69

    Digital Integrated Circuits2nd Combinational Circ

    Improved Loads (2)Improved Loads (2)

    VDD

    VSS

    PDN1

    Out

    VDD

    VSS

    PDN2

    Out

    AABB

    M1 M2

    Differential Cascode Voltage Switch Logic (DCVSL)

    DCVSL E lDCVSL E l

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    70/114

    EE141

    70

    Digital Integrated Circuits2nd Combinational Circ

    DCVSL ExampleDCVSL Example

    B

    A A

    B B B

    Out

    Out

    XOR-NXOR gate

    rans enrans en

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    71/114

    EE141

    71

    Digital Integrated Circuits2nd Combinational Circ

    ResponseResponse

    0 0.2 0.4 0.6 0.8 1.0-0.5

    0.5

    1.5

    2.5

    Time [ns]

    Voltage

    [V] A B

    A B

    A,BA,B

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    72/114

    EE141

    72

    Digital Integrated Circuits2nd Combinational Circ

    Pass-Pass-

    TransistorTransistorLogicLogic

    P T i t L iPass Transistor Logic

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    73/114

    EE141

    73

    Digital Integrated Circuits2nd Combinational Circ

    Pass-Transistor LogicPass-Transistor Logic

    Inputs

    Switch

    Network

    OutOut

    A

    B

    B

    B

    N transistors No static consumption

    l GE l AND G t

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    74/114

    EE141

    74

    Digital Integrated Circuits2nd Combinational Circ

    Example: AND GateExample: AND Gate

    B

    B

    A

    F= AB

    0

    NMOS O l L iNMOS O l L i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    75/114

    EE141

    75

    Digital Integrated Circuits2nd Combinational Circ

    NMOS-Only LogicNMOS-Only Logic

    VDD

    In

    Outx

    0.5m/0.25m0.5m/0.25m

    1.5m/0.25m

    0 0.5 1 1.5 20.0

    1.0

    2.0

    3.0

    Time [ns]

    Voltage

    [V]

    x

    Out

    In

    NMOS only SwitchNMOS only Switch

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    76/114

    EE141

    76

    Digital Integrated Circuits2nd Combinational Circ

    NMOS-only SwitchNMOS-only Switch

    A = 2.5 V

    B

    C = 2.5V

    CL

    A = 2.5 V

    C = 2.5 V

    B

    M2

    M1

    Mn

    Threshold voltage loss causes

    static power consumption

    VB

    does not pull up to 2.5V, but 2.5V -VTN

    NMOS has higher threshold than PMOS (body effect)

    NMOS Only Logic:NMOS Only Logic:

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    77/114

    EE141

    77

    Digital Integrated Circuits2nd Combinational Circ

    y gLevel Restoring TransistorLevel Restoring Transistor

    M2

    M1

    Mn

    Mr

    OutA

    B

    VDDVDDLevel Restorer

    X

    Advantage: Full Swing

    Restorer adds capacitance, takes away pull down current at X

    Ratio problem

    R t Si iR t Si i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    78/114

    EE141

    78

    Digital Integrated Circuits2nd Combinational Circ

    Restorer SizingRestorer Sizing

    0 100 200 300 400 5000.0

    1.0

    2.0

    W/Lr=1.0/0.25W/Lr=1.25/0.25

    W/Lr=1.50/0.25

    W/Lr=1.75/0.25

    Voltage[V

    ]

    Time [ps]

    3.0Upper limit on restorer sizePass-transistor pull-downcan have several transistors i

    stack

    Solution 2: Single TransistorSolution 2: Single Transistori h

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    79/114

    EE141

    79

    Digital Integrated Circuits2nd Combinational Circ

    Pass Gate withPass Gate with VVTT=0=0

    Out

    VDD

    VDD

    2.5V

    VDD

    0V 2.5V

    0V

    WATCH OUT FOR LEAKAGE CURRENTS

    Complementary Pass TransistorComplementary Pass TransistorL iL i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    80/114

    EE141

    80

    Digital Integrated Circuits2nd Combinational Circ

    LogicLogic

    A

    B

    A

    B

    B B B B

    A

    B

    A

    B

    F=AB

    F=AB

    F=A+B

    F=A+B

    B B

    A

    A

    A

    A

    F=A

    F=A

    OR/NOR EXOR/NEXORAND/NAND

    F

    F

    Pass-Transistor

    Network

    Pass-TransistorNetwork

    AABB

    AAB

    B

    Inverse

    (a)

    (b)

    o u on : ransm ss ono u on : ransm ss onGateGate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    81/114

    EE141

    81

    Digital Integrated Circuits2nd Combinational Circ

    GateGate

    A B

    C

    C

    A B

    C

    C

    B

    CL

    C= 0 V

    A = 2.5 V

    C = 2.5 V

    es s ance o ransm ss ones s ance o ransm ss onGateGate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    82/114

    EE141

    82

    Digital Integrated Circuits2nd Combinational Circ

    GateGate

    Vout

    0 V

    2.5 V

    2.5 VRn

    Rp

    0 . 0 1 . 0 2 . 00

    1 0

    2 0

    3 0

    Vout

    , V

    Resistance,ohm

    s

    Rn

    Rp

    Rn

    || Rp

    ass- rans s or aseass- rans s or aseMultiplexerMultiplexer

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    83/114

    EE141

    83

    Digital Integrated Circuits2nd Combinational Circ

    MultiplexerMultiplexer

    AM

    2

    M1

    B

    S

    S

    S F

    VDD

    GND

    VDD

    In

    1

    In

    2

    S S

    S S

    Transmission Gate XORTransmission Gate XOR

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    84/114

    EE141

    84

    Digital Integrated Circuits2nd Combinational Circ

    Transmission Gate XORTransmission Gate XOR

    A

    B

    F

    B

    A

    B

    B

    M1

    M2

    M3/M4

    Delay in Transmission GateDelay in Transmission GateNetworksNetworks

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    85/114

    EE141

    85

    Digital Integrated Circuits2nd Combinational Circ

    NetworksNetworks

    V1 Vi-1

    C

    2.5 2.5

    0 0

    Vi Vi+1

    CC

    2.5

    0

    Vn-1 Vn

    CC

    2.5

    0

    In

    V1 Vi Vi+1

    C

    Vn-1 Vn

    CC

    In

    ReqReq Req Req

    CC

    (a)

    (b)

    C

    Req Req

    C C

    Req

    C C

    Req Req

    C C

    Req

    C

    In

    m

    (c)

    Delay OptimizationDelay Optimization

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    86/114

    EE141

    86

    Digital Integrated Circuits2nd Combinational Circ

    Delay OptimizationDelay Optimization

    Transmission Gate Full AdderTransmission Gate Full Adder

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    87/114

    EE141

    87

    Digital Integrated Circuits2nd Combinational Circ

    Transmission Gate Full AdderTransmission Gate Full Adder

    A

    B

    P

    Ci

    VDDA

    A A

    VDD

    Ci

    A

    P

    AB

    VDD

    VDD

    Ci

    Ci

    Co

    S

    Ci

    P

    P

    P

    P

    P

    Sum Generation

    Carry Generation

    Setup

    Similar delays for sum and carry

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    88/114

    EE141

    88

    Digital Integrated Circuits2nd Combinational Circ

    DynamicDynamic

    LogicLogic

    Dynamic CMOSDynamic CMOS

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    89/114

    EE141

    89

    Digital Integrated Circuits2nd Combinational Circ

    Dynamic CMOSDynamic CMOS

    In static circuits at every point in time (exceptwhen switching) the output is connected to eitherGND or VDD via a low resistance path.

    fan-in ofn requires 2n (n N-type + n P-type) devices

    Dynamic circuits rely on the temporary storage ofsignal values on the capacitance of highimpedance nodes.

    requires on n + 2 (n+1 N-type + 1 P-type) transistors

    Dynamic GateDynamic Gate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    90/114

    EE141

    90

    Digital Integrated Circuits2nd Combinational Circ

    Dynamic GateDynamic Gate

    In1

    In2 PDN

    In3

    Me

    Mp

    Clk

    Clk

    Out

    CL

    Out

    Clk

    Clk

    A

    B

    C

    Mp

    Me

    Two phase operation

    Precharge (CLK = 0)

    Evaluate (CLK = 1)

    Dynamic GateDynamic Gate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    91/114

    EE141

    91

    Digital Integrated Circuits2nd Combinational Circ

    Dynamic GateDynamic Gate

    In1

    In2 PDN

    In3

    Me

    Mp

    Clk

    Clk

    Out

    CL

    Out

    Clk

    Clk

    A

    B

    C

    Mp

    Me

    Two phase operation

    Precharge (Clk = 0)

    Evaluate (Clk = 1)

    on

    off

    1

    off

    on

    ((AB)+C)

    Conditions on OutputConditions on Output

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    92/114

    EE141

    92

    Digital Integrated Circuits2nd Combinational Circ

    Conditions on OutputConditions on Output

    Once the output of a dynamic gate isdischarged, it cannot be charged again untilthe next precharge operation.

    Inputs to the gate can make at most onetransition during evaluation.

    Output can be in the high impedance state

    during and after evaluation (PDN off), state isstored on C

    L

    roper es o ynam croper es o ynam cGatesGates

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    93/114

    EE141

    93

    Digital Integrated Circuits2nd Combinational Circ

    GatesGates

    Logic function is implemented by the PDN only number of transistors is N + 2 (versus 2N for static complementary

    CMOS)

    Full swing outputs (VOL

    = GND and VOH

    = VDD)

    Non-ratioed - sizing of the devices does not affect

    the logic levels

    Faster switching speeds

    reduced load capacitance due to lower input capacitance (Cin) reduced load capacitance due to smaller output loading (Cout)

    no Isc, so all the current provided by PDN goes into discharging C

    L

    roper es o ynam cGatesGates

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    94/114

    EE141

    94

    Digital Integrated Circuits2nd Combinational Circ

    GatesGates

    Overall power dissipation usually higherthan staticCMOS no static current path ever exists between V

    DDand GND

    (including Psc)

    no glitching higher transition probabilities

    extra load on Clk

    PDN starts to work as soon as the input signals

    exceed VTn, so VM, VIH and VIL equal to VTn low noise margin (NM

    L)

    Needs a precharge/evaluate clock

    Design 1: ChargeDesign 1: ChargeL k

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    95/114

    EE141

    95

    Digital Integrated Circuits2nd Combinational Circ

    LeakageLeakage

    CL

    Clk

    Clk

    Out

    A

    Mp

    Me

    Leakage sources

    CLK

    VOut

    Precharge

    Evaluate

    Dominant component is subthreshold current

    o u on o argeo u on o argeLeakageLeakage

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    96/114

    EE141

    96

    Digital Integrated Circuits2nd Combinational Circ

    LeakageLeakage

    CL

    Clk

    Clk

    Me

    Mp

    A

    B

    Out

    Mkp

    Same approach as level restorer for pass-transistor logic

    Keeper

    Design 2: ChargeDesign 2: ChargeSh iSh i

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    97/114

    EE141

    97

    Digital Integrated Circuits2nd Combinational Circ

    SharingSharing

    CL

    Clk

    Clk

    CA

    CB

    B=0

    A

    OutMp

    Me

    Charge stored originally on

    CL is redistributed (shared)

    over CL and CA leading to

    reduced robustness

    arge ar ngarge ar ngExampleExample

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    98/114

    EE141

    98

    Digital Integrated Circuits2nd Combinational Circ

    ExampleExample

    CL=50fF

    Clk

    Clk

    A A

    B B B !B

    CC

    Out

    Ca=15fF

    Cc=15fF

    Cb=15fF

    Cd=10fF

    Charge SharingCharge Sharing

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    99/114

    EE141

    99

    Digital Integrated Circuits2nd Combinational Circ

    Charge SharingCharge Sharing

    CL

    VDD

    CL

    Vout

    t( ) Ca VDD VTn VX( )( )+=

    or

    Vout Vout t( ) VDD CaCL

    -------- VDD VTn VX( )( )= =

    Vout VDDCa

    Ca CL+----------------------

    =

    case 1) ifVout< VTn

    case 2) ifVout> VTnB = 0

    Clk

    X

    CL

    Ca

    Cb

    A

    Out

    Mp

    Ma

    VDD

    Mb

    Clk Me

    o u on o argeo u on o argeRedistributionRedistribution

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    100/114

    EE141

    100

    Digital Integrated Circuits2nd Combinational Circ

    RedistributionRedistribution

    Clk

    Clk

    Me

    Mp

    A

    B

    Out

    MkpClk

    Precharge internal nodes using a clock-driven transistor

    (at the cost of increased area and power)

    Design 3: BackgateDesign 3: Backgate

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    101/114

    EE141

    101

    Digital Integrated Circuits2nd Combinational Circ

    CouplingCoupling

    CL1

    Clk

    Clk

    B=0

    A=0

    Out1Mp

    Me

    Out2

    CL2 In

    Dynamic NAND Static NAND

    =1=0

    ac ga e oup ngac ga e oup ngEffectEffect

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    102/114

    EE141

    102

    Digital Integrated Circuits2nd Combinational Circ

    EffectEffect

    -1

    0

    1

    2

    3

    0 2 4 6

    Voltag

    e

    Time, ns

    Clk

    In

    Out1

    Out2

    Design 4: ClockDesign 4: ClockF d h hF dth h

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    103/114

    EE141

    103

    Digital Integrated Circuits2nd Combinational Circ

    FeedthroughFeedthrough

    CL

    Clk

    Clk

    B

    A

    OutMp

    Me

    Coupling between Out and

    Clk input of the precharge

    device due to the gate to

    drain capacitance. Sovoltage of Out can rise

    above VDD . The fast rising

    (and falling edges) of the

    clock couple to Out.

    Cl k d h h

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    104/114

    EE141

    104

    Digital Integrated Circuits2nd Combinational Circ

    Clock FeedthroughClock Feedthrough

    -0.5

    0.5

    1.5

    2.5

    0 0.5 1

    Clk

    Clk

    In1

    In2

    In3

    In4

    Out

    In &

    Clk

    Out

    Time, ns

    Voltage

    Clock feedthrough

    Clock feedthrough

    Other EffectsOther Effects

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    105/114

    EE141

    105

    Digital Integrated Circuits2nd Combinational Circ

    Other EffectsOther Effects

    Capacitive coupling

    Substrate coupling

    Minority charge injectionSupply noise (ground bounce)

    asca ng ynam casca ng ynam cGatesGates

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    106/114

    EE141

    106

    Digital Integrated Circuits2nd Combinational Circ

    GatesGates

    Clk

    Clk

    Out1

    In

    Mp

    Me

    Mp

    Me

    Clk

    Clk

    Out2

    V

    t

    Clk

    In

    Out1

    Out2 V

    VTn

    Only 0 1 transitions allowed at inputs!

    Domino LogicDomino Logic

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    107/114

    EE141

    107

    Digital Integrated Circuits2nd Combinational Circ

    Domino LogicDomino Logic

    In1

    In2 PDN

    In3

    Me

    Mp

    Clk

    ClkOut1

    In4 PDN

    In5

    Me

    Mp

    Clk

    ClkOut2

    Mkp

    1 11 0

    0 00 1

    Why Domino?Why Domino?

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    108/114

    EE141

    108

    Digital Integrated Circuits2nd Combinational Circ

    Why Domino?Why Domino?

    Clk

    Clk

    Ini PDN

    Inj

    IniInj

    PDN Ini PDN

    Inj

    Ini PDN

    Inj

    Like falling dominos!

    roper es o om noroper es o om noLogicLogic

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    109/114

    EE141

    109

    Digital Integrated Circuits2nd Combinational Circ

    LogicLogic

    Only non-inverting logic can be implemented

    Very high speed

    static inverter can be skewed, only L-H transition Input capacitance reduced smaller logical effort

    es gn ng w om noes gn ng w om noLogicLogic

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    110/114

    EE141

    110

    Digital Integrated Circuits2nd Combinational Circ

    LogicLogic

    Mp

    Me

    VDD

    PDN

    Clk

    In1

    In2

    In3

    Out1

    Clk

    Mp

    Me

    VDD

    PDN

    Clk

    In4

    Clk

    Out2

    Mr

    VDD

    Inputs = 0

    during precharge

    Can be eliminated!

    Footless DominoFootless Domino

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    111/114

    EE141

    111

    Digital Integrated Circuits2nd Combinational Circ

    Footless DominoFootless Domino

    The first gate in the chain needs a foot switch

    Precharge is rippling short-circuit current

    A solution is to delay the clock for each stage

    VDD

    Clk M p

    Out1

    In1

    1 0

    VDD

    Clk M p

    Out2

    In2

    VDD

    Clk M p

    Outn

    InnIn3

    1 0

    0 1 0 1 0 1

    eren a ua aeren a ua aDominoDomino

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    112/114

    EE141

    112

    Digital Integrated Circuits2nd

    Combinational Circ

    DominoDomino

    A

    B

    Me

    Mp

    Clk

    Clk

    Out = AB

    !A !B

    MkpClk

    Out = ABMkp Mp

    Solves the problem of non-inverting logic

    1 0 1 0

    onoff

    np-CMOSnp-CMOS

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    113/114

    EE141

    113

    Digital Integrated Circuits2nd

    Combinational Circ

    np CMOSnp CMOS

    In1

    In2 PDN

    In3

    Me

    Mp

    Clk

    ClkOut1

    In4 PUN

    In5

    Me

    MpClk

    Clk

    Out2

    (to PDN)

    1 11 0

    0 00 1

    Only 0 1 transitions allowed at inputs of PDNOnly 1 0 transitions allowed at inputs of PUN

    NORA LogicNORA Logic

  • 8/8/2019 Cmos Inverter Nand Nor Gates

    114/114

    NORA LogicNORA Logic

    In1

    In2 PDN

    In3

    Me

    Mp

    Clk

    ClkOut1

    In4 PUN

    In5

    Me

    MpClk

    Clk

    Out2

    (to PDN)

    1 11 0

    0 00 1

    to otherPDNs

    to otherPUNs