39
CMS Tracking Detector case study This lecture is based on a PG lecture generously provided by Prof G Hall of Imperial College, London Updated in December 2016 Prof Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University London, Uxbridge [email protected] /

CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

CMS Tracking Detector case study This lecture is based on a PG lecture generously provided by Prof G Hall of Imperial College, London Updated in December 2016

Prof Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University London, Uxbridge

[email protected] /

Page 2: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Development of a tracking detector for physics at

the Large Hadron Collider

Geoff Hall

Page 3: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 3

CMS = Compact Muon Solenoid detector • missing element in current theoretical framework - mass

Total weight 12,500 tons Diameter 15m Length 21.6m Magnetic field 4T

Tracking system 10 million microstrips Diameter 2.6m Length 7m Power ~50kW

14000 t

Page 4: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 4

LHC parameters (CMS)

• Consequences High speed signal processing Signal pile-up High (low) radiation exposure High (low) B field operation Very large data volumes New technologies

pp Pb-PbLuminosity 1034 cm-2.s-1 1027 cm-2.s-1

Annual integrated L 5x1040 cm-2 ?

CM energy 14 TeV 5.5 TeV/ Nσ inelastic ~70mb ~6.5 b

interactions/bunch ~20 0.001tracks/unit rapidity ~140 3000-8000beam diameter 20µm 20µmbunch length 75mm 75mmbeam crossing rate 40MHz 8MHzLevel 1 trigger delay - 3.2µsec - 3.2µsecL1 (average) trigger rate Š100kHz < 8kHz

Page 5: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 5

Design philosophy • Large solenoidal (4T) magnet

iron yoke - returns B field, absorbs particles technically challenging but

smaller detector, p resolution, trigger, cost • Muon detection

high pT lepton signatures for new physics • Electromagnetic calorimeter

high (∆E) resolution, for H => γγ (low mass mode) • Tracking system

momentum measurements of charged particles pattern recognition & efficiency

complex, multi-particle events complement muon & ECAL measurements

improved p measurement (high p) E/p for e/γ identification

Page 6: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 6

Parameters for hadronic collider physics • E, p, cosθ, φ prefer variables which easily Lorentz transform e.g E, pT, pL, φ • pT divergences from simple behaviour could imply new physics

eg heavy particle decay => high pT lepton (or hadron)

• rapidity Lorentz boost

• pseudorapidity

y =12

ln(E + pL

E − pL

) dy =dpL

E

y → ′ y = y +12

ln(1 + β1 − β

)dNdy

invariant =>

d2 Nch arg ed

dη.dpT

≈ H. f ( pT ) H~ 6 |η| < 2.5 LHC

y =12

ln(cos2 (θ 2) +

m2

4 p2 + ...

sin2 (θ 2) + m2

4p2 + ...) ≈ − ln tan(θ 2) ≡ η

Page 7: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 7

Physics requirements (I) • Mass peak - one means of discovery

=> small σ(pT) eg H => ZZ or ZZ* => 4l±

typical pT(µ) ~ 5-50GeV/c

• Background suppression measure lepton charges good geometrical acceptance - 4 leptons background channel t => b => l

require m(l+l-) = mZ ΓZ ~ 2.5GeV precise vertex measurement identify b decays, or reduce fraction in data

m 2 = Ei2

i∑ − pi2

Page 8: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 8

Physics requirements (II)

∆pT

pT

≈ 0.15pT (TeV) ⊕ 0.5%

• p resolution large B and L

• high precision space points

detector with small intrinsic σmeas • well separated particles

good time resolution low occupancy => many channels good pattern recognition

• minimise multiple scattering • minimal bremsstrahlung, photon conversions

material in tracker most precise points close to beam

σ( pT )pT

~ pTσ meas

B.L2 Npts

Page 9: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 9

Silicon diodes as position detectors

+V bias

~25µm

~300

µm

~1pF/cm

~0.1pF/cm

• Spatial measurement precision defined by strip dimensions

ultimately limited by charge diffusion

σ ~ 5-10µm

Page 10: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 10

Vertex detector ~1990

Page 11: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 11

Interactions in CMS

7 TeV p

7 TeV p

Page 12: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 12

2.4m

~ 6m

Microstrip tracker system

~10M detector channels

Page 13: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 13

Event in the tracker

Page 14: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 14

• Constraints on tracker minimal material high spatial precision sensitive detectors requiring low noise readout power dissipation ~50kW in 4T magnetic field radiation hard Budget

• Requirements large number of channels limited energy resolution limited dynamic range

Silicon detector modules

Page 15: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 15

Radiation environment • Particle fluxes

Charged and neutral particles from interactions ~ 1/r2 Neutrons from calorimeter

nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging

• Dose energy deposit per unit volume Gray = 1Joule/kg = 100rad mostly due to charged particles

Page 16: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 16

Imperial College contributions to Tracker

FED

APV25 APVMUX/PLL

• Hardware development • Hardware construction • Beam tests & studies • Preparation for physics

Page 17: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 17

programmable

gain

APV25 0.25µm CMOS

Low noise charge

preamplifier

50 ns CR-RC shaper

192-cell analogue pipeline

1 of the 128 channels

SF SF

Analogue unity gain inverter

S/H

APSP

128:1 MUX

Differential current O/P

APV25-S0 (Oct 1999)

APV25-S1 (Aug 2000)

Chip Size 7.1 x 8.1 mm

Final

amplifiers pipeline memory

signal processing

& MUX

control logic

Page 18: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 18

0.001

2

3

4

56789

0.01

Noise

[µV/

Hz1/

2 ]

1042 4 6

1052 4 6

1062 4 6

107

Frequency [Hz]

pre-rad 10 Mrad 20 Mrad 30 Mrad 50 Mrad anneal

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Id [A

]

-0.6 -0.4 -0.2 0.0 0.2Vg [V]

Pre-rad 50 Mrad Anneal

Irradiations of 0.25µm technology • Extensive studies

CMS tracker data from IC, Padova, CERN ALL POSITIVE and well beyond LHC range

• CMOS hard against bulk damage

Qualify chips from wafers with ionising sources

• Typical irradiation conditions 50kV X-ray source Dose rate ~ 0.5Mrad/Hour

to 10, 20, 30 & 50Mrad

PMOS

PMOS 2000/0. 36

400µA

Page 19: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 19

APV25 irradiations (IC & Padova) • IC x-ray source

Normal operational bias during irradiation clocked & triggered also 1 0 MeV linac electrons(80Mrad) and 2. 1 x1 01 4 reactor n. cm- 2

Post irradiation noise change insignificant

10 Mrad pre-rad APV25-S1

Page 20: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 20

CMS Silicon Strip Tracker Front End Driver

VME-FPGA

TTCrx

BE-FPGA Event Builder

Buffers

FPGA Configuration

Power DC-DC

DAQ Interface

12

12

12

12

12

12

12

12

Front-End Modules x 8 Double-sided board

CERN Opto-

Rx Analogue/Digital

96 Tracker Opto Fibres

VME Interface

Xilinx Virtex-II FPGA

Data Rates 9U VME64x Form Factor

Modularity matched Opto Links

Analogue: 96 ADC channels (10-bit @ 40 MHz )

@ L1 Trigger : processes 25K MUXed silicon strips / FED

Raw Input: 3 Gbytes/sec* after Zero Suppression...

DAQ Output: ~ 200 MBytes/sec

~440 FEDs required for entire SST Readout System

*(@ L1 max rate = 100 kHz)

FE-FPGA Cluster Finder

TTC

TCS

Temp Monitor

JTAG

TCS : Trigger Control System

9U VME64x

Page 21: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 21

CMS Silicon Strip Tracker FED Front-End FPGA Logic

ADC 1 10 10 sy

nc

11

trig2

Ped

sub

11

trig3

Re-

orde

r cm

sub

8

Hit

findi

ng

s-data s-addr 8

16

hit

Pack

etis

er

4

averages 8 header control

DPM

16

No hits

Sequ

ence

r-m

ux

8 8 a

d

a

d

ADC 12 10 10

trig1

sync

11

trig2

Ped

sub

11

trig3 R

e-or

der

cm s

ub

8

Hit

findi

ng

s-data s-addr 8

16

256 cycles 256 cycles

hit DPM

16

No hits

Sequ

ence

r-m

ux

8 8 a

d

a

d

status

averages 8 header status

nx256x16

trig4

Synch in Synch out

Sync

h

emulator in

mux

Serial I/O

Seria

l Int

B’Scan

Loca

l IO

Config

Cluster Finding FPGA VERILOG Firmware

Full flags

data

Global reset

Con

trol

Sub resets

10

10

Phas

e R

egis

ters

Ph

ase

Reg

iste

rs

2 x 256 cycles 256 cycles nx256x16

trig1 Synch error

4x

Temp Sensor

Delay Line

Opto Rx

Clock 40 MHz D

LL 1x

2x 4x

per adc channel phase compensation required to bring

data into step

+ Raw Data mode, Scope mode, Test modes...

160 MHz

Page 22: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 22

The CMS Tracking Strategy

Radius ~ 110cm, Length/2 ~ 270cm

3 disks TID

6 layers TOB

4 layers TIB

9 disks TEC

Number of hits by tracks: Total number of hits Double-side hits Double-side hits in thin detectors Double-side hits in thick detectors

• Rely on “few” measurement layers, each able to provide robust (clean) and precise coordinate determination

2-3 Silicon Pixel 10 - 14 Silicon Strip Layers

Page 23: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 23

Vertex Reconstruction

At high luminosity, the trigger primary vertex is found in >95% of the events

Primary vertices: use pixels!

Page 24: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 24

High Level Trigger & Tracker

In High Level trigger reconstruction only 0.1%

of the events should survive. “How can I kill these events using the least CPU time?” This can be interpreted as: o The fastest (most approx.) reconstruction o The minimal amount of precise reconstruction o A mixture of the two

DAQ

40 MHZ

100 KHz

100 Hz

Same SW would be use in HLT and off-line :

algorithms should be high quality

algorithms should be fast enough

Events rejected at HLT are irrecoverably lost!

HLT Track finding

Page 25: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

October 2002 G Hall 25

References (updated by P Hobson) N. Ellis & T. Virdee. Experimental Challenges in High Luminosity Collider Physics. Ann. Rev. Nucl. Part. Sci 44

(1994) 609-653.

• G.Hall Modern charged particle detectors Contemporary Physics 33 (1992) 1-14 & refs therein

• G.Hall Semiconductor particle tracking detectors Reports on Progress in Physics.57 (1994) 481-531

• A. Schwarz 1993 Heavy Flavour Physics at Colliders with silicon strip vertex detectors. Physics Reports

238 (1994) 1-133.

• C. Damerell Vertex detectors: The state of the art and future prospects. Rutherford Appleton Laboratory

report RAL-P-95-008 A pdf version is available on the CERN library Web site.(Search preprints)

• The CMS experiment at the CERN LHC, Journal of Instrumentation, 3 (2008) S08004

• Performance studies of the CMS Strip Tracker before installation , Journal of Instrumentation, 4 (2009)

P06009

• Stand-alone cosmic muon reconstruction before installation of the CMS silicon strip tracker , Journal of

Instrumentation, 4 (2009) P05004

Page 26: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

2010 P Hobson 26

How does it perform at the LHC?

Page 27: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

2010 P Hobson 27

How does it perform at the LHC?

Page 28: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

2010 P Hobson 28

How does it perform at the LHC?

Page 29: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

2010 P Hobson 29

How does it perform at the LHC?

Page 30: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

2010 P Hobson 30

How does it perform at the LHC?

Kaons, Protons,

Deuterons

Page 31: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Published results • VERTEX 2012

December 2015 P Hobson 31

Page 32: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Efficiency

November 2015 P Hobson 32

Page 33: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

dE/dx • Using dE/dx data to fit the KK invariant mass distribution to detect the φ(1020).

October 2002 P Hobson 33

13 TeV data

Page 34: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Photon conversions in the pixel layers

December 2015 P Hobson 34

• Reconstructed photon conversions (photon “radiography”)

Page 35: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Finding the cooling pipes!

October 2002 G Hall 35

Page 36: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

IP within jets

October 2002 G Hall 36

Page 37: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Secondary vertex b-tagging

October 2002 G Hall 37

Page 38: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Leakage Currents in Strips

December 2015 P Hobson 38

Leakage current (top) and simulated 1 MeV neutron equivalent dose (bottom)

Leakage current vs radius

Page 39: CMS Tracking Detector case studypeople.brunel.ac.uk/~eestprh/pghep/TrackerCaseStudyCMS.pdf · nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging •Dose

Even more from CMS …

December 2016 P Hobson 39

From JINST 9 (2014) P1009 https://cms-results.web.cern.ch/cms-results/public-results/publications/TRK-11-001/index.html Tracker performance plots (public) https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK