10
CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

Embed Size (px)

Citation preview

Page 1: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Solitary Dynamo Waves

Joanne Mason (HAO, NCAR)

E. Knobloch (U.California, Berkeley)

Page 2: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

• Large-scale solar dynamo theory

• -dynamo

• Mean-field electrodynamics

• Long wave dynamo instability

• Nonlinear evolution mKdV equation solitary wave solutions

The dynamo

BBBuB 2

t

time

lati

tud

e

(Courtesy HAO)

CMSO (PPPL)

effect effect

PT BBB

Page 3: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

• Spatially localised and (Moffatt 1978; Kleeorin & Ruzmaikin 1981; Steenbeck & Krause 1966)

CMSO (PPPL)

The Model

)0(ˆ)(,ˆˆWrite yTP zuBA yuyyBBB

Bx

A

dz

duD

t

B 2

ABt

A 2

20

3000

zG

Dnumberdynamo

-effect -effect

1 z z

11 Lz

02 Lz

Page 4: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Linear Theory

• Seek travelling wave solutions

• Apply continuity in A and B, matching conditions and boundary conditions

dispersion relation

ipikxptzbzaBA exp],[],[

0,0 2,12,1

Lzz

ALzB

22

212122

where

02sinh12sinhsinh4

kpq

qLLqikDLLqq

Mason, Hughes & Tobias (2002)

Page 5: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Most unstable mode

• Marginal stability (=0)

• Set

• Dynamo waves set in for with O() wavenumber and O() frequency

1

112

22110

LL

LLDk c

kk c 101

2211

10122

3

LLL

1k

cDD

Page 6: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Nonlinear theory – mKdV equation

functions of only

• Consider

• Solve dynamo equations at each order in

• Inhomogeneous problems require solvability condition

• Modified Korteweg-de Vries equation for

22

11),(1

1Bz

zxB

z

)1(~,0 0

1

10 OctxAB

AA

B

A

431

43, TTTtXx

ˆˆˆˆ

0203

03

0

3

0

A

AbA

aA

aT

A

:)( 3O

)( ctx

Jepps (1975) Cattaneo & Hughes (1996)

/ˆ00 AA

ba, 1021 ,, LL

22

20 , dDDD

Page 7: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Solutions to mKdV• Solutions depend upon signs of a and b

• kinks:

• solitary waves:

• Snoidal and cnoidal waves also exist

b

vaN

a

bNC

)(6,

6

N-sech 2

2/12

a

v

b

vaNNC 1

2

1,

)(3,tanh 22 v

0,0 vaa

0,0 vaa

1

2

L

Ll

a b

21 L

Page 8: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

The perturbed mKdV equation•On longer times forcing enters the description

•The perturbation selects the amplitude :

•Amplitude stability:

• solitary waves are unstable

)( 223

3

OfC

bCC

aC

aC

)( ctx dD 2

)(, 0

OAC

)(ˆ Oft

N

22,1212

2 ,,,/130 DLahhbhdDLaLN

f N

)0,0,0( 2 dDha

212102

42

135

LLa

hNb

N

f

N v

dd

21 lL

Page 9: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Physical manifestation of solution

• Reconstruct the fields from

Solitary Waves:

Kinks:

,110 ,, BAA C

/||,/ PBB

/||,/ PBB

2,2,1,0 1 lLdz

1,2,1,0 1 lLdz

Page 10: CMSO (PPPL) Solitary Dynamo Waves Joanne Mason (HAO, NCAR) E. Knobloch (U.California, Berkeley)

CMSO (PPPL)

Conclusions

• Mean-field dynamo equations with -quenching possess solitary wave solutions

• Leading order description is mKdV equation. Correction that includes effect of forcing and dissipation leads to pmKdV. Allows identification of N(d), v(d).

• Solutions will interact like solitons do modify butterfly diagram

References: Mason & Knobloch (2005), Physica D,

205, 100

Mason & Knobloch (2005), Physics Letters A (submitted)