2
COHOMOLOGY RINGS GREGORY D. LANDWEBER Spheres: H * ( S n ; Z ) = Z[a n ] / ( a 2 n =0 ) . Complex projective spaces: H * ( CP n ; Z ) = Z[a 2 ] / ( a n+1 2 =0 ) . Real projective spaces: H * ( RP n ; Z 2 ) = Z 2 [a 1 ] / ( a n+1 1 =0 ) . Unitary groups: H * ( U(n); Z ) Z [a 1 ,a 3 ...,a 2n-1 ]. Special unitary groups: H * ( SU(n); Z ) Z [a 3 ,a 5 ...,a 2n-1 ]. Special orthogonal groups: H * ( SO(2n + 1); Q ) Q [a 3 ,a 7 ...,a 4n-1 ], H * ( SO(2n + 2); Q ) Q [a 3 ,a 7 ,...,a 4n-1 ,b 2n+1 ], (Note that SO(n) has 2-torsion for n 7. See [1].) H * ( SO(n); Z 2 ) = i odd Z 2 [β i ]/ ( β p i i =0 ) , where p i is the smallest power of 2 such that ip i n. See [5, Theorem 3D.2]. The exceptional Lie group G 2 : H * ( G 2 ; Q ) Q [h 3 ,h 11 ], H * ( G 2 ; Z ) = Z[h 3 ,h 11 ] / ( h 4 3 = h 2 11 = h 2 3 h 11 =0 ) . Additively, we have H * ( G 2 ; Z ) = ( Z, 0, 0, Zh 3 , 0, 0, Z 2 h 2 3 , 0, 0, Z 2 h 3 3 , 0, Zh 11 , 0, 0, Zh 3 h 11 ) . See [1, Th´ eor` eme 17.2]. The exceptional Lie group F 4 : H * ( F 4 ; Q ) Q [h 3 ,h 11 ,h 15 ,h 23 ], H * ( F 4 ; Z ) = H * ( G 2 × S 15 ; Z ) Z[u 8 ,u 23 ] / ( 3u 8 = u 3 8 = u 2 23 = u 8 u 23 =0 ) . See [1, Th´ eor` eme 19.2]. Date : August 21, 2006. 1

Coho m Ology

Embed Size (px)

Citation preview

Page 1: Coho m Ology

COHOMOLOGY RINGS

GREGORY D. LANDWEBER

• Spheres:

H∗(Sn; Z) ∼= Z[an] /

(a2

n = 0).

• Complex projective spaces:

H∗(CP n; Z) ∼= Z[a2] /

(an+1

2 = 0).

• Real projective spaces:

H∗(RP n; Z2

) ∼= Z2[a1] /(an+1

1 = 0).

• Unitary groups:

H∗(U(n); Z) ∼= ΛZ[a1, a3 . . . , a2n−1].

• Special unitary groups:

H∗(SU(n); Z) ∼= ΛZ[a3, a5 . . . , a2n−1].

• Special orthogonal groups:

H∗(SO(2n + 1); Q) ∼= ΛQ[a3, a7 . . . , a4n−1],

H∗(SO(2n + 2); Q) ∼= ΛQ[a3, a7, . . . , a4n−1, b2n+1],

(Note that SO(n) has 2-torsion for n ≥ 7. See [1].)

H∗(SO(n); Z2

) ∼= ⊗i odd

Z2[βi]/(βpi

i = 0),

where pi is the smallest power of 2 such that ipi ≥ n. See [5, Theorem 3D.2].

• The exceptional Lie group G2:

H∗(G2; Q) ∼= ΛQ[h3, h11],

H∗(G2; Z) ∼= Z[h3, h11] /

(h4

3 = h211 = h2

3h11 = 0).

Additively, we have

H∗(G2; Z) ∼= (

Z, 0, 0, Zh3, 0, 0, Z2h23, 0, 0, Z2h

33, 0, Zh11, 0, 0, Zh3h11

).

See [1, Theoreme 17.2].

• The exceptional Lie group F4:

H∗(F4; Q) ∼= ΛQ[h3, h11, h15, h23],

H∗(F4; Z) ∼= H∗(G2 × S15; Z

)⊗ Z[u8, u23] /

(3u8 = u3

8 = u223 = u8u23 = 0

).

See [1, Theoreme 19.2].

Date: August 21, 2006.1

Page 2: Coho m Ology

2 GREGORY D. LANDWEBER

• The exceptional Lie groups E6, E7, E8:

H∗(E6; Q) ∼= ΛQ[h3, h9, h11, h15, h17, h23],

H∗(E7; Q) ∼= ΛQ[h3, h11, h15, h19, h23, h27, h35],

H∗(E8; Q) ∼= ΛQ[h3, h15, h23, h27, h35, h39, h47, h59].

See [4] and [3]. Furthermore, E6, E7, E8 have no p torsion for p ≥ 7, p ≥ 11, and

p ≥ 11, respectively (see [2]).

• A projective K3 surface over C:

H∗(K3; Z)

=

Z in degrees 0, 4,

Z⊕22 in degree 2,

0 otherwise.

The intersection pairing on H2(K3; Z) is even, unimodular, and has signature (3, 19).

References

[1] A. Borel. Sur l’homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math.,76:273–342, 1954.

[2] A. Borel. Sur la torsion des groupes de Lie. J. Math. Pures Appl. (9), 35:127–139, 1956.[3] A. Borel and C. Chevalley. The Betti numbers of the exceptional groups. Mem. Amer. Math. Soc.,

1955(14):1–9, 1955.[4] C. Chevalley. The Betti numbers of the exceptional simple Lie groups. In Proceedings of the International

Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pages 21–24, Providence, R. I., 1952. Amer.Math. Soc.

[5] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

E-mail address: [email protected]: http://www.cohomology.com/