113
Introduction Colorful Functions Series Conclusions Colorful visualization of complex functions Levente Lócsi Department of Numerical Analysis, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary NuHAG Seminar Vienna, April 6, 2011

Colorful visualization of complex functions · 2011-04-14 · Introduction Colorful Functions Series Conclusions The idea of ’colorful’ plotting • Assign unique colors to complex

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Introduction Colorful Functions Series Conclusions

Colorful visualization of complex functions

Levente Lócsi

Department of Numerical Analysis, Faculty of Informatics,Eötvös Loránd University, Budapest, Hungary

NuHAG SeminarVienna, April 6, 2011

Introduction Colorful Functions Series Conclusions

Motivation – What are these?

Introduction Colorful Functions Series Conclusions

Motivation – History & Possible future work

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

Plotting R → R functions

Introduction Colorful Functions Series Conclusions

Complex numbers & arithmetic

Re

Im

ϕ

yz = x + iy

x

r

Re

Im

z1

z2

z1 + z2

Re

Im

ϕ1

z1ϕ2z2

ϕ1 + ϕ2

z1 · z2

Re

Im

z

z

Introduction Colorful Functions Series Conclusions

Complex plots – Two planes

f (z) = z2

Introduction Colorful Functions Series Conclusions

Complex plots – Two planes

f (z) = exp z = ez = ex+iy = ex · eiy = ex (cos y + i sin y)

Introduction Colorful Functions Series Conclusions

Complex plots – Vectorfields

f (z) = z2 − 1

Introduction Colorful Functions Series Conclusions

Complex plots – Vectorfields

f (z) = exp z

Introduction Colorful Functions Series Conclusions

Complex plots – 3D (2 × R2 → R)

f1(x , y) = x2 − y2 f2(x , y) = 2xy

f (z) = z2

Introduction Colorful Functions Series Conclusions

Complex plots – 3D (2 × R2 → R)

f1(x , y) = ex cos y f2(x , y) = ex sin yf (z) = exp z

Introduction Colorful Functions Series Conclusions

Complex plots – One image (complexplot)

f (z) = z2

Introduction Colorful Functions Series Conclusions

Complex plots – One image (complexplot)

f (z) = exp z

Introduction Colorful Functions Series Conclusions

Complex plots – One image (complexplot)

f (z) = sin z

Introduction Colorful Functions Series Conclusions

Complex plots – Fractal coloring

The Mandelbrot set

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

The idea of ’colorful’ plotting

• Assign unique colors to complex numbers

• C → B3, with B = [0..255], RGB

• Plot f : C → C by painting the pixels on a plane (on a square/ interval) the color assigned to the value f(z)

• Different colorings. . .

Introduction Colorful Functions Series Conclusions

The idea of ’colorful’ plotting

• Assign unique colors to complex numbers

• C → B3, with B = [0..255], RGB

• Plot f : C → C by painting the pixels on a plane (on a square/ interval) the color assigned to the value f(z)

• Different colorings. . .

Introduction Colorful Functions Series Conclusions

The idea of ’colorful’ plotting

• Assign unique colors to complex numbers

• C → B3, with B = [0..255], RGB

• Plot f : C → C by painting the pixels on a plane (on a square/ interval) the color assigned to the value f(z)

• Different colorings. . .

Introduction Colorful Functions Series Conclusions

Example coloring: ImRe

• Treat the real and imaginary part separately

• R → B (e.g. red and blue)

• In other words:

• Note: we already have the plot of f (z) = z

Introduction Colorful Functions Series Conclusions

Colorings

• </=, magnitude / argument

Introduction Colorful Functions Series Conclusions

Advantages & disadvantages

• Concise, perspicuous (’übersichtlich’)

• Beautyful

• ’Waste of paint’

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

Functions

• f (z)

Introduction Colorful Functions Series Conclusions

Constant

• f (z) = 0

Introduction Colorful Functions Series Conclusions

Identity

• f (z) = z

Introduction Colorful Functions Series Conclusions

Conjugate – 1

• f (z) = z

Introduction Colorful Functions Series Conclusions

Conjugate – 2

• f (z) = z

Introduction Colorful Functions Series Conclusions

Linear

• f (z) = (2 + i)z + 2

Introduction Colorful Functions Series Conclusions

Square – 1

• f (z) = z2

Introduction Colorful Functions Series Conclusions

Square – 2

• f (z) = z2

Introduction Colorful Functions Series Conclusions

Square – 3

• f (z) = z2

Introduction Colorful Functions Series Conclusions

A polynomial of degree two

• f (z) = z2 − 1

Introduction Colorful Functions Series Conclusions

Polynomials of degree two – animation

• Let f (z) = (z − t0)(z + t0), where

• t0 = eiϕ, ϕ ∈ [0..π].

Re

Im

t0

−t0

Introduction Colorful Functions Series Conclusions

Polynomials of degree two – animation

Please download video by clicking here.

Or use this url:http://locsi.web.elte.hu/complex/doc/k_video1_negyzetes.avi

Introduction Colorful Functions Series Conclusions

A polynomial of degree three – 1

• f (z) = (z − 2)(z + i)(z + 2 − i)

Introduction Colorful Functions Series Conclusions

A polynomial of degree three – 2

• f (z) = (z − 2)(z + i)(z + 2 − i)

Introduction Colorful Functions Series Conclusions

And yet another one

• f (z) = (z − 2)(z + 1)2

Introduction Colorful Functions Series Conclusions

Exponential – 1

• f (z) = exp z

Introduction Colorful Functions Series Conclusions

Exponential – 2

• f (z) = exp z

Introduction Colorful Functions Series Conclusions

Sine

• f (z) = sin z

Introduction Colorful Functions Series Conclusions

Square root – 1

• f (z) =√

z (principal branch)

Introduction Colorful Functions Series Conclusions

Square root – 2

• f (z) =√

z (principal branch)

Introduction Colorful Functions Series Conclusions

Square root branches – animation

• Invert the square function restricted to different domains

• Where is the (branch) cut / the jump?

Re

Im

Re

Im

Introduction Colorful Functions Series Conclusions

Square root branches – animation

Please download video by clicking here.

Or use this url:http://locsi.web.elte.hu/complex/doc/k_video2_gyokagak.avi

Introduction Colorful Functions Series Conclusions

Logarithm

• f (z) = log z (principal branch)

Introduction Colorful Functions Series Conclusions

Logarithm branches – animation

• Invert the exponential function restricted to different domains

• Where is the cut / jump?

Re

Im

Re

Im

Introduction Colorful Functions Series Conclusions

Logarithm branches – animation

Please download video by clicking here.

Or use this url:http://locsi.web.elte.hu/complex/doc/k_video3_logagak.avi

Introduction Colorful Functions Series Conclusions

Inversion – 1

• f (z) = 1/z

Introduction Colorful Functions Series Conclusions

Inversion – 2

• f (z) = 1/z

Introduction Colorful Functions Series Conclusions

Reciprocal

• f (z) = 1/z = (1/z)

Introduction Colorful Functions Series Conclusions

A pole of order two – 1

• f (z) = 1/z2

Introduction Colorful Functions Series Conclusions

A pole of order two – 2

• f (z) = 1/z2

Introduction Colorful Functions Series Conclusions

Of singularities

Laurent series

+∞∑

k=−∞

ck(z − a)k

Order of the pole ∼ smallest (negative) index of terms withnon-zero coefficient (if there are finitely many of such)Essential singularity ∼ infinite number of such terms exist

Picard’s theorem

May f : C → C have an essential singularity at a ∈ C. Then:∃w0 ∈ C : ∀ε > 0 : ∀w ∈ C \ {w0} : ∃z ∈ kε(a) : f (z) = w .

Introduction Colorful Functions Series Conclusions

Of singularities

Laurent series

+∞∑

k=−∞

ck(z − a)k

Order of the pole ∼ smallest (negative) index of terms withnon-zero coefficient (if there are finitely many of such)Essential singularity ∼ infinite number of such terms exist

Picard’s theorem

May f : C → C have an essential singularity at a ∈ C. Then:∃w0 ∈ C : ∀ε > 0 : ∀w ∈ C \ {w0} : ∃z ∈ kε(a) : f (z) = w .

Introduction Colorful Functions Series Conclusions

An essential singularity

• f (z) = cos 1z

Introduction Colorful Functions Series Conclusions

A linear fraction

• f (z) = (z − 2)/(z + 2) (Zhukovsky)

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n =

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 0

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 1

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 2

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 3

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 4

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 5

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 6

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 7

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 8

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 9

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 10

Introduction Colorful Functions Series Conclusions

Taylor series of exp

• Tn(z) =n∑

k=0

zk

k! = 1 + z + 12z2 + 1

3!z3 + . . .

n = 11

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n =

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 0

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 1

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 2

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 3

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 4

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 5

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 6

Introduction Colorful Functions Series Conclusions

Taylor series of sin

• Tn(z) =n∑

k=0(−1)k z (2k+1)

(2k+1)! = z − 13!z

3 + 15!z

5 + . . .

n = 7

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Another series of functions

• M0(z) = zMn+1(z) = (Mn(z))

2 + z

Introduction Colorful Functions Series Conclusions

Table of Contents

Introduction

’Colorful’ plots

Discussion of some functions

Function series

Conclusions

Introduction Colorful Functions Series Conclusions

Conclusions

• A small (non-complete) discussion of complex functions

• Idea and validity of ’colorful’ visualization

• No implementation known with different colorings availableand easy to use

• Matlab implementation, Gabor transforms

• Exam ,

Introduction Colorful Functions Series Conclusions

Conclusions

• A small (non-complete) discussion of complex functions

• Idea and validity of ’colorful’ visualization

• No implementation known with different colorings availableand easy to use

• Matlab implementation, Gabor transforms

• Exam ,

Introduction Colorful Functions Series Conclusions

Conclusions

• A small (non-complete) discussion of complex functions

• Idea and validity of ’colorful’ visualization

• No implementation known with different colorings availableand easy to use

• Matlab implementation, Gabor transforms

• Exam ,

Introduction Colorful Functions Series Conclusions

Exam – Question 1

Introduction Colorful Functions Series Conclusions

Exam – Question 1

Logarithmf (z) = log z

Introduction Colorful Functions Series Conclusions

Exam – Question 2

Introduction Colorful Functions Series Conclusions

Exam – Question 2

A polinomial of degree five with one root of multiplicity two andthree roots of multiplicity one

f (z) = i(z − i)2(z + i)(z − 1 − 310 i)(z + 1 − 3

10 i)

Introduction Colorful Functions Series Conclusions

Exam – Question 3

Introduction Colorful Functions Series Conclusions

Exam – Question 3

Tangentf (z) = sin z/ cos z

Introduction Colorful Functions Series Conclusions

Exam – Question 4

Introduction Colorful Functions Series Conclusions

Exam – Question 4

A polinomial of degree three

f (z) = (z − i)(z −√

32 + 1

2 i)(z +√

32 + 1

2 i)

Introduction Colorful Functions Series Conclusions

Exam – Question 5

Introduction Colorful Functions Series Conclusions

Exam – Question 5

A function with a zero of multiplicity one and a pole of order twof (z) = 1/z2 − iz

Introduction Colorful Functions Series Conclusions

Exam – Question 6

Introduction Colorful Functions Series Conclusions

Exam – Question 6

f (z) = exp cos z

Introduction Colorful Functions Series Conclusions

Exam – Question 6

f (z) = exp cos z

Introduction Colorful Functions Series Conclusions

What are these?

Introduction Colorful Functions Series Conclusions

References

• See WWW

• References on my homepage(as soon as it’s translated and broken links are fixed)

Introduction Colorful Functions Series Conclusions

Colorful visualization of complex functions

Author: Levente Lócsi

Occasion: NuHAG SeminarVienna, April 8, 2011

Web: http://locsi.web.elte.hu/complex/E-mail: [email protected]