69
Colour an algorithmic approach Thomas Bangert [email protected] http://www.eecs.qmul.ac.uk/~tb300/pub/PhD/ColourVi sion2.pptx PhD Research Topic

Colour an algorithmic approach Thomas Bangert [email protected] tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Embed Size (px)

Citation preview

Page 1: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Colouran algorithmic approach

Thomas [email protected]

http://www.eecs.qmul.ac.uk/~tb300/pub/PhD/ColourVision2.pptx

PhD Research Topic

Page 2: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

understanding how natural visual systems process information

Visual system: • about 30% of cortex• most studied part of

brain• best understood part

of brain

Page 3: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Image sensors Binary sensor array

monochromatic ‘external retina’

Luminance sensor arraydichromatic colour

Multi-Spectral sensor arraytetrachromatic colour

What do these direct links to the brain do?

Page 4: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Lets hypothesise … When an astronomer looks at a star, how does he code the information his sensors produce?

It was noticed that parts of spectrum were missing.

Page 5: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Looking our own star – the sun

• x

Page 6: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Each atomic element absorbs at specific frequencies …

Page 7: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

We can Code for these elements …

We can imagine how coding spectral element lines could be used for visual perception … by a creature very different to us… a creature which hunts by ‘tasting’ the light we reflect… seeing the stuff we are made of

Colour in this case means atomic structure and chemistry…

Page 8: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Where do we start with humans?

Any visual system starts with the sensor.

What kind of information do these sensors produce?How do we use that information to code what is relevant to us?

Let’s first look at sensors we ourselves have designed!

Page 9: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Sensors we buildX

Y

Page 10: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

The Pixel

Sensors element may be:

Binary Luminance RGB

The fundamental unit of information!

Page 11: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

The Bitmap

2-d space

represented by integer array

0 1 2

0

1

Page 12: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What information is produced?

2-d array of pixels:

Black & White Pixel:– single luminance

value, usually 8 bit Colour Pixel

– 3 colour values, usually 8-bit RGB

Page 13: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What does RGB mean?• It is an instruction for producing

light stimuli• Light stimuli for a human

standard observer• Light stimuli produce

perception• RGB codes the re-production of

measured perceptual stimuli• It is assumed that humans are

trichromatic• It tells us nothing about what

colour means!

Page 14: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

The Standard Observer

CIE1931 xy chromaticity diagramprimaries at: 435.8nm, 546.1nm, 700nm

The XYZ sensor response

xx

x y z

now we extract the colour information from the sensor readings

The Math:

yy

x y z

… 2-d as z is redundant

Page 15: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Understanding CIE chromaticity

White in center

Saturated / monochromatic colours on the periphery

Best understood as a failed colour circle

Everything in between is a mix of white and the colour

xx

x y z

yy

x y z

Page 16: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Does it match?The problem of

‘negative primaries’

But does it blend?

Monochromatic Colours

Page 17: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What the Human Visual System (HVS) does is very different!

?

Page 18: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Human Visual

System (HVS)

Part 1

Coding Colour

Page 19: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

The Sensor2 systems: day-sensor & night-sensor

To simplify: we ignore night sensor system

Cone Sensors very similar to RGB sensors we design for cameras

Page 20: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

BUT: sensor array is not ordered

arrangement is random

note:very few blue sensors, none in the centre

Page 21: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

sensor pre-processing circuitry

Page 22: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

First Question: What information is sent from sensor array

to visual system?

Very clear division between sensor & pre-processing (Front of Brain) andvisual system (Back of Brain) connected with very limited communication link

Page 23: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Receptive Fields

All sensors in the retina are organized into receptive fields

Two types of receptive field.

Why?

Page 24: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What does a receptive field look like?

In the central fovea it is simply a pair of sensors.

Always 2 types:• plus-centre• minus-centre

Page 25: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What do retinal receptive fields do?

Produce an opponent value:simply the difference between 2 sensors

This means:

it is a relative measure, not an absolute measure

and

no difference = no information to brain

Page 26: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Sensor Input

Luminance Levels

it is usual to code 256 levels of luminance

Linear: Y

Logarithmic: Y’

Page 27: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Receptive Field Function

- - -- - -- - -

+ + ++ + ++ + +

- - -- - -- - -

- - -- - -- - -

- - -- - -- - -

- - -- - -- - -

- - -- - -- - -

- - -- - -- - -

- - -- - -- - -

+ + ++ + ++ + +

- - -- - -- - -

+ + ++ + ++ + +

+ + ++ + ++ + +

+ + ++ + ++ + +

+ + ++ + ++ + +

+ + ++ + ++ + +

+ + ++ + ++ + +

+ + ++ + ++ + +

Min Zone

Max-Min Function

Output is difference between average of center and max/min of surround Max

Zone

Tip of Triangle

Page 28: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Dual Response to gradients

Why?

Often described assecond derivative/zero crossing

Page 29: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

AbstractedNeurons only produce positive values.Dual +/- produces positive & negative values.

Together: called a channel means signed values.

Produces directional information

+-

+-

+-

+-

+-+- +-

+-Location, angle luminance, equiluminance and colour

Information sent to higher visual processing areas

This is a sparse representation

From this the percept is created

This is a type of data compression.Only essential information is sent!

Conversion from this format to bitmap?

Page 30: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

starting with the sensor:Human Sensor Response

to non-chromatic light stimuli

350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

100

Wavelength (nm)

Abso

rpti

on

(%

)

RGB

Page 31: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

HVS Luminance Sensor IdealizedSe

nsor

Val

ue

Wavelength(λ)λ

0.8

0.6

0.2

0.0

1.0

0.4

λδλ−

A linear response in relation to wavelength.Under ideal conditions can be used to measure wavelength.

Page 32: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Spatially Opponent

HVS:Luminance is always measured by taking the difference between two sensor values.Produces: contrast value

Sens

or V

alue

Wavelength(λ)λ

0.8

0.6

0.2

0.0

1.0

0.4

λδλ−

Sens

or V

alue

Wavelength(λ)λ

0.8

0.6

0.2

0.0

1.0

0.4

λδλ−

 

Which is done twice, to get a signed contrast value

Page 33: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Moving from Luminance to Colour

• Primitive visual systems were in b&w• Night-vision remains b&w

• Evolutionary Path– Monochromacy– Dichromacy (most mammals – eg. the

dog)– Trichromacy (birds, apes, some monkeys)

• Vital for evolution: backwards compatibility

Page 34: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Electro-Magnetic Spectrum

Visible Spectrum

Visual system must represent light stimuli within this zone.

Page 35: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Colour Vision Young-Helmholtz

Theory

Argument:Sensors are RGB thereforeBrain is RGB

3 colour model

Page 36: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Hering colour opponency model

Fact: we never see reddish green or yellowish blue.

Therefore:colours must be arranged in opponent pairs:

RedGreenBlueYellow

4 colour model

Page 37: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Colour Sensorresponse to monochromatic light

350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

100

Wavelength (nm)

Abso

rpti

on

(%

)

RGB

370 nm 445 nm 508 nm 565 nm

700 nm330 nm 400 nm 500 nm 600 nm

1.0

0.5

0.0

Human

Bird

4 sensors

Equidistant on spectrum

Page 38: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

How to calculate spectral frequency with 2 poor quality luminance sensors.

 Roughly speaking:

Sensor Value

Wavelength

0.8

0.6

0.2

0.0

1.0

0.4

λ-Δ λ λ+Δ

RG

a shift of Δfrom a known reference point

Page 39: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

the ideal light stimulusS

en

sor

Valu

e

Wavelength

0.8

0.6

0.2

0.0

1.0

0.4

λ-δ λ λ+δ

RGMonochromatic Light

Allows frequency to be measured in relation to reference.

Page 40: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Problem:natural light is not ideal

Sen

sor

Valu

e

Wavelength

0.8

0.6

0.2

0.0

1.0

0.4

λ-δ λ λ+δ

RG

• Light stimulus might not activate reference sensor fully.

• Light stimulus might not be fully monochromatic.

ie. there might be white mixed in

Page 41: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Sens

or V

alue

Wavelength(λ, in nm)

400300 430 460 490 520 550 580 610 640 670 700

0.8

0.6

0.2

0.0

1.0

0.4

Solution:

A 3rd sensor is used to measure equiluminance.

Which is subtracted.

Then reference sensor can be normalized

Page 42: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Equiluminance & Normalization

Also called Saturation and Lightness.

• Must be removed first – before opponent values calculated.

• Then opponent value = spectral frequency

• Values must be preserved – otherwise information is lost.

Page 43: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

a 4 sensor designS

en

sor

Valu

e

Wavelength(λ, in nm)

400300 430 460 490 520 550 580 610 640 670 700

0.8

0.6

0.2

0.0

1.0

0.4

2 opponent pairs• only 1 of each pair can be active• min sensor is equiluminance

,R G B y

Page 44: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

What is Colour?Colour is calculated exactly the same as luminance contrast. The only difference is spectral range of sensors is modified.Colour channels are: RGBy

Uncorrected colour values are contrast values.But with white subtracted and normalized:Colour is Wavelength!

Page 45: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

How many sensors?

4 primary colours require 4 sensors!

Page 46: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Human Retina only has 3 sensors!What to do?

We add an emulation layer.

Hardware has 3 physical sensorsbut emulates 4 sensors

Wavelength (nm)

Sens

or R

espo

nse

460 580 640520 550 610490430 670400370 700

0.8

0.6

0.2

0.0

1.0

1.2

1.4

0.4

R G B

No maths … just a diagram!

Page 47: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Testing Colour Opponent model

What we should see

What we do see

Unfortunately it does not matchThere is Red in our Blue

Page 48: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

100

Wavelength (nm)

Abso

rpti

on

(%

)RGB

Pigment Absorption Data of human cone sensors

350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

100

Wavelength (nm)

Abso

rpti

on

(%

)

RGB

Red > Green

Page 49: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Solution:HVS colour representation must be circular!

Which is not a new idea, but not currently in fashion.

540nm

620nm

480nm

Page 50: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Dual Opponency with Circularity

an ideal model using 2 sensor pairs

Senso

r V

alu

e

Wavelength(λ, in nm)400300 430 460 490 520 550 580 610 640 670 700

0.8

0.6

0.2

0.0

1.0

0.4

Page 51: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

… requires 2 independent channels which give 4 primary colours

Yellow added as a primary!

Which allows a simple transform to circular representation

180°0°

90°

45°

135°

315°

270°

225°

Page 52: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Opponent Values HueA simple transform from 2 opponent values to a single hue value

How might HVS do this?we keep 2 colour channels but link them

180°0°

90°

45°

135°

315°

270°

225°

0

+64

+127

R = 255 G = 0 B = 128

Y - +

Ψ B

CG R

180°0°

90°

45°

135°

315°

270°

225°

Page 53: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Travelling the Colour Wheel (Hue)

One Chroma channel is always at max or minThe other Chroma channel is incremented or decremented

Rules:

if (CB==Max)CR--if (CR==Max)CB++if (CR==Min)CB--if (CB==Min)CR++

180°0°

90°

45°

135°

315°

270°

225°

0

-127

+128

R = 255 G = 128 B = 0

Y - +

CBΨ B

CRG R

0

-127

0

R = 255 G = 255 B = 0

Y - +

CBΨ B

CRG R

+ -

Page 54: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Colour Wheel

Simple rule based system that cycles through the colour wheelAllows arithmetic operations on colour

180°0°

90°

45°

135°

315°

270°

225°

0

0

+127

R = 255 G = 0 B = 0

Y - +

CBΨ B

CRG R

0

+64

+127

R = 255 G = 0 B = 128

Y - +

CBΨ B

CRG R

0

+127

+127

R = 255 G = 0 B = 255

Y - +

CBΨ B

CRG R

0

+127

+64

R = 128 G = 0 B = 255

Y - +

CBΨ B

CRG R

0

+127

0

R = 0 G = 0 B = 255

Y - +

CBΨ B

CRG R

0

+127

-64

R = 0 G = 128 B = 255

Y - +

CBΨ B

CRG R

0

+127

-127

R = 0 G = 255 B = 255

Y - +

CBΨ B

CRG R

0

+127

-127

R = 0 G = 255 B = 0

Y - +

CBΨ B

CRG R

0

+127

-127

R = 128 G = 255 B = 0

Y - +

CBΨ B

CRG R

0

-127

0

R = 255 G = 255 B = 0

Y - +

CBΨ B

CRG R

0

-127

+128

R = 255 G = 128 B = 0

Y - +

CBΨ B

CRG R

0

-64

+127

R = 255 G = 128 B = 0

Y - +

CBΨ B

CRG R

0

0

+127

R = 255 G = 0 B = 0

Y - +

CBΨ B

CRG R

Page 55: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Part 2Accurate Colour reproduction

First problem:

Real world is not monochromatic

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

350

367

383

400

416

433

449

466

482

499

515

532

548

565

581

598

614

631

647

664

681

697

714

730

Spectrum of a common yellow flower

Page 56: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Accurate Colour reproduction

second problem:

human colour vision is inaccurate

prone to ‘making stuff up’

varies from person to person

The closer the sensors the less accurate the color information.

All humans are to an extent color blind … compared to animals like birds.

Page 57: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Examples of real world colour?

Colours are often computed, not measured!

Page 58: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

… an extreme example

What is the colour?

Page 59: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Accurate colour reproduction … for dual channel opponency

Problem # 1

very easy to solve

we simply assume monochromacy

when stimuli are not monochromatic opponent channels simply subtract to 0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

350

367

383

400

416

433

449

466

482

499

515

532

548

565

581

598

614

631

647

664

681

697

714

730

green, yellow and red are active

r-g = 0b = 0

leaving only yellow

stimuli equivalent to monochromatic

Page 60: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Accurate colour reproduction … with primaries

Only primaries are true coloursall other colours are intermediary

… and can be generated by proportions of primaries!

Page 61: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Accurate colour reproduction … for humans

Any colour may be displayed by a combination of 2 primaries

but the location of primaries can vary between individualsand intermediary locations can be distorted

Problem # 2

Page 62: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Solution toAccurate colour reproduction …

for the individual human

1. primaries must be mapped for the individual

2. mid-points must be mapped

467 517 573 644503 603

545

Provides an individual colour profile … a map of the primaries and intermediary points. Can be repeated recursively for greater precision.

Page 63: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Does it work?

• Colour opponency requires primaries to be precisely located.

• For humans this would be virtual primaries• Is there evidence that this is so?• Do the colours match?

This will be tested empirically …

Page 64: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

• monochromator

• Xenon light sourceequal light across visible spectrum

Apparatus

Page 66: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Preliminary results

Blue Green Yellow Red

455 520 580 650

465 520 580 640

465 520 575 640

470 525 585 655

460 520 575 640

465 520 575 650

465 525 575 635

475 515 570 640

470 522.5 570 635

482.5 525 572.5 635

462.5 532.5 580 640

471.25 526 578.3 647

467.2 522.6 576.3 642.3

7.19 4.5 4.5 6.7Average

Std Dev

Page 67: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

Discussion

small sample with inaccurate tools

but• primaries appear to

be are very closely grouped and spaced equidistantly – exactly as predicted

Page 68: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

In Future

• visits to optometrist will include a colour test

• Colour displays may be set by colour ‘prescription’

Page 69: Colour an algorithmic approach Thomas Bangert thomas.bangert@qmul.ac.uk tb300/pub/PhD/ColourVision2.pptx PhD Research Topic

http://www.eecs.qmul.ac.uk/~tb300/pub/PhD/ColourVision2.pptx

References

Poynton, C. A. (1995). “Poynton’s Color FAQ”, electronic preprint.http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html

Bangert, Thomas (2008). “TriangleVision: A Toy Visual System”, ICANN 2008.

Goldsmith, Timothy H. (July 2006). “What birds see”. Scientific American: 69–75.

Neitz, Jay; Neitz, Maureen. (August 2008). “Colour Vision: The Wonder of Hue”. Current Biology 18(16): R700-r702.

Questions?