35
Combined composite likelihood Euloge Clovis Kenne Pagui Department of Statistics University of Padua Joint work with A. Salvan and N. Sartori October 8, 2012 Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 1 / 29

Combined composite likelihood - Prin 08

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combined composite likelihood - Prin 08

Combined composite likelihood

Euloge Clovis Kenne Pagui

Department of StatisticsUniversity of Padua

Joint work with A. Salvan and N. Sartori

October 8, 2012

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 1 / 29

Page 2: Combined composite likelihood - Prin 08

Outline

1 Introduction

2 Inference based on composite likelihood

3 Objectives

4 Combined composite likelihood

5 Concluding remarks

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 2 / 29

Page 3: Combined composite likelihood - Prin 08

Composite likelihood

Composite likelihood (Lindsay, 1988) is constructed from a

combination of lower dimensional likelihood objects.

It can be used in place of the full likelihood when, for example, one

wants to:

. reduce the computational complexity to cope with large data set and

models with complex interdependencies;

. make inference about parameters of interest without making

assumptions on the whole joint distribution of the data.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 3 / 29

Page 4: Combined composite likelihood - Prin 08

Definition

Let F ={f (y ; θ) : θ ∈ Θ ⊆ Rd , y ∈ Y

}be a parametric statistical

model.

Given data y = (y1, . . . , yn), the composite likelihood is defined

by K marginal or conditional events Ak(y) on Y, k = 1, . . . ,K , with

likelihood contributions Lk(θ; y) = L(θ;Ak(y)),

cL(θ; y) =K∏

k=1

Lk(θ; y)wk ,

where wk are positive weights.Composite log-likelihood function

c`(θ; y) =K∑

k=1

wk logLk(θ; y).

Maximum composite likelihood estimator: θC = arg supθ c`(θ; y).Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 4 / 29

Page 5: Combined composite likelihood - Prin 08

Examples

Composite likelihood

↙ ↘

Composite marginal likelihood

Independence likelihood (Chandler &Bate, 2007),

cLI(θ; y) =

q∏r=1

f (yr ; θ)wr .

Pairwise likelihood (Le Cessie & VanHouwelingen, 1994),

cLP(θ; y) =

q−1∏r=1

q∏s=r+1

f (yr , ys ; θ)wrs .

Composite conditional likelihood

Full conditional likelihood (Mardia et al.,2008),

cLFC(θ; y) =

q∏r=1

f (yr | y(−r); θ)wr .

Pairwise conditional likelihood (Mardia etal., 2008),

cLPC(θ; y) =

q∏r=1

q∏s 6=r

f (yr | ys ; θ)wrs .

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 5 / 29

Page 6: Combined composite likelihood - Prin 08

Examples

Composite likelihood

↙ ↘

Composite marginal likelihood

Independence likelihood (Chandler &Bate, 2007),

cLI(θ; y) =

q∏r=1

f (yr ; θ)wr .

Pairwise likelihood (Le Cessie & VanHouwelingen, 1994),

cLP(θ; y) =

q−1∏r=1

q∏s=r+1

f (yr , ys ; θ)wrs .

Composite conditional likelihood

Full conditional likelihood (Mardia et al.,2008),

cLFC(θ; y) =

q∏r=1

f (yr | y(−r); θ)wr .

Pairwise conditional likelihood (Mardia etal., 2008),

cLPC(θ; y) =

q∏r=1

q∏s 6=r

f (yr | ys ; θ)wrs .

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 5 / 29

Page 7: Combined composite likelihood - Prin 08

Composite likelihood quantities

Composite score function: s(θ; y) = ∇θc`(θ; y) =∑K

k=1 wksk(θ; y).

Asymptotic variance: Varθ(θC )=G (θ)−1, where

Godambe information G (θ) = H(θ)J(θ)−1H(θ)

sensitivity matrix H(θ) = Eθ {−∇θs(θ; y)}variability matrix J(θ) = Varθ {s(θ; y)}

H(θ) 6= J(θ) =⇒ the second Bartlett identity does not hold.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 6 / 29

Page 8: Combined composite likelihood - Prin 08

Inference

Under regularity conditions, for large n, the following results hold

θC is asymptotically consistent;

θC − θ ∼N{

0,G (θ)−1}

;

s(θ; y) ∼N {0, J(θ)} ;

WC(θ) = 2{c`(θC ; y)− c`(θ; y)

}∼∑d

i=1 λi (θ)Z 2i ,

where Z 2i are independent χ2

1 random variables and λi (θ),

i = 1, . . . , d , are the eigenvalues of the matrix J(θ)−1H(θ).

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 7 / 29

Page 9: Combined composite likelihood - Prin 08

Objectives

combine independence and pairwise likelihood in a new objective

function (combined composite likelihood) following a suggestion in

Cox and Reid (2004);

explore the properties of the combined composite likelihood;

evaluate the asymptotic loss of efficiency when using the combined

composite likelihood.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 8 / 29

Page 10: Combined composite likelihood - Prin 08

Combined composite likelihood

Cox and Reid (2004) suggest a combination of independence and

pairwise likelihood. Here we focus on a combination of the form

c`a(θ; y) = 2c`P(θ; y)− a(q − 1)c`I(θ; y)

= 2

q−1∑r=1

q∑s=r+1

logf (yr , ys ; θ)− a(q − 1)

q∑r=1

logf (yr ; θ).

ã a=0 leads to the pairwise likelihood.

ã a=1 leads to the pairwise conditional likelihood.

e.g. for q=2,

c`1(θ; y) = 2logf (y1, y2; θ)− logf (y1; θ)− logf (y2; θ)

= logf (y1 | y2; θ) + logf (y2 | y1; θ).

Maximum combined composite estimator: θCa = arg supθ c`a(θ).

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 9 / 29

Page 11: Combined composite likelihood - Prin 08

Desirable properties of c`(θ)

Exact properties:

1. Eθ0 [c`(θ)] ≤ Eθ0 [c`(θ0)];

2. Eθ0[∂∂θc`(θ)

]∣∣θ=θ0

= 0;

3. Eθ0

[∂2

∂θ∂θTc`(θ)

]∣∣∣θ=θ0

negative definite.

Asymptotic properties, n −→∞:

i. consistency of θC ;

ii. (θC − θ) ∼Nd(0,H(θ)−1J(θ)H(θ)−1);

iii. WC(θ) = 2{c`(θC )− c`(θ)} ∼∑d

i=1 λi (θ)Z 2i .

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 10 / 29

Page 12: Combined composite likelihood - Prin 08

Properties of c`a(θ) : exact

Property (1) is always satisfied for a ≤ 0 and a = 1.

Property (2) is always satisfied.

Property (3), with θ scalar, is satisfied provided that

a <2

q − 1

HP(θ)

HI(θ)= Aq(θ), (1)

where Hm(θ) = E{− d2

dθ2c`m(θ)

}, m=P,I.

When the parameter of interest is a vector, property (3) requires the

matrix Ha(θ) to be positive definite.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 11 / 29

Page 13: Combined composite likelihood - Prin 08

Properties of c`a(θ): asymptotic

Under usual regularity conditions, as the sample size n −→∞,

θCa is consistent and asymptotic normal;

asymptotic variance: Varθ(θCa)=Ga(θ)−1, where

Ga(θ) = Ha(θ)Ja(θ)−1Ha(θ)

Ha(θ) = 2HP(θ)− a(q − 1)HI(θ)

Ja(θ) = 4JP(θ) + a2(q − 1)2JI(θ)− 4a(q − 1)JPI(θ)

JPI(θ) = Covθ{c`P∗ (θ), c`I∗(θ)

}= Eθ

{c`P∗ (θ)c`I∗(θ)T

};

WCa (θ) = 2

{c`a(θCa)− c`a(θ)

}∼∑d

k=1 λakXk , where X1, . . . ,Xd

are independent χ21 random variables and λak are eigenvalues of

H−1a (θ)Ja(θ);

the consistency of θCa is generally not guaranteed when n is fixed andq −→∞;

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 12 / 29

Page 14: Combined composite likelihood - Prin 08

Example 1: Partial correlation model

Model considered in Lindsay, Yi, Sun (2011, § 5.2).

Yi ∼ Nq(0,Σ), Σ = 11−β

[Iq − β

1+β(q−1)1q1Tq

]and β > − 1

q−1 ·

The full log-likelihood is

`(β) = −1− β2

SSW − 1 + β(q − 1)

2qSSR +

n(q − 1)

2log(1− β)

+n

2log[1 + β(q − 1)],

where SSW =∑n

i=1

∑qr=1 (yir − yi )

2 and SSR =∑n

i=1 y2i · with

yi · =∑q

r=1 yir .

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 13 / 29

Page 15: Combined composite likelihood - Prin 08

Example 1: Partial correlation model

The pairwise log-likelihood is

c`P(β) = −(1− β)[q − 1 + β(q2 − 3q + 1)]

2[1 + β(q − 3)]{SSW +

1

qSSR}

− nq(q − 1)

4log

{1 + β(q − 3)

(1− β)2[1 + β(q − 1)]

},

The independence log-likelihood is

c`I(β) = −(1− β)[1 + β(q − 1)]

2[1 + β(q − 2)]{SSW +

1

qSSR}

− nq

2log

{1 + β(q − 2)

(1− β)[1 + β(q − 1)]

}.

Therefore c`a(β) = 2c`P(β)− a(q − 1)c`I(β).

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 14 / 29

Page 16: Combined composite likelihood - Prin 08

Example 1: Partial correlation model

Upper bound for the constant a given by

Aq(β) =2[1 + β(q − 1)]2k(β, q)

β2(q − 1)2[1 + β(q − 3)]2[2 + β(q − 2)]2,

where k(β, q) = [β4(q4 − 8q3 + 22q2 − 24q + 9) + β3(4q3 − 22q2+

36q − 18) + β2(4q2 − 12q + 10)− 2β + 1].

The aim here is to find the minimum of Aq(β) for

β ∈ (−1/(q − 1), 1)�{0}.

∀β, limq→+∞ Aq(β) = 2.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 15 / 29

Page 17: Combined composite likelihood - Prin 08

Example 1: Partial correlation model

Behavior of minβ Aq(β) as a function of q.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

1.0

1.2

1.4

1.6

1.8

2.0

q

min

β A

q(β)

Plot of minβ Aq(β) leads us to conclude that a ≤ 1.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 16 / 29

Page 18: Combined composite likelihood - Prin 08

Example 1: Simulation results about MSE of βCa

MSE of βCa with n = 1 as q increases for some values of a.

a-10 -5 -1 0 0.5 1 2 3 5

q

3 0.18119 0.17503 0.17326 0.16978 0.16759 0.17749 0.20214 0.24283 0.27699

10 0.04473 0.04733 0.04584 0.04642 0.04271 0.04265 0.30427 0.40254 0.41615

100 0.00205 0.00204 0.0019 0.00198 0.00206 0.002 0.45859 0.48957 0.48991

1000 0.00017 0.00018 0.00017 0.00017 0.00018 0.00018 0.47504 0.48991 0.48991

5000 0.000035 0.000034 0.000035 0.000035 0.000036 0.000036 0.47800 0.48879 0.48879

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 17 / 29

Page 19: Combined composite likelihood - Prin 08

Example 1: Relative efficiency

The asymptotic relative efficiency of the combined composite

likelihood estimator compared to full maximun likelihood estimator

can be obtained as

AE (β) =i(β)−1

Ga(β)−1·

AE (β) do not depend on n.

No uniformly optimal value of a.

However, some indication in favor of a = 1.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 18 / 29

Page 20: Combined composite likelihood - Prin 08

Example 1: Relative efficiency

−0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a=−0.5

β

Rel

ativ

e ef

ficie

ncy

q=50q=20q=10q=3

−0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a=0

β

Rel

ativ

e ef

ficie

ncy

q=50q=20q=10q=3

−0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

a=0.5

β

Rel

ativ

e ef

ficie

ncy

q=50q=20q=10q=3

−0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

a=1

β

Rel

ativ

e ef

ficie

ncy

q=50q=20q=10q=3

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 19 / 29

Page 21: Combined composite likelihood - Prin 08

Example 1: Relative efficiency

−0.2 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q=3

β

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q=10

β

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

q=20

β

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

q=50

β

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 19 / 29

Page 22: Combined composite likelihood - Prin 08

Example 1: Relative efficiency

The asymptotic relative efficiency of the combined composite

likelihood estimator compared to full maximun likelihood estimator

can be obtained as

AE (β) =i(β)−1

Ga(β)−1·

AE (β) do not depend on n.

No uniformly optimal value of a.

However, some indication in favor of a = 1.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 20 / 29

Page 23: Combined composite likelihood - Prin 08

Example 2: Model for microarray data

Model considered in Roverato & Di Lascio (2011).

XV tf = (X1, . . . ,Xp,Xtf ) is a vector of random variables and is

assumed to have a multivariate normal distribution.

X1, . . . ,Xp represent the target genes.

Xtf is the transcription factor.

X1, . . . ,Xp are (mutually) conditionally independent given Xtf .

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 21 / 29

Page 24: Combined composite likelihood - Prin 08

Example 2: Model for microarray data

Characteristics of the model:

E(Xtf ) = µtf

Var(Xtf ) = σ2tf

E(Xr | Xtf = xtf ) = β0,r + β1,rxtf , r = 1, . . . , p

Var(Xr | Xtf = xtf ) = σ2r , r = 1, . . . , p.

Components of Σ = Cov(XV tf ) :

Cov(Xr ,Xtf ) = β1,rσ2tf , Cov(Xr ,Xs) = β1,rβ1,sσ

2tf and

Var(Xr ) = σ2r + β1,rσ2tf .

A total of 3p + 2 parameters.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 22 / 29

Page 25: Combined composite likelihood - Prin 08

Example 2: Simplified model

Sub-model: β0r = 0, β1r = β1 and σr = σ for r = 1, . . . , p.

Therefore the components of Σ are Cov(Xr ,Xtf ) = β1σ2tf ,

Cov(Xr ,Xs) = β21σ2tf and Var(Xr ) = σ2 + β1σ

2tf .

Four-dimensional parameter θ = (β1, σ2, µtf , σ

2tf ).

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 23 / 29

Page 26: Combined composite likelihood - Prin 08

Example 2: Admissible values for a

Here the parameter is multidimensional.

A condition similar to (1) is needed.

We need to determine the values of a for which the eigenvalues of

Ha(θ) are all positive.

Several combinations of values of θ lead to the conclusion that a ≤ 1.

This result is independent of p.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 24 / 29

Page 27: Combined composite likelihood - Prin 08

Simulation results about MSE of θCa : fixed n as p increases and sereval a

ap -5 -1 0 0.5 1

MSE(β1Ca )

3 0.0592 0.0440 0.0432 0.0430 0.043310 0.0228 0.0139 0.0139 0.0140 0.0140100 0.0047 0.0012 0.0012 0.0012 0.00121000 0.0210 0.0229 0.0146 0.0093 0.00345000 0.2529 0.2157 0.1890 0.1221 0.0652

MSE(µtfCa )

3 0.1085 0.1056 0.1029 0.0999 0.098010 0.1061 0.1059 0.1055 0.1050 0.1034100 0.1054 0.1052 0.1051 0.1051 0.10501000 0.1190 0.1292 0.1154 0.1199 0.11065000 0.2203 0.2247 0.2228 0.2140 0.1943

MSE(σ2Ca)

3 0.0703 0.0679 0.0679 0.0680 0.068110 0.0227 0.0223 0.0222 0.0222 0.0222100 0.0020 0.0020 0.0020 0.0020 0.00201000 0.0002 0.0002 0.0002 0.0002 0.00025000 0.0000 0.0000 0.0000 0.0000 0.0000

MSE(σ2tfCa

)

3 0.1714 0.1713 0.1716 0.1721 0.175210 0.1874 0.1877 0.1878 0.1878 0.1881100 0.2128 0.2096 0.2095 0.2096 0.20951000 0.4412 0.3913 0.3241 0.4060 0.26295000 2.2101 2.3075 2.2067 2.5153 1.6164

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 25 / 29

Page 28: Combined composite likelihood - Prin 08

Simulation results about MSE of θ: fixed n as p increases

MSE(β1) MSE(µtf) MSE(σ2) MSE(σ2tf)

p

3 0.0415 0.0961 0.0647 0.171410 0.0135 0.1010 0.0202 0.1880100 0.0012 0.1035 0.0020 0.20931000 0.0001 0.1032 0.0002 0.23425000 0.0000 0.1090 0.0000 0.4086

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 25 / 29

Page 29: Combined composite likelihood - Prin 08

Simulation results about MSE of θCa : fixed p as n increases and sereval a

an -5 -1 0 0.5 1

MSE(β1Ca )

10 0.0224 0.0144 0.0144 0.0144 0.0145100 0.0011 0.0011 0.0011 0.0011 0.0011500 0.0002 0.0002 0.0002 0.0002 0.00021000 0.0001 0.0001 0.0001 0.0001 0.00015000 0.0000 0.0000 0.0000 0.0000 0.0000

MSE(µtfCa )

10 0.1097 0.1094 0.1088 0.1081 0.1061100 0.0102 0.0101 0.0101 0.0100 0.0098500 0.0022 0.0022 0.0022 0.0022 0.00211000 0.0010 0.0010 0.0010 0.0010 0.00105000 0.0002 0.0002 0.0002 0.0002 0.0002

MSE(σ2Ca)

10 0.0247 0.0239 0.0239 0.0239 0.0239100 0.0023 0.0024 0.0024 0.0024 0.0024500 0.0005 0.0005 0.0005 0.0005 0.00051000 0.0002 0.0002 0.0002 0.0002 0.00025000 0.0000 0.0000 0.0000 0.0000 0.0000

MSE(σ2tfCa

)

10 0.1835 0.1835 0.1836 0.1838 0.1842100 0.0196 0.0196 0.0196 0.0196 0.0196500 0.0041 0.0041 0.0041 0.0041 0.00411000 0.0021 0.0021 0.0021 0.0021 0.00215000 0.0004 0.0004 0.0004 0.0004 0.0004

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 25 / 29

Page 30: Combined composite likelihood - Prin 08

Simulation results about MSE of θ: fixed p as n increases

MSE(β1) MSE(µtf) MSE(σ2) MSE(σ2tf)

n

10 0.0139 0.1032 0.0220 0.1832100 0.0011 0.0096 0.0022 0.0195500 0.0002 0.0021 0.0005 0.00411000 0.0001 0.0010 0.0002 0.00215000 0.0000 0.0002 0.0000 0.0004

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 25 / 29

Page 31: Combined composite likelihood - Prin 08

Example 2: Asymptotic efficiency

An overall measure of efficiency which is however quite difficult to

interpret can be summarized by

AE (θ) =

(|Ga(θ)||i(θ)|

) 1d

,

recalling that d is the dimension of the parameter vector.

The appropriate measure for the estimator of the r -th component of θ

is given by

AErr (θ) =[i(θ)−1]rr

[Ga(θ)−1]rr,

where for instance [i(θ)−1]rr is the (r , r)th element of the inverse

matrix i(θ)−1.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 26 / 29

Page 32: Combined composite likelihood - Prin 08

Example 2: Asymptotic efficiency

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

a=−0.5

β1

Rel

ativ

e ef

ficie

ncy

p=3p=10p=50p=100

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

a=0

β1

Rel

ativ

e ef

ficie

ncy

p=3p=10p=50p=100

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

a=0.5

β1

Rel

ativ

e ef

ficie

ncy

p=3p=10p=50p=100

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

a=1

β1

Rel

ativ

e ef

ficie

ncy

p=3p=10p=50p=100

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 27 / 29

Page 33: Combined composite likelihood - Prin 08

Example 2: Asymptotic efficiency

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

p=3

β1

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

p=10

β1

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

p=50

β1

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

−3 −2 −1 0 1 2 3

0.80

0.90

1.00

p=100

β1

Rel

ativ

e ef

ficie

ncy

a=−0.5a=0a=0.5a=1

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 27 / 29

Page 34: Combined composite likelihood - Prin 08

Concluding remarks

Inferential procedures based on the combined composite likelihood

have theoretical properties similar to those based on the full

likelihood.

Loss of efficiency using methods based on combined composite

likelihood.

The combined composite likelihood could lead to better inference

despite the difficulty of choosing the optimal value of a among

the admissible ones.

In both examples, the suggested choice is a = 1, which

corresponds to the pairwise conditional likelihood.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 28 / 29

Page 35: Combined composite likelihood - Prin 08

references

Chandler, R. E. & Bate, S. (2007). Inference for clustered data using theindependence loglikelihood. Biometrika, 164, 167-183.

Cox, D. R. & Reid, N. (2004). A note on pseudo-likelihood constructed frommarginal densities. Biometrika, 91, 729-737.

LeCessie, S. & van Houwelingen, J. C. (1994). Logistic regression for correlatedbinary data. Appl. Statist., 43, 95-108.

Lindsay, B. G. (1988). Composite likelihood methods. ComtemporaryMathematics, 80, 221-240.

Lindsay, B. G., Yi, G. Y. & Sun, J. (2011). Issues and strategies in the selection ofcomposite likelihoods. Statistica Sinica, 21, 71-105.

Mardia, K. V., Hughes, G., Taylor, C. C. & Singh, H. (2008). A multivariate vonMises distribution with applications to bioinformatics. Canadian Journal ofStatistics, 36, 99-109.

Roverato, A. & Di Lascio, F. M. (2011). Wilks’ Λ Dissimilarity Measures for GeneClustering: An Approach Based on the Identification of Transcription Modules.Biometrics, 67, 1236-1248.

Varin, C., Reid, N. & Firth, D. (2011). An overview of composite likelihoodmethods. Statistica Sinica, 21, 5-42.

Euloge Clovis Kenne (Univ. of Padua) Combined composite likelihood October 8, 2012 29 / 29