21
12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH 2 O OH Combustion processes are very complex The chemistry is extremely complicated… The most important reaction paths in acetylene oxidation is shown below Turbulence Chemical reactions Flowfield equations (NavierStokes) Transport equations for species Interaction then there is also interaction between the chemistry and the turbulent flow

Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

1

Combustion ApplicationsJOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY

CH CH2O OH

Combustion processes are very complexThe chemistry is extremely complicated…

The most important reaction paths in acetylene oxidation is shown below

Turbulence Chemical reactions

Flow‐field equations(Navier‐Stokes)

Transport equationsfor species

Inter‐action

then there is also interaction between the chemistry andthe turbulent flow

Page 2: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

2

Outline

• Multi‐spectral imaging concepts based on spontaneous flame emission

• Introduction to laser‐based combustion diagnostics

• Multi‐species imaging with planar laser‐induced fluorescence (PLIF)

• Two‐dimensional thermometry using PLIF

• High‐speed imaging

Multi‐spectral imaging concepts based on spontaneous flame emission

Page 3: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

3

Spontaneous flame emission (chemiluminescence)

Images of Bunsen‐type flames having different fuel/air‐mixtures

Flame emission spectrum recorded with spectrograph

Spectrum recorded with Ocean Optics HR2000 spectrometer. It is not corrected for the wavelength‐dependent variations in sensitivity (i.e. the intensity scale is not calibrated). 

Multi‐color imaging of flame emission

Setup Result

This is a line‐of‐sight imaging technique. Three‐dimensional information requires tomographic inversion from multi‐projection recordings.

C2470 nm

OH308 nm

CH432 nm

C2H2/O2 flame

Height above burner (1 m

m/div)

Page 4: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

4

Thermometry in sooty flames

Total signal intensity depends on both soot volume fraction and temperature.

We can measure the temperature in a flame if wecan detect the emission intensity as a function ofwavelength.

How can we measure the temperature in this flame?

Photo: Per-Erik Bengtsson

0

5E+10

1E+11

1,5E+11

2E+11

2,5E+11

3E+11

3,5E+11

4E+11

4,5E+11

400 800 1200 1600 2000 2400 2800

Wavelength (nm)

Inte

nsi

ty (

W/m

3)

T=1600K

T=2000K

Visible region

Per-Erik Bengtsson

Planck radiationThe spectral shape of the emission is temperature dependent

1

12)(

/5

2

kThce

hcI

mK10898.2 3max T

4TI

Planck´s law

Wien´s displacement law

Stefan-Boltzmanns law:

Photo: Per-Erik Bengtsson

Page 5: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

5

CCD-Camera 2

CCD-Camera 1

Temperature map

Optical filter=400 nm

Optical filter=470 nm

The ratio between the emission signals at two wavelengths is temperature dependent.

Still there is aline-of sight limitation!

Temperature imaging using 2‐D pyrometry

Introduction to laser‐based combustion diagnostics

Page 6: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

6

• Nonintrusive

• High spatial resolution (<0.001 mm3)

• High temporal resolution (<10 ns)

• High spectral resolution (~MHz)

• Multiplex (multi-species, multi-point)

Why use lasers in combustion research?

Undisturbed pre‐mixed flame

Premixed flamedisturbed by a thermocouple

Photos by P.‐E. Bengtsson

Photo by H. Bladh

What can be measured with laser‐based combustion diagnostics?

• Temperatures (rotational/vibrational)

• Species concentrations (atoms, molecules, radicals)

• Velocities

• Particle number densities/diameters

• Surface characteristics

Page 7: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

7

For example

• Mie/Rayleigh scattering • Laser‐induced fluorescence (LIF)• Laser‐induced incandescence (LII)• Laser‐induced phosphorescence (LIP)• Raman scattering

LaserLens

Spectrograph &detector

For example

• Coherent anti‐Stokes Ramanscattering (CARS)

• Polarization spectroscopy (PS)• Degenerate four‐wave mixing(DFWM)

• Stimulated Emission (SE)

Laser techniques used in combustion research 

Coherent techniques

Incoherent techniques

Joakim Bood

Laser‐induced fluorescence (LIF) is the most widely used laser diagnostic for combustion studies

Simultaneous OH‐LIF and PIV measurements in aturbulent CH4/H2/N2/air flame

Rapid development of lasers and detectors over the last decadeshas made LIF a very powerful tool in both fundamental and

applied combustion research

125 sec between images, Image size: 14  16 mm

Page 8: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

8

X

v’ 

v’’

re’’

De’’

Potential energy

Internuclear distance

A

v’

X

A

v’’ = 0

v’’ = 1

J’’ = 0J’’ = 1J’’ = 2

J’ = 0J’ = 1J’ = 2

fluorescencespectrum

Laser‐induced fluorescence ‐ basics

v’

X

A

v’’ = 0

v’’ = 1

J’’ = 0J’’ = 1J’’ = 2

J’ = 0J’ = 1J’ = 2

Excitation spectrumFluorescence spectrum

X

A

v’’ = 0

v’’ = 1

J’’ = 0J’’ = 1J’’ = 2

J’ = 0J’ = 1J’ = 2

v’

Laser tuned to a specific absorption line and the spectrometer is scanned

Laser is tuned across the various absorption lines and the total fluorescence is monitored

Fluorescence spectrum and excitation spectrum

Fluorescence spectrum

Excitation spectrum

Page 9: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

9

2‐D measurements using planar laser‐induced fluorescence (PLIF)

Sheet-forming optics

Side view

View from above

OH-PLIF image

Multi‐species imaging with planar laser‐induced fluorescence (PLIF)

Page 10: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

10

Setup for multi‐species imaging

Toluene CH2O OH CH

Exc. (nm) 266 355 309 431

Det. (nm) 275‐290 385‐500 3095 43110

OH            CH          CH2O      Toluene

20

Multi‐species imaging in laminar flame

Page 11: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

11

Jet speed 120m/sJet speed 60m/s

Sjöholm et al., Proc. Combust. Inst. 34, 1475-1482 (2013).

Multi‐species imaging in turbulent flames

OHCH

CH2OCH

CH2OToluene

OHCH

CH2OCH

CH2OToluene

• Tunable (740-790 nm)

• High pulse energy: ~400 mJ @ 776 nm, ~ 70 mJ @ 387 nm, ~10 mJ @ 259 nm

• Long pulse length: ~150 ns

• Single mode (~100 MHz linewidth)

• Multimode (~ 8 cm-1 linewidth)

• Example: 5 mJ single mode at 226 nm!

Strong potential for CH (doubling) and HCO (tripling) PLIF imaging by long pulse and broadband excitation to avoid saturation

Improved sensitivity using Alexandrite laser

1

2

3

4

pumpingLasing

(700-820 nm)

Rapid non-rad. decay

Rapid relax

Alexandrite (BeAl2O4:Cr3+)energy level scheme

Page 12: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

12

23

Spectral investigation of CH‐PLIF

CH visualization

Thanks to long and broad pulse ~ two orders of magn. increased sensitivity compared with conv. Nd:YAG/dye system (~25 mJ)

Co-axial jet flame

Motivation: Intermediate species in NOx formationFlame front marker

Approach: Excitation B X at ~ 387 nmEmission B X, A X at ~430 nmBroadband excitation

Excitation scan over band headCH-PLIF

Li et al., Proc. Comb. Inst. 31, 727 (2007)

Page 13: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

13

Simultaneous PLIF imaging of CH and OH

CH OH

Excitation (nm) 387 283

Detection (nm) 430 310

CH OH

Simultaneous CH/CH2O PLIF

Li et al., Combustion and Flame 157, 1087‐1096 (2010). 26

Page 14: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

14

Li et al. Comb. and Flame, 2010

Simultaneous PLIF imaging of CH and CH2OBurner Flames PLIF images (CH anf CH2O)

Phi=1.0, Ujet = 100 m/s; Ka ~90

Simultaneous imaging of CH, CH2O, and OH in a turbulent flame

Page 15: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

15

2‐D thermometry with PLIF

LIF thermometry

• Any method that reflects the distribution of population over two or more individual vibrational rotational states can in principle be used for temperature measurement. LIF is such a method.

• LIF thermometry restricted to high temperatures if molecular radicals are employed. For OH temperatures above 1500 K are needed.

• If atomic species, such as metal atoms, are used, these have to be seeded into the flame or flow.

• If LIF was used for concentration measurements it is definitely convenient to apply it for thermometry too.

Page 16: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

16

Two‐line LIF thermometry

0

1

2

02

12F21

F20

Basic idea:

To measure the relative populationof two states T from Boltzmannexpression

Excitation to the same upper state F21 and F20 are equally affected byquenching and energy transfer processes

C

II

FF

kEET

lnln4lnln20

21

02

12

20

21

01

C non-dimensional system

Dependent calibration constant

P

Cylindricaltelescope

CCD-camera

PBurner

Interference filter ND filter

Dye cell

Quartz plate

Quartz plate

Laser systems

Power meter

Two‐Line Atomic Fluorescence (TLAF) thermometry

Page 17: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

17

High‐speed imaging

• Multi YAG/framing camera approach

• kHz laser/CMOS high‐speed camera approach

t

t

Ordinary Nd:YAG laser

Nd:YAG laser cluster

Specs. max rep. rate: ~200 kHz (8 pulses), max pulse energy ~350 mJ/pulse @ 532 nm

~ 220 mJ/pulse @ 355 nm~ 70 mJ/pulse @ 266 nm

Possible to pump dye lasers and OPO units for tunable radiation Multiple dye lasers: 20–30 mJ/pulse @ 283nmOne OPO unit: ~10 mJ/pulse @ 283nm

CC

D 1

CC

D 8

Be

am s

plit

ter

Op

tion

al

imag

ein

tens

ifier

MC

P 1

MC

P 8

Fra

me

sto

re

Ma

ss s

tora

ge

Iris

Len

s m

oun

t

CC

D 2

-6

Mirror

Mirr

or

Beam splitter optics

Different approaches for high-speed visualization

Page 18: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

18

Turbulent non-premixedCH4/air flame, Re=5500

Air CH4CH4

C.F. Kaminski et al. Appl. Phys. B 68, 757 (1999) Courtesy: J. Sjöholm 2010

First objective: Temporally resolved OH visualization

More recent work: CH visualization

Δt = 100 µs

Pumping an OPO 30 mJ/pulse at 430 nm Bunsen burner flame

∆t = 125 µs

1 432

65 7 8

High-speed PLIF imaging with multi-Nd:YAG cluster

Courtesy: J. Hult, M. Richter

Fuel-tracer PLIF (fuel: iso-octane, tracer: 6% 3-pentanone)

OH-PLIF

Multi-YAG applicationsSingle-cycle-resolved engine diagnostics using PLIF

7o 7.75o 8.5o 9.25o 10o 10.75o 11.5o 12.25o

Page 19: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

19

• Information on “flame” topology

• Rapid slicing of the measurement volume

• 3-D data reconstructed from the eight resulting 2-D measurements

The multi‐YAG‐cluster also opens up for single‐shot 3‐D measurements 

1                         2                             3                             4

5                        6                       7                         8

3‐D fuel tracer PLIF in an engine

Sheet spacing: 0.5 mm

Measurementat +6 CAD

Iso‐concentration surface

Isolated fuel islands

Nygren et al . 29th Comb Symp.

Page 20: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

20

High‐speed simultaneous CH2O/OH PLIF Experimental setup

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,0us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,20us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,40us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,60us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,80us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,100us OH&CH2O

-5 0 5

45

40

35

30

horizontal location/mm

dist

ance

abo

uve

the

nozz

le/m

m

Phi=0.6,120m/s,120us OH&CH2O

-5 0 5

45

40

35

30

High‐speed simultaneous CH2O/OH PLIF Preliminary results

Page 21: Combustion Applications 2015 - Atomic physics · 2016-01-21 · 12/8/2015 1 Combustion Applications JOAKIM BOOD | DIV. OF COMBUSTION PHYSICS, LUND UNIVERSITY CH CH2OOH Combustion

12/8/2015

21

Thanks for your attention!

For further information contact

[email protected]