27
Commercial Spaceflight and Advanced Propulsion

Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Commercial  Spaceflight  and  Advanced  Propulsion    

Page 2: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Commercial  Crew    Development  (CCDev1)  

•  Sierra  Nevada  Corpora>on  (SpaceDev)  – Development  of  the  Dream  Chaser  spaceplane  

–  $20M  for  building  and  tes>ng  Engineering  Test  Ar>cle  

–  Leverages  NASA  HL-­‐20  airframe  

–  Launch  vehicle:  Atlas  V  – Hybrid  Rocket  –  Seven  crew  members  

Page 3: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

•  Robert  Bigelow  •  Expandable  Space  Sta>on  Modules  

–  Inflatable  modules  are  easier  to  launch  

–  Based  on  technology  developed  at  NASA:  TransHab  Program  

•  Prototypes:  –  Genesis  I  

•  1/3  size  inflatable  structure  •  Launched  July  12,  2006  •  Expanded  to  twice  its  diameter  (4.4  m)  

–  Genesis  II  •  Same  size  as  Genesis  I  •  Launched  June  28,  2007  •  Enhanced  sensors  •  Addi>onal  layer  for  thermal  control  •  Increased  reliability  

Page 4: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Sundancer/BA  330  •  Occupancy  

–  3  people  –  long  term  –  6  people  –  short  term  

•  Protec>on  –  Radia>on  –  Ballis>c  

•  Four  large  windows  •  Environmental  Systems  •  Solar  Power  •  Propulsion  

–  Manuevering  –  De-­‐orbi>ng  

•  Es>mated  launch:  2014?  

Page 5: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Space  Ship  Two  •  Spaceplane  

–  VSS  Enterprise  –  VSS  Voyager  (planned)  

•  Hybrid  Rockets  •  Peak  Al>tude:  110  mi  

White  Knight  Two  •  Jet  powered  aircrac  

–  VMS  EVE  –  VMS  Spirit  of  Steve  Fossed  

•  Launch  Al>tude:  9.5  mi  

Page 6: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

•  Suborbital  Space  Tourism  –  Ticket:  $200  K  – Down  payment:  $20  K  

•  Spaceport  –  Partnership  with  New  Mexico  –  $200  million  –  Training  ground  for  tourists  

Page 7: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Lynx  •  Two  person  •  $95k  ($20k  deposit)  >cket  price  •  Al>tude  100  mi.  •  Take  off/lands  like  airplane  •  Mark  I  test  flight:  2014?  •  Poten>ally  four  flights/day  •  Kerosene  and  LOX  engines    X-­‐Racer  •  Designed  for  Rocket  Racing  League  •  Two  seats  

–  Pilot  –  Flight  Engineer  

•  230  mi/hr  

Page 8: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Advanced  Propulsion/Concepts  

8  

Page 9: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Surface  Reactors  •  Need  power  for  astronauts  on  

Moon  or  Mars  •  Nuclear  power  is  the  only  

viable  solu>on  for  powering  manned  missions  

•  NASA  Glenn  is  currently  working  on  developing  a  40  kW  fission  reactor  

•  Small  scale  compared  to  terrestrial  power  plants  

•  Design  must  be  very  different  (heat,  size,  materials…)  

•  Test  (without  nuclear  material)  is  expected  2012-­‐13  

9  

Page 10: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Innova>ve  Nuclear  Space  Power      and  Propulsion  Ins>tute  

 

•  Research  space  nuclear  reactor  concepts  

•  Research  space  nuclear  thrusters  

•  Research  materials/components  for  space  nuclear  power  

•  Mixture  of  theore>cal,  computa>onal,  and  experimental  work  

10  

Page 11: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

What  we’re  going  to  talk  about  

•  Bussard  Ramjet  •  Solar  Sails  •  Magne>c  Sails  •  Beamed  Energy  Propulsion  •  Laser  Propulsion  •  Tethers  •  Space  Elevator  •  An>mader  

We’re  going  to  talk  about  propulsion  that  involves  physics  that  is  understood.        This  does  not  mean  that  all  of  the  engineering  problems  are  solved    We  will  not  discuss  propulsion  that  requires  new  physics  to  be  discovered  or  invented.      If  you  are  interested  in  “new  physics”  propulsion:  hdp://www.daviddarling.info/encyclopedia/A/advanced_propulsion_concepts.html    

11  

Page 12: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Fuel-­‐less  Propulsion  We’ve  talked  a  lot  about  chemical,  electric,  and  nuclear  rockets.  

In  all  of  these  systems,  you’re  rocket  must  accelerate  its  fuel  for  later  parts  of  the  mission.      

This  led  us  to  the  rocket  equa>on.    Remember  that  the  fuel  mass  has  an  exponen>al  dependence  on  the  spacecrac  velocity.  

If  we  could  leave  the  fuel  behind,  this  would  improve  performance  drama>cally.    This  is  an  exponen>al  mass  savings.  

12  

Page 13: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Bussard  Ramjet  The  Bussard  Ramjet  picks  up  fuel  from  interstellar  space  as  it  flies  that  it  then  

“burns”  in  a  nuclear  reac>on  to  provide  power  and  thrust.  

Ini>al  design  was  mechanical  structure.  

However,  for  a  1000  ton  spacecrac,  a  ramjet  needed  to  be  over  104  km2  

Magne>c  fields  can  be  used  instead,  but  we  can  only  collect  ionized  H  and  not  atomic  H  

Technical  challenges  remain:    difficult  to  get  H  into  engine;  collec>ng  p  not  D  

13  

Page 14: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Solar  Sails  A  solar  sail  uses  a  large  sail  and  is  pushed  by  photons  from  the  Sun.  

Photons  carry  momentum  and  transfer  their  momentum  to  the  spacecrac  when  they  collide  with  the  sail.  

No  fuel  is  required.  

Conceptually  simple  design.  

Large  scale  structure  required  in  space  (several  square  km)  

Can  move  spacecrac  towards  and  away  from  the  sun  

Thrust  decreases  as  you  move  farther  from  the  Sun  since  intensity  falls  off  like  1/r2  

Photon  pressure  at  Earth:  10-­‐5  N/m2  

14  

Page 15: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Solar  Sails  A  solar  sail  uses  a  large  sail  and  is  pushed  by  photons  from  the  Sun.  

Research  is  currently  underway  to  develop  solar  sail  technology.  

NASA  JPL:  Nano  Sail  D  tested  in  large  vacuum  chamber  ()  

JAXA  in  space  solar  sail  deployment  (7.5  µm  thick)   15  

Page 16: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Recent  Solar  Sails  

•  Japanese  Ikaros  Project  –  Launch:  May  2010  –  Diagonal  20  m  –   Thickness:  7.5  µm  –  Next  step:  50m  sail  to  Jupiter/Trojans  

•  NASA  Nanosail-­‐D  –  Cubesat  –  Nov  2010  –  Area:  100  m2  

16  

Page 17: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Magne>c  Sails  A  magne4c  sail  uses  a  large  extended  magne>c  field,  which  interacts  with  the  solar  wind.  The  force  of  the  solar  wind  plasma  on  the  sail  provides  thrust.  

Magne>c  field  and  plasma  pressure  balance.    As  spacecrac  gets  farther  away,  size  of  the  sail  changes,  but  the  thrust  does  not  decrease    Genera>ng  a  large  scale  magne>c  field  has  challenges:  1.  requires  superconduc>ng  magnets    2.  large  structures  in  space  

Mini-­‐Magnetosphere  Plasma  Propulsion  (M2P2)  

Uses  plasma  to  “inflate”  magne>c  field    Only  small  structures  and  no  superconduc>ng  magnets  are  required  

17  

Page 18: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

M2P2  Research  Dipole  magne>c  field  generated  by  large  current  loop    Magne>c  field  looks  like  a  mini-­‐magnetosphere    Test  M2P2  constructed  here  at  UW    Tested  at  NASA  Glenn    Ini>al  results  on  magne>c  field  infla>on  look  promising    Currently  unfunded    Similar  research  currently  funded  by  ESA  18  

Page 19: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

M2P2  

19  

Page 20: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

MagBeam  

20  

Page 21: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

ISS  to  Mars?  

•  Plans  to  deorbit  the  ISS  pushed  back  from  2016  to  2020  

•  ISS  cost  approximately  $150  billion  to  construct  in  total  

•  Unclear  what  it  would  require  or  cost  to  move  the  ISS  out  of  orbit  

•  Thermal,  radia>on  issues  designed  for  being  at  Earth  

Page 22: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Laser  Propulsion  A  laser  pushed  lightsail  is  similar  to  a  solar  sail,  except  the  photons  come  

from  a  laser  on  a  sta>on  instead  of  the  Sun.  

Idea  proposed  and  analyzed  by  Robert  Forward  in  1989.    No  fuel  or  large  quan>>es  of  onboard  power  are  required.    More  control  of  system  since  laser  is  controlled  on  Earth.    Similar  issues  as  solar  sail:  large  structures  in  space;  light  falls  off  like  1/r2;  low  force  

A  lightcra>  has  a  parabolic  mirror  that  is  hit  by  a  laser  on  the  ground.    The  laser  causes  the  air  under  the  crac  to  heat  violently,  which  generates  thrust.    Requires  high  power  lasers  (100  kW  for  sounding  rocket  capabili>es).    hdp://www.youtube.com/watch?v=LAdj6vpYppA  

22  

Page 23: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Tethers  Tethers  Unlimited  is  currently  inves>ga>ng  use  of  space  tethers  for  propulsion,  power  genera>on,  orbital  transfers,  launch  assist…  

Microsatellite  Propulsionless  Electrodynamic  Tether  (µPET):  

How  it  works:  1.  Long  tether  is  deployed  2.  Current  is  run  along  the  tether  (on  

board  power  is  required)  3.  Current  in  the  tether  interacts  with  the  

Earth’s  magne>c  field  4.  That  current  can  be  used  to  power  

something  to  provide  thrust  

Tether  deployment  has  been  successfully  tested  on  shudle  missions    hdp://www.youtube.com/watch?v=pCAEFocoVdM  

23  

Page 24: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Tethers  Tethers  Unlimited  is  currently  inves>ga>ng  use  of  space  tethers  for  propulsion,  power  genera>on,  orbital  transfers,  launch  assist…  

Tether  Assisted  Launch:  

How  it  works:  1.  Spacecrac  is  launched  by  

low  power  rocket.    2.  Satellite  in  orbit  reaches  

down  with  tether  and  grabs  the  spacecrac  

3.  Tether  swings  the  spacecrac  into  a  higher  orbit  

4.  The  orbital  al>tude  of  the  satellite  is  decreased  

5.  Can  use  µPET  to  increase  the  orbit  

Tethers  are  constructed  with  mul>ple  fibers  to  be  a  robust  design  

24  

Page 25: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Space  Elevator  A  space  elevator  stretches  from  the  surface  of  the  Earth  to  geosynchronous  orbit  and  higher  to  a  counterweight    A  “climber”  ascends  the  cable  to  bring  payloads  from  Earth’s  surface  to  orbit    Concept  of  space  elevator  was  first  invented  by  Konstan>n  Tsiolkovsky  1895  

Currently,  material  technology  is  not  available  to  construct  a  space  elevator    There  is  specula>on  that  carbon  nanotube  material  could  be  used  in  the  future  

25  

Page 26: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

Space  Elevator  Base  sta>ons  come  in  two  varie>es:  1.  Mobile  plaworms  2.  Sta>onary  Plaworms  

Climber:  •  Not  a  tradi>onal  elevator  •  Must  be  able  to  climb  variable  cable  size  •  Speed  and  mass  must  be  carefully  

adjusted  to  minimize  oscilla>ons  and  cable  damage  

26  

Page 27: Commercial*Spaceflightand* Advanced*Propulsion** · Commercial*Crew** Development(CCDev1)* • SierraNevada Corporaon*( SpaceDev)* – Developmentof*the* Dream*Chaser*spaceplane*

When  will  we  build  one?  “The  space  elevator  will  be  built  about    50  years  acer  everyone  stops  laughing.”      

 -­‐Arthur  C.  Clarke    

Power  Beaming  Climber  Compe>>on:  •  The  level  1  (2  m/s)  challenge:  LaserMo>ve    

($900,000).    •  The  level  2  (5  m/s)  challenge  remains  

unclaimed  ($1,100,000).  

Tether  Strength  Compete>>on:  •  Breaking  strength  •  Strength  to  weight  ra>o  •  Tether  length  

“This  is  no  longer  science  fic>on.  We  came  out  of  the  workshop  saying,  ‘We  may  very  well  be  able  to  do  this.’”    -­‐David  Smitherman  (2000)  NASA/Marshall’s  Advanced  Projects  Office  

27