Communication Systems, 5e - Western Michigan Universitybazuinb/ECE4600/Ch05_03.pdf · 3 General Description • Angle modulation – phase or frequency based • The instantaneous

  • Upload
    ngoliem

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • Communication Systems, 5e

    Chapter 5: Angle CW Modulatation

    A. Bruce CarlsonPaul B. Crilly

    2010 The McGraw-Hill Companies

  • Chapter 5: Angle CW Modulatation

    Phase and frequency modulation Transmission bandwidth and distortion Generation and detection of FM and PM Interference

    2010 The McGraw-Hill Companies

  • 3

    General Description

    Angle modulation phase or frequency based

    The instantaneous angle is the argument of the cosine (for complex, the exponential)

    ttf2cosAts 0

    ttf2t 0

    tjjtf2jexpReAts 0

    dt

    tft

    ttftfdt

    t

    2

    1221

    21

    00

  • Narrowband Signal Demo

    AM, PM, and FM Spectrum with random noise4

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000-140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Frequency (Hz)

    Pow

    er (d

    B)

    AM, FM, PM Example Power Spectrum

    FMPMAM

  • Wideband Signal Demo

    AM, PM, and FM Spectrum with random noise5

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000-120

    -100

    -80

    -60

    -40

    -20

    0

    Frequency (Hz)

    Pow

    er (d

    B)

    AM, FM, PM Example Power Spectrum

    FMPMAM

  • 6

    PM and FM Spectrum Basis

    Based on the previous analysis, we need to determine the transform of the phase components

    tmt 2pPM

    fMf 2pPM

    t

    3fFM dmt

    f

    fMjf 3fFM

    p is the phase deviation f is the frequency deviation

  • 7

    Phase Modulation (PM)

    The magnitude is constant while the phase changes in time carries the message information

    The instantaneous frequency of a PM system is

    tmtf2cosAts 2p0

    t

    tmtf2dt

    ttf2 2p0

    180p 1tm

    t

    tm2

    ftf 2p0

  • 8

    Frequency Modulation (FM)

    The magnitude is constant while the relative frequency changes in time carries the message information

    The instantaneous frequency of a FM system is

    tmftf 3f0

    t

    3f0 dm2tf2cosAts 1tm

    t

    dm2tf2

    21tf

    t

    3f0

  • 9

    FM or PM Single Tone Modulation

    The Quadrature Signal Representation

    tf2sintsintf2costcosAttf2cosAts

    cc

    c

    tf2sintf2sinsintf2costf2sincos

    Atscm

    cm

    For Single Tone Modulation tf2sinAtm mm2 tf2cosAtm mm3

    tf2sinAt mpmPM tf2sinfAt mmf

    mFM

    pmPM A m

    fmFM f

    A

  • 10

    Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    Tone-modulated line spectra

    14.3PM

    pmPM A

    m

    fmFM f

    A

    (a) FM with m fixed or PM (b) FM with Am fixed

    and fm decreasing

  • 11

    Rules of Thumb

    The relative amplitudes of the lines will vary with the modulation index For PM, expect that < For NB FM, expect < 1 and only J0 and J1 are

    significant For WB FM, expect > 1 and numerous spectral lines

    Table 5.1-2 shows selected values Keeping scaled terms of 0.01 and higher

    Figure 5.2-1 shows the number of sideband pairs as a function of .

  • Transmission Bandwidth

    From the Bessels function discussion, the optimal bandwidth for FM exponential modulation is infinite!

    A practical bandwidth can be defined based on the magnitude of the spectrum that we wish to keep. 90% or 99% power for example

    12

  • 13

    Carsons Rule Estimate

    Carsons Rule (for >>1 and

  • 14

    Bandpass Filtering FM Systems

    What happens when an FM waveform is filtered? txthty cc

    fXfHfY cc

    0oddn mcmc

    mcmcn

    0evenn mcmc

    mcmcn

    cc0c

    fnfffnfffnfffnff

    J22A

    fnfffnfffnfffnff

    J2A

    ffffJ2AfX

    For a tone modulated spectrum

  • 15

    Bandpass Filtering FM Systems (2)

    And the output becomes fXfHfY cc

    0oddn mcmcmcmc

    mcmcmcmcn

    0evenn mcmcmcmc

    mcmcmcmcn

    cccc0c

    fnfffnfHfnfffnfHfnfffnfHfnfffnfH

    J22A

    fnfffnfHfnfffnfHfnfffnfHfnfffnfH

    J2A

    fffHfffHJ2AfX

    For no distortion, the magnitude of the filter must be equal for all frequencies and the phase should be linear a perfect filter!?

  • 16

    ABCs Linear Filter Conditions

    Taking the baseband signaling tjexp

    2AtxLP

    tf2jexptyRety cLPc

    fXffuffHfXfHfY LPccLPLPLP

    Bandpass to Lowpass Filter Consideration(see Example 4.1-1) and Figure 4.1-6

    ulBP ffffor,fjexpKfH

    cuclccLP ffffffor,ffuffjexpKfH

  • 17

    ABCs Linear Conditions (2)

    For no distortion: the gain must remain constant or flat, K, and the phase should be strictly linear (time delay only).

    But

    Filters usually have amplitude variation or ripple Filters usually have phase ripple

    A notable exception is a symmetric digital FIR filter

  • ABCs Linear Distortion (1)

    Assume linear amplitude and phase in the filter

    18

    ftftjffKK

    ffuffjKfH

    cc

    cc

    1010 2exp

    exp

    fXftftjffKKfY LPcc

    LP

    1010 2exp

    dt

    ttdxft2jexpf2j

    Kttxft2jexpKty

    1LPc0

    c

    1

    1LPc00LP

    ftjfXfjftjfj

    K

    ftjfXftjKfY

    LPcc

    LPcLP

    101

    100

    2exp22exp2

    12exp2exp

  • ABCs Linear Distortion (2) Taking the derivative of the lowpass input

    Substitute

    Combine

    19

    1101100

    22exp2

    2exp

    ttxttmjftjfj

    KttxftjKty

    LPfcc

    LPcLP

    1LP1f

    11

    1LP

    ttxttm2jdt

    ttdttjexp2Aj

    dtttdx

    10110 2exp22

    ttxftjfj

    ttmKjKty LPc

    c

    fLP

    tjexp2AtxLP

  • ABCs Linear Distortion (3)

    20

    Recognize an AM modulated baseband waveform! FM to AM conversion due to linear magnitude

    filtering has occurred!

    10110 2exp22

    ttxftjfj

    ttmKjKty LPc

    c

    fLP

    10110 2exp ttxftjttmfK

    Kty LPcc

    fLP

    Restating and simplifying tjexp2AtxLP

  • 21

    Limiters

    Can we stop linear distortion from happening?

    Use an ideal hard limiter on the signal and all filter magnitude variation is removed! A square signal with zero crossings results The distance between zero crossing provides frequency

    information one interval=1/2 wavelength

    Then, carefully bandpass filter the output, anda clean version of the FM signal is reacquired.

  • Nonlinear processing circuits

    22Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    (a) Amplitude limiter or (b) frequency multiplier

  • 23

    Limited Fourier Components

    Limited and Filtered

    ttfVttfV

    ttfVttfVtv

    cc

    ccLimit

    772cos74552cos

    54

    332cos342cos4

    00

    00

    ttfKttfVtv ccBPFLimit

    2cos2cos4 0&

    ttffRtAtv cin 2cos,,,

    oddnforn

    jtfcseries ,22cos

  • Amplitude Limiter and Noise Reduction

    2010 The McGraw-Hill Companies

    FM signal processing using a limiter: (a) Noiseless FM signal, (b) noisy FM signal, (c) limiter output with noisy input, and (d) BPF output

  • 25

    AD8309: Log Amp/Limiter

  • 26

    Generating and Detecting FM & PM

    Modulation Voltage Controlled Oscillators Narrowband Narrowband to Wideband Conversion Phase to frequency converters

    Demodulation Phase Lock Loops Frequency/Phase Sloped Filters Frequency Discriminators

  • 27

    Commercial FM

    Maximum frequency deviation 75 kHz For 15 kHz, D=5.0 For 53 kHz, D=1.4

    Bandwidths (Carson)

    For 15 kHz, Bt = 180 kHz For 53 kHz, Bt = 256 kHz

    freq 20 k15k19 k38

    k23

    L-R

    k53

    L-R L+RFM Audio Baseband

    max12 fDBT

  • 28

    Commercial FM

    Subsidiary Communications Authority (SCA) Subbands Typically located at 67 kHz or 92 kHz Additional transmissions by licensee Mostly digital communications http://en.wikipedia.org/wiki/Subsidiary_Communications_Authority

    http://www.fcc.gov/mb/audio/subcarriers/

    k67 k75 k92 k100cf

  • 29

    Oscillator/VCO Design

    Tuned Circuit L-C or crystal (modeled as L-C)

    Voltage control of tuned circuits Varactor Diode V-C characteristics Varying C varies f Figure 5.3-1-like

    Maxim-IC.com Application Notes AN2032: Trimless IF VCO: Part 1: Design Considerations

    http://www.maxim-ic.com/appnotes.cfm/appnote_number/2032 AN688: Trimless IF VCO: Part 2: New ICs Simplify

    Implementation http://www.maxim-ic.com/appnotes.cfm/an_pk/688

  • 30

    Maxim 2605-2609 Integrated IF VCO

  • 31

    Generating FM with a VCO

    A voltage controlled oscillator

    From the definition of FM, let

    ttvkf2jexpAtVCO inc

    tv2kftmftf inc3f0

    This is very common for FM generation

  • Direct FM and VCO (radio design)

    2010 The McGraw-Hill Companies

    0

    0 1

    Oscillator output frequency =

    Oscillator tank circuit with resonant frequency of , , and ( )

    v

    f f

    f f f L C C t

    VB defines f0, (C||Cv)L defines f

  • 33

    Narrowband PM Modulators

    Narrowband Phase for small

    ttfAttfAts

    ttfAts

    cc

    c

    sin2sincos2cos2cos

    tftAtfAts cc 2sin2cos

    tf c 2cos

    tx cA ts

    90 tf c 2sin

    Note: Narrowband FM if x(t) is integrated

  • Indirect FM transmitter

    34Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    Narrowband to Wideband Conversion ncn ttfts 2cos1

    tntfnAtsts cn 2cos12

  • 35

    Generating PM and FM in MATLABPhase to Frequency Generation

    Generate the instantaneous phase

    nmn 2pPM

    n

    k3fFM kmt2n

    nmcumsumf

    2n 3s

    fFM

    njfnfjAnx

    sc 2exp

  • 36

    Demodulation Concepts

    1. FM to AM Conversion2. Phase-shift Discrimination3. Quadrature Phase Estimate and Discrimination4. Zero-crossing Detection5. PLL Frequency Feedback (not in Chap 5)

  • 37

    FM to AM Conversion

    What happens when we take the derivative of the FM modulated waveform?

    ttf2cosAts FM0

    ttf2ttf2sinA

    tts FM

    0FM0

    t

    3fFM dm2t

    ttf2sintm2f2Atts

    FM03f0

    The signal envelope is (easier with complex)

    tm2f2Atenv 3f0

  • 38

    Taking a Derivative

    A Differentiator in the Laplace domain WffWffor,sKsH 00

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25Differentiating Filter Absolute Value

    Am

    plitu

    de

    Frequency-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10Differentiating Filter Phase

    Pha

    se

    Frequency

    h=firpm(44,[0 .3 .4 1],[0 .2 0 0],'differentiator')';

  • 39

    Phase Shift Discriminator

    tx ty

    1FM0FM0 tttf2sinttf2costmix

    ttt2tf22sintttsintmix FM1FM0FM1FM

    ttttttsinty FM1FMFM1FM

    t

    3f

    tt

    3f dm2dm2ty1

    tm2ty 3f

  • 40

    Phase Derivative

    Quadrature (or Complex) demodulation Arctan to derive instantaneous phase

    This output provides the phase

    Differentiation to generate FM output LPF to support reduced bandwidth

    0fLO

    tx

    90

    tx c

  • 41

    Derivative of the Arctan

    Math and discrete approximation

    tItQty atan

    ttI

    tItQ

    ttQ

    tItItQt

    tItQ

    tItQt

    ty222

    1

    1

    1

    1

    1

    ttItQ

    ttQtI

    tQtItty

    221

    22

    11nQnI

    nInInQnQnQnIny

    Using 1st order difference for derivative

  • 42

    Derivative Detail

    The derivative of an arc-tangent function

    2uarctan

    2for,

    dxdu

    u11uarctan

    dxd

    2

    tI

    tQtu

    dx

    tdItItQ

    dxtdQ

    tI1

    tItQ1

    1tItQarctan

    dxd

    22

    dx

    tdItQdx

    tdQtIKtQtI

    dxtdItQ

    dxtdQtI

    tItQ

    dxd

    A

    1arctan 22

    Using a 1st order difference approximation

    22 nQnI

    nInQnQnInInQarctan

    dxd

  • Demodulation Results

    Using a constant magnitude input

    43

    22 nQnI

    nInQnQnInInQarctan

    dxd

    nInQnQnIKA

    nInQnQnInInQ

    dxd

    Ac

    c

    2arctan

  • 44

    Zero Crossing

    Instantaneous measurement of frequency at each zero crossing Interpolation between zero crossings may be performed Discrete steps require low pass filtering