31
Comparative analysis of SWAT model with Coupled SWAT-MODFLOW model for Gibbs Farm Watershed in Georgia Presented By K.Sangeetha B.Narasimhan D.D.Bosch A.W.Coffin 1 2018 SWAT INTERNATIONAL CONFERENCE, JAN 10-12, CHENNAI

Comparative analysis of SWAT model with Coupled SWAT ... · Ponds constructed on Miocene Hawthorne formation which act as Aquiclude Ponds store stream flow and utilized for irrigation

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Comparative analysis of SWAT model with Coupled SWAT-MODFLOW model for Gibbs Farm Watershed in

Georgia

Presented By K.Sangeetha

B.Narasimhan D.D.Bosch A.W.Coffin

1 2018 SWAT INTERNATIONAL CONFERENCE, JAN 10-12, CHENNAI

Outline of the Study

Motivation

Study Area Description – Gibbs farm watershed

Methodology

Model setup

Results and Discussions

Conclusion

Future Work

2

Motivation

Streams and lakes interact with adjacent aquifers and need to be treated

together in water resource assessment.

For efficient water resource management, linkage between SW & GW is essential

Many models are integrated for understanding the SW-GW interaction – (SWAT

– MODFLOW)

This study attempts to demonstrate and analyse the application of SWAT model

with recently developed GUI (SWATMOD-PREP)

3

(Contd..) 4

Surface

Runoff

Sub

Surface

Lateral

flow

GW

Flow

Percolation/GW

Recharge

Pla

nt

Tran

sp

irati

on

So

il E

vap

orati

on

Precipitation

Percolation

Revap

Sh

allo

w

Aq

uif

er

Deep

A

qu

ifer

So

il P

ro

file

SWAT considers each HRU and sub- basins

as separate 1-D unit

Spatial locations of each HRU - sub-basins

are not considered

Model lacks in simulating the GW

distribution and recharge rates for

watershed

Study area – Gibbs Farm Watershed

5

8923

8924

8922

8921

Description of Study Area

Gibbs Farm Watershed, TIFTON, Georgia

Intensive agriculture and dense riparian forest buffers along

stream channels

Geology : Hawthorne formation by quartenary sands and surface

soils (4m @ top of landscape and 2.5 m @ below land surface )

Area of watershed : 115 hectares ; Soil : Loamy sand with TIFTON

loamy sand

Annual Mean Precipitation : 1200 mm; Monitoring Wells : 29 wells

(Fox Den Field)

6

8923

8924

8922

8921

Linking 3 Models:

SWAT

MODFLOW

RT3D

Volatilization canal

Pumping Well

Vadose Zone

Percolation,

N, P

Concentration

Stream stage Solute transport

Root Zone Processes

Groundwate

r discharge Groundwater flow

Uptake

ET

Confining

Layer

Plant Growth

N, P mass loading N, P reactive transport

Transport

Overview Of Coupled SWAT-MODFLOW

7

Source : Ryan Bailey et al , SWATMODFLOW Tutorial, February-2017

Graphical User Interface - SWATMODPREP

Methodology 8

Digital Elevation Model (DEM) Landuse Map Soil Map Slope Map Weather data

Run SWAT Model

Calibrated txtinout folder

SWAT MODEL

Aquifer Properties (Sy

Ss, Aquifer Thickness, Hydraulic conductivity)

Import DEM

Initial Conditions

MODFLOW

Intersect MODFLOW Grid cell with DHRUs

Identify River Cells

Write linkage files

Disaggregate HRUs

Import Subbasins, HRU and river shapefiles

Spatial Setup

Table of observation cells

Enter the period of simulation

MODFLOW OUTPUT

Simulation

SWATMOD-PREP

Manual Calibration

View Coupled SWAT-MODFLOW Result

Coupled SWAT- MODFLOW MODEL (SWATMOD-PREP)

Developed for exchanging the characteristics between HRU’s of

SWAT model and grid cells in MODFLOW model

GW module in SWAT is replaced by MODFLOW

Coupled model simulates the spatial- temporal GW recharge and

Stream aquifer interactions by RIVER Package in MODFLOW

9

10

SWAT-MODFLOW Linkage

Linkage of SWAT MODFLOW

(Convert the MODFLOW Grid variables to SWAT HRU variables)

- Percolation (mm)

- ET

- Depth of river

Read SWAT - MODFLOW linkages files

Read Inputs

Read SWAT input files Read MODFLOW input files

(hru2dhru.txt dhru_grid.txt grid_dhru.txt river_grid.txt)

(Aquifer Properties and Initial conditions)

(Subbasin and HRU calculations)

(Convert the SWAT HRU variables to MODFLOW variables)

- Percolation (mm)

- ET

- Depth of river

(Subbasin and HRU calculations)

MODFLOW SWAT output

Coupled SW-GW model

Linkage of SWAT - MODFLOW

SWAT

(Route Stream network to the outlet)

Compute GW Hydraulic Head

GW discharge to streams

Simulate next day

SWAT Model Input Data

11

SWAT Model Input Data

12

Landuse : North basin (more crops in plastic covered beds) and south basin ( more ponds and less land for crops)

Effect of Ponds in the Watershed

13

Farm ponds – agricultural source for the watershed in the south basin and also

for irrigating the north basin fields.

Ponds constructed on Miocene Hawthorne formation which act as Aquiclude

Ponds store stream flow and utilized for irrigation

Water is pumped from Floridan aquifers at a depth of 60-200 m below land

surface – mostly surface and shallow GW

Pond Simulation in the watershed

14

Name of

Basins

Pond Fraction

(%)

Surface area

(Hectares)

Volume

(*104m3)

Subbasin

number

North Basin 0.879 0.74 1.48 4

South Basin 0.98 0.607 1.214 20

South Basin 0.1272 2.994 5.988 18

SWAT Model Setup

Simulation periods : January 1995 through December 2004

Warm up period : January 1995 through December 1997

Calibration sites : U/S Stream gauge :8924 ; D/s Stream gauge : 8922

Validation sites : U/S stream gauge : 8923 ; D/s Stream gauge : 8921

Observed data : Stream flow ( January 1998-December 2004)

Model performance indices : NSE and R2

Pond simulation in both north and south basin

15

Results and Discussions – SWAT model

16

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Sim

/Ca

l flo

w (

m3/s

)

Year

8924 - Flow Hydrograph

observed flow (cms) SIM_WITH WATERUSE_PONDS Calibrated flow (m3/s)

8923

8924

8922

8921

(Contd..)

17

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Ja

n-9

8

Ma

r-9

8

Ma

y-9

8

Ju

l-9

8

Se

p-9

8

No

v-9

8

Ja

n-9

9

Ma

r-9

9

Ma

y-9

9

Ju

l-9

9

Se

p-9

9

No

v-9

9

Ja

n-0

0

Ma

r-0

0

Ma

y-0

0

Ju

l-0

0

Se

p-0

0

No

v-0

0

Ja

n-0

1

Ma

r-0

1

Ma

y-0

1

Ju

l-0

1

Se

p-0

1

No

v-0

1

Ja

n-0

2

Ma

r-0

2

Ma

y-0

2

Ju

l-0

2

Se

p-0

2

No

v-0

2

Ja

n-0

3

Ma

r-0

3

Ma

y-0

3

Ju

l-0

3

Se

p-0

3

No

v-0

3

Ja

n-0

4

Ma

r-0

4

Ma

y-0

4

Ju

l-0

4

Se

p-0

4

No

v-0

4

Sim

/Ca

l flo

w (

m3/s

)

Year

8922 - Flow Hydrograph

OBSERVED SIM_WITH WATERUSE_PONDS Calibrated flow (m3/s)

8923

8924

8922

8921

18

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ja

n-9

8

Ma

r-9

8

Ma

y-9

8

Ju

l-9

8

Se

p-9

8

No

v-9

8

Ja

n-9

9

Ma

r-9

9

Ma

y-9

9

Ju

l-9

9

Se

p-9

9

No

v-9

9

Ja

n-0

0

Ma

r-0

0

Ma

y-0

0

Ju

l-0

0

Se

p-0

0

No

v-0

0

Ja

n-0

1

Ma

r-0

1

Ma

y-0

1

Ju

l-0

1

Se

p-0

1

No

v-0

1

Ja

n-0

2

Ma

r-0

2

Ma

y-0

2

Ju

l-0

2

Se

p-0

2

No

v-0

2

Ja

n-0

3

Ma

r-0

3

Ma

y-0

3

Ju

l-0

3

Se

p-0

3

No

v-0

3

Ja

n-0

4

Ma

r-0

4

Ma

y-0

4

Ju

l-0

4

Se

p-0

4

No

v-0

4

Sim

/Ca

l flo

w (

m3/s

)

Year

8923 - Flow Hydrograph

observed flow (cms) SIM_WITH WATERUSE_PONDS Calibrated flow (m3/s)

8923

8924

8922

8921

(Contd..)

19

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Ja

n-9

8

Ma

r-9

8

Ma

y-9

8

Ju

l-9

8

Se

p-9

8

No

v-9

8

Ja

n-9

9

Ma

r-9

9

Ma

y-9

9

Ju

l-9

9

Se

p-9

9

No

v-9

9

Ja

n-0

0

Ma

r-0

0

Ma

y-0

0

Ju

l-0

0

Se

p-0

0

No

v-0

0

Ja

n-0

1

Ma

r-0

1

Ma

y-0

1

Ju

l-0

1

Se

p-0

1

No

v-0

1

Ja

n-0

2

Ma

r-0

2

Ma

y-0

2

Ju

l-0

2

Se

p-0

2

No

v-0

2

Ja

n-0

3

Ma

r-0

3

Ma

y-0

3

Ju

l-0

3

Se

p-0

3

No

v-0

3

Ja

n-0

4

Ma

r-0

4

Ma

y-0

4

Ju

l-0

4

Se

p-0

4

No

v-0

4

Sim

/Ca

l flo

w (

m3/s

)

Year

8921 - Flow Hydrograph

OBSERVED SIM_WITH WATERUSE_PONDS Calibrated flow (m3/s)

8923

8924

8922

8921

(Contd..)

Challenges in Model Calibration

In north basin, more cropland and in south basin, more ponds

In south basin , Ponds decrease surface runoff and increase baseflow and

north basin almost all vegetables plastic covered which increases surface

runoff

Parameters was slightly different for both because of significant

difference in north and south basins

20

Performance Indices for both Upstream and Downstream sites

21

Name of Stream Gauge

Daily Values (Simulated)

Monthly Values (Simulated)

Daily Values (Calibrated)

Monthly Values (Calibrated)

R2 NSE R2 NSE R2 NSE R2 NSE

8921 0.500 -0.067 0.566 -1.009 0.651 0.645 0.707 0.667

8922 0.510 -0.416 0.527 -0.636 0.662 0.635 0.662 0.635

8923 0.616 0.581 0.610 0.566 0.691 0.672 0.667 0.596

8924 0.650 0.566 0.677 0.580 0.740 0.735 0.728 0.628

Results and Discussions (SWATMOD-PREP)

22

92.00

93.00

94.00

95.00

96.00

97.00

98.00

Ja

n-9

8

Ma

r-98

Ma

y-9

8

Ju

l-98

Se

p-9

8

No

v-9

8

Ja

n-9

9

Ma

r-99

Ma

y-9

9

Ju

l-99

Se

p-9

9

No

v-9

9

Ja

n-0

0

Ma

r-00

Ma

y-0

0

Ju

l-00

Se

p-0

0

No

v-0

0

Ja

n-0

1

Ma

r-01

Ma

y-0

1

Ju

l-01

Se

p-0

1

No

v-0

1

Ja

n-0

2

Ma

r-02

Ma

y-0

2

Ju

l-02

Se

p-0

2

No

v-0

2

Ja

n-0

3

Ma

r-03

Ma

y-0

3

Ju

l-03

Se

p-0

3

No

v-0

3

Ja

n-0

4

Ma

r-04

Ma

y-0

4

Ju

l-04

Se

p-0

4

GW

He

ad

(m

)

Year

P1

Observed GW Head (m) Simulated GW Head (m)

(CONTD..)

23

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

GW

HEA

D (

M)

YEAR

P3

Observed GW Head (m) Simulated GW Head (m)

(CONTD..)

24

91.5

92

92.5

93

93.5

94

94.5

95

95.5

96

96.5

GW

HEA

D (

M)

YEAR

8906

Observed_8906 Simulated_8906

MODFLOW HEAD

25

DEPTH TO WATER LEVEL PLOTS 26

SWAT RECHARGE 27

Recharge values range from 0 –3.19 m

GW SW INTERACTION SWAT

28

Seepage to aquifer range from -1.48 to -167.91 m3/d

SWAT FLOW HYDROGRAPH

29

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Ja

n-9

8

Ma

r-9

8

Ma

y-9

8

Ju

l-9

8

Se

p-9

8

No

v-9

8

Ja

n-9

9

Ma

r-9

9

Ma

y-9

9

Ju

l-9

9

Se

p-9

9

No

v-9

9

Ja

n-0

0

Ma

r-0

0

Ma

y-0

0

Ju

l-0

0

Se

p-0

0

No

v-0

0

Ja

n-0

1

Ma

r-0

1

Ma

y-0

1

Ju

l-0

1

Se

p-0

1

No

v-0

1

Ja

n-0

2

Ma

r-0

2

Ma

y-0

2

Ju

l-0

2

Se

p-0

2

No

v-0

2

Ja

n-0

3

Ma

r-0

3

Ma

y-0

3

Ju

l-0

3

Se

p-0

3

No

v-0

3

Ja

n-0

4

Ma

r-0

4

Ma

y-0

4

Ju

l-0

4

Se

p-0

4

No

v-0

4

Sim

/Ca

l flo

w (

m3/s

)

Year

8924 - Flow Hydrograph

observed flow (cms) SIM_WITH WATERUSE_PONDS Calibrated flow (m3/s) modflow_Calibrated(m3/s)

8923

8924

8922

8921

Findings and Future work

SWAT model need to calibrated for SW processes

MODFLOW model need to be calibrated for GW processes

Comparative study of SWAT model with numerical techniques (Finite

Element Method and Finite Difference Method) and Analytic

Techniques (Analytic Element Method)

30

Thank You For Your Attention

31