Comparison Test SP Handout

Embed Size (px)

Citation preview

  • 7/24/2019 Comparison Test SP Handout

    1/11

    SUMMARY ON THE

    COMPARISON TEST FORSERIES WITHTHEORETICAL SOLVED

    PROBLEMS

    Mika Seppl: Solved Problems on Comparison Test

    COMPARISON TEST

    Let 0 !ak!bkfor all k.

    bk

    k=1

    !

    " converges # akk=1

    !

    " converges.

    ak

    k=1

    !

    " diverges # bkk=1

    !

    " diverges.

    Mika Seppl: Solved Problems on Comparison Test

    P-SERIES

    By Integral Test, we proved that1

    kpk=1!

    "

    converges if and only ifp >1.

    The series of the form1

    k

    pk=1

    !

    " are called

    p-series. They are used quite often for

    comparison purposes.

    Mika Seppl: Solved Problems on Comparison Test

    1

    OVERVIEW OF PROBLEMS

    Let 0 ! ak ! b

    kfor all k. Assume that

    the series akk=1

    "

    # and bkk=1"

    # converge.

    Show that the series akbkk=1

    "

    # converges.

    Show that if ak > 0 for all kand lim

    k!"

    kak > 0,

    then the series akk=1

    "

    # diverges.

    2

  • 7/24/2019 Comparison Test SP Handout

    2/11

    Mika Seppl: Solved Problems on Comparison Test

    3

    4

    Show that if ak > 0 for all kand lim

    k!"k

    2ak = 1,

    then the seriesakk=1

    "

    # converges.

    OVERVIEW OF PROBLEMS

    Let akand b

    kbe positive for all k. Assume

    that the series akk=1

    !

    " converges and that

    limk#!

    bk

    ak

    = L < !. Show that the seris bkk=1

    !

    "

    converges.

    Mika Seppl: Solved Problems on Comparison Test

    6

    7

    8

    9

    Determine whether the series converge ordiverge.

    9n

    1 +10n

    n=1

    !

    "

    4 +2n

    3n

    n=1

    !

    "

    3n2+ 5n

    3n

    n2+1( )n=1

    !

    "

    2 + cos(n)

    3nn=1

    !

    "

    ln 1 +1

    2n

    !

    "#$

    %&n=1

    '

    (

    5

    1

    k3+ kk=1

    !

    "10

    OVERVIEW OF PROBLEMS

    Mika Seppl: Solved Problems on Comparison Test

    1

    k2+ 4k=1

    !

    "

    k2

    k3+1k=1

    !

    "

    1

    k2k! 5( )k=3

    "

    #

    1

    2k+13

    k=1

    !

    "

    k! 1

    k3!1k=2

    "

    #

    Determine whether the series converge ordiverge.

    12

    13

    14

    15

    11

    sin1

    k

    !

    "#$

    %&k=1

    '

    (16

    OVERVIEW OF PROBLEMS

    Mika Seppl: Solved Problems on Comparison Test

    ln k( )k

    4

    k=1

    !

    "

    sin1

    k2

    !"#

    $%&k=1

    '(

    8k2! 7

    ekk+1

    ( )

    2

    k=1

    "

    #

    Determine whether the series converge ordiverge.

    17

    18

    19

    OVERVIEW OF PROBLEMS

  • 7/24/2019 Comparison Test SP Handout

    3/11

    Mika Seppl: Solved Problems on Comparison Test

    Problem 1

    Let ak,bk > 0 for all k. Assume that the series

    akk=1

    !

    " and bkk=1!

    " converge. Show that the

    series akbkk=1

    !

    " converges.

    Mika Seppl: Solved Problems on Comparison Test

    Solution

    This means, !" > 0 #m"

    $! : k > m"

    % bk < ".

    !m

    1: k > m

    1" b

    k 0, a

    kk=1

    !

    " # bkk=1!

    " converge

    akbkk=1

    !

    " converges.Claim

    Since b

    kk

    =

    1

    !

    " converges, limk#!

    bk = 0.

    ! = 1.Let

    Mika Seppl: Solved Problems on Comparison Test

    Solution(contd)

    ak,b

    k > 0, a

    kk=1

    !

    " # bkk=1!

    " converge

    akbkk=1

    !

    " converges.Claim

    k > m

    1! 0 < a

    kbk < a

    k.

    ak > 0 ! bk > 0 "k,Since

    akbkk=m

    1

    !

    "

    Hence, by The Comparison Test,

    converges.

    Mika Seppl: Solved Problems on Comparison Test

    akbk

    k=1

    !

    " = akbkk=1

    m1#1

    " + akbkk=m

    1

    !

    " ,

    Solution(contd)

    ak,b

    k > 0, a

    kk=1

    !

    " # bkk=1!

    " converge

    akbkk=1

    !

    " converges.Claim

    akbkk=m

    1

    !

    " The convergence of

    implies the convergence of

    akbk

    k=1

    m1!1

    "because is a finite sum.

  • 7/24/2019 Comparison Test SP Handout

    4/11

    Mika Seppl: Solved Problems on Comparison Test

    Problem 2

    Show that if limk!"

    kak > 0,

    then the series akk=1

    "

    # diverges.

    Mika Seppl: Solved Problems on Comparison Test

    Solution

    k > m

    1! a

    k >

    b

    2k.

    limk!"

    kak > 0# a

    kk=1

    "

    $Problem 2

    Assume that limk!"

    kak = b > 0.

    Since b> 0, !m1such that k > m1 " kak >b

    2.

    b

    2kk=m

    1

    !

    " The series diverges

    since the Harmonic Series diverges.

    =

    b

    2

    1

    kk=m

    1

    !

    "

    diverges.

    Mika Seppl: Solved Problems on Comparison Test

    Solution

    limk!"

    kak > 0# a

    kk=1

    "

    $Problem 2 diverges.

    b2k

    k=m1

    !

    " Since diverges,

    ak >

    b

    2k> 0,and since

    also

    akk=1

    !

    " diverges.

    Mika Seppl: Solved Problems on Comparison Test

    Problem 3

    Show that if limk!"

    k2ak = 1,

    then the series akk=1

    "

    # converges.

  • 7/24/2019 Comparison Test SP Handout

    5/11

    Mika Seppl: Solved Problems on Comparison Test

    Solution

    limk!"

    k2ak =1# a

    kk=1

    "

    $ converges.Problem 3

    limk!"

    k2ak = 1 # $m

    1: k > m

    1 # 0 < k2a

    k < 2.

    k > m

    1! 0 < a

    k m

    1 #

    bk

    ak

    < L + 1.

    ! k > m

    1! b

    k < L +1( )ak.

    akk=1

    !

    " converges! L +1( )akk=1

    "

    # converges.

    Mika Seppl: Solved Problems on Comparison Test

    Solution(contd)

    akk=1

    !

    " converges, limk#!

    bk

    ak

    = L < !

    bkk=1

    !

    " Claim: converges.

    Problem 4

    L + 1( )akk=1

    !

    " converges! b

    k

    k=m1

    "

    # converges.

    bk = b

    kk=1

    m1!1

    " +k=1

    #

    " bkk=m1

    #

    " Hence also

    converges because bkk=1

    m1!1

    " is a finite sum.

    bk < L + 1( )ak.

  • 7/24/2019 Comparison Test SP Handout

    6/11

    Mika Seppl: Solved Problems on Comparison Test

    9n

    1 +10n

    n=1

    !

    "Problem 5

    Solution

    Does converge?

    !n" 1: 0< 9n

    1 +10n< 9

    n

    10n= 9

    10#$%

    &'(

    n

    .

    9

    10

    !

    "#$

    %&

    n

    n=1

    '( is a convergent geometric series.

    !9n

    1 +10n

    n=1

    "

    #

    converges by the Comparison Theorem.

    Mika Seppl: Solved Problems on Comparison Test

    Problem 6

    4 + 2n

    3n

    n=1

    !

    "

    Solution

    4 +2n

    3n

    = 4

    3n+ 2

    n

    3n= 4 ! 1

    3"#$

    %&'

    n

    + 2

    3"#$

    %&'

    n

    .

    1

    3

    !

    "#$

    %&

    n

    n=1

    '( , 23

    !

    "#$

    %&

    n

    n=1

    '( both converge.

    !4 +2

    n

    3nn=1

    "

    # converges.

    Does converge?

    Mika Seppl: Solved Problems on Comparison Test

    Problem 7

    Solution

    ln 1 +1

    2n

    !

    "#$

    %&n=1

    '

    (

    fx( ) =x! ln 1 +x( ),

    Does converge?

    Hence f is increasing, and f(x) > 0 forx"1.

    f 1( ) = 1 ! ln2 > 0,

    !f x( ) = 1"

    1

    1 +x> 0,x > 0.

    Conclude: 0 < ln 1 +1

    2n

    !

    "#$

    %& 0.

    !f x( ) = 1"

    1

    x

    > 0 forx >1.

    Hence f is strictly increasing forx !1.

    I.e. lnx < x for x !1.

    lnk

    k4 1.

    Mika Seppl: Solved Problems on Comparison Test

    Problem 18

    Solution

    lnk

    k4

    k=2

    !

    "Does converge?

    lnk

    k4 k

    1"

    8k2# 7

    k+1( )2

  • 7/24/2019 Comparison Test SP Handout

    11/11

    Mika Seppl: Solved Problems on Comparison Test

    Problem 19

    Solution

    k > k1!

    8k2" 7

    ek

    k+1( )2 k1! 8k

    2

    " 7

    ek k+1( )2 < 10

    ek,

    10

    ek

    k=1

    !

    " converges, also

    Since

    and since

    8k2! 7

    ek

    k+1( )2

    k=k1

    "

    # converges. Hence the wholeseries converges.

    8k2! 7

    ek

    k+1( )2

    k=1

    "

    #Does converge?