40
904 COMPETITIVE EXAMINATIONS QUESTIONS (Including ESE and CSE Questions, from 1996 onwards) Match List I with List II or Choose the Correct Answer : 1. Match List I with List II and select the correct answer using the codes given below the lists : List I List II A. Work done in a polytropic process 1. v dp B. Work done in a steady flow process 2. Zero C. Heat transfer in a reversible adiabatic process 3. pV pV 1 1 2 2 1 γ− D. Work done in an isentropic process 4. pV pV n 1 1 2 2 1 Codes : (a) A B C D (b) A B C D 4 1 3 2 1 4 2 3 (c) A B C D (d) A B C D 4 1 2 3 1 2 3 4. 2. Match the curves in Fig. 1 with the curves in Fig. 2 and select the correct answer using the codes given below the diagrams : Diagram I Diagram II (Process on p-V plane) (Process on T-s plane) A B C D p V 1 2 3 4 T s O 5 Fig. 1 Fig. 2 Codes : (a) A B C D (b) A B C D 3 2 4 5 2 3 4 5 (c) A B C D (d) A B C D 2 3 4 1 1 4 2 3.

COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

904

COMPETITIVE EXAMINATIONS QUESTIONS(Including ESE and CSE Questions, from 1996 onwards)

Match List I with List II or Choose the Correct Answer :1. Match List I with List II and select the correct answer using the codes given below the lists :

List I List IIA. Work done in a polytropic process 1. ∫ v dpB. Work done in a steady flow process 2. Zero

C. Heat transfer in a reversible adiabatic process 3. p V p V1 1 2 2

1–

γ −

D. Work done in an isentropic process 4. p V p V

n1 1 2 2

1–−

Codes :(a) A B C D (b) A B C D

4 1 3 2 1 4 2 3(c) A B C D (d) A B C D

4 1 2 3 1 2 3 4.2. Match the curves in Fig. 1 with the curves in Fig. 2 and select the correct answer using the

codes given below the diagrams :Diagram I Diagram II

(Process on p-V plane) (Process on T-s plane)

A

B

C

D

p

V

12

3

4T

s

O

5

Fig. 1 Fig. 2

Codes : (a) A B C D (b) A B C D3 2 4 5 2 3 4 5

(c) A B C D (d) A B C D2 3 4 1 1 4 2 3.

Page 2: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 905

dharm

\M-therm\Comp1.pm5

3. The heat transfer Q, the work done W and the change in internal energy ∆U are all zero inthe case of(a) a rigid vessel containing steam at 150°C left in the atmosphere which is at 25°C.(b) 1 kg of gas contained in an insulated cylinder expanding as the piston move slowly

outwards.(c) a rigid vessel containing ammonia gas connected through a valve to an evacuated rigid

vessel, the vessel, the valve and the connecting pipes being well insulated and the valvebeing opened and after a time, conditions through the two vessel becoming uniform.

(d) 1 kg of air flowing adiabatically from the atmosphere into a previously evacuated bottle.4. Zeroth Law of thermodynamics states that

(a) two thermodynamic system are always in thermal equilibrium with each other.(b) if two systems are in thermal equilibrium, then the third system will also be in thermal

equilibrium.(c) two systems not in thermal equilibrium with a third system are also not in thermal

equilibrium with each other.(d) when two systems are in thermal equilibrium with a third system, they are in thermal

equilibrium with each other.5. Which one of the following statements applicable to a perfect gas will also be true for an

irreversible process ? (Symbols have the usual meanings)(a) dQ = du + pdV (b) dQ = Tds(c) Tds = du + pdV (d) None of the above.

6. The throttling process undergone by a gas acrossan orifice is shown by its states in Fig. 3.

It can be represented on the T-s diagram as

1 2 3

T T

s s

1

2 3

(a) (b)

1

2

3

T T

s s

1

2

3

(c) (d)

Fig. 4

Fig. 3

1 2 3

Page 3: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

906 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

7. Which one of the following temperature entropy diagrams of steam shows the reversible andirreversible processes correctly ?

T

T T

T

s

s s

s(a) (b)

(c) (d)

Fig. 5

8. Consider the following statements :1. Availability is generally conserved.2. Availability can either be negative or positive.3. Availability is the maximum theoretical work obtainable.4. Availability can be destroyed in irreversibilities.Of these statements(a) 3 and 4 are correct (b) 1 and 3 are correct(c) 1 and 4 are correct (d) 2 and 4 are correct.

9. For a given volume of dry saturated steam, Clapeyron’s equation is given by

(a) V – VdTdp

Th – hg t

s

g f= × (b) V – V

dTdp

h – h

Tg fs g f

s= ×

(c) V – VdpdT

h – h

Tg fs

g f

s= × (d) V – V

dpdT

Th – hg f

s

s

g f= × .

10. The Joule-Thomson coefficient is the

(a) ∂∂Tp h

������

of pressure-temperature curve of real gases

(b) ∂∂Ts v

������

of temperature entropy curve of real gases

Page 4: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 907

dharm

\M-therm\Comp1.pm5

(c) ∂∂hs T

������

of enthalpy entropy curve of real gases

(d) ∂∂

vT p

������

of pressure volume curve of real gases.

11. Which one of the following p-T diagrams illustrates the Otto cycle of an ideal gas ?

p p

T T(a) (b)

p p

T T(c) (d)

Fig. 6

12. When a system is taken from state A to state B alongthe path A-C-B, 180 kJ of heat flows into the systemand it does 130 kJ of work (see Fig. 7 given).How much heat will flow into the system alongthe path A-D-B if the work done by it along the pathis 40 kJ ?(a) 40 kJ (b) 60 kJ(c) 90 kJ (d) 135 kJ.

13. A gas expands from pressure p1 to pressure p2 pp

21

10=�

�����

. If the process of expansion is

isothermal, the volume at the end of expansion is 0.55 m3. If the process of expansion isadiabatic, the volume at the end of expansion will be closer to(a) 0.45 m3 (b) 0.55 m3

(c) 0.65 m3 (d) 0.75 m3.

A

BC

D

p

VFig. 7

Page 5: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

908 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

14. A standard vapour is compressed to half its volume without changing is temperature. Theresult is that :(a) All the vapour condenses to liquid(b) Some of the liquid evaporates and the pressure does not change(c) The pressure is double its initial value(d) Some of the vapour condenses and the pressure does not change.

15. A system of 100 kg mass undergoes a process in which its specific entropy increases from0.3 kJ/kg-K to 0.4 kJ/kg-K. At the same time, the entropy of the surroundings decreasesfrom 80 kJ/K to 75 kJ/K. The process is(a) Reversible and isothermal (b) Irreversible(c) Reversible (d) Impossible.

16. The thermodynamic parameters are :I. Temperature II. Specific volume

III. Pressure IV. EnthaplyV. EntropyThe Clapeyron equation of state provides relationship between(a) I and II (b) II, III and V(c) III, IV and V (d) I, II, III and IV.

17. The work done in compressing a gas isothermally is given by :

(a) γ

γ

γγ

−�

���

��−

���

111 1

2

1

1

. p Vpp

(b) mRT1 loge pp

2

1 N.m

(c) mcp (T2 – T1) kJ (d) mRT1 1 kJ2

1−

���

��TT

.

18. An ideal air standard cycle is shown in the given tempera-ture entropy diagram (Fig. 8).

The same cycle, when represented on the pressure-volumeco-ordinates, takes the form.

p

V

2 3

1

p

V

2 3

1

(a) (b)

T

S

1

3

2

Fig. 8

Page 6: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 909

dharm

\M-therm\Comp1.pm5

p p

V V

2 2

33

1 1

(c) (d)

Fig. 9

19. In a Rankine cycle, with the maximum steam temperature being fixed from metallurgicalconsiderations, as the boiler pressure increases(a) the condenser load will increase(b) the quality of turbine exhaust will decrease(c) the quality of turbine exhaust will increase(d) the quality of turbine exhaust will remain unchanged.

20. Match List I (details of the processes of the cycle) with List II (name of the cycle) and selectthe correct answer using the code given below the Lists :

List I List IIA. Two isothermals and two adiabatics 1. OttoB. Two isothermals and two constant volumes 2. JouleC. Two adiabatics and two constant pressures 3. CarnotD. Two adiabatics and two constant pressures 4. Stirling

Codes :(a) A B C D (b) A B C D

4 3 1 2 4 3 2 1

(c) A B C D (d) A B C D3 4 1 2 3 4 2 1.

21. Two blocks which are at different states are brought into contact with each other andallowed to reach a final state of thermal equilibrium. The final temperature attained isspecified by the(a) Zeroth law of thermodynamics (b) First law of thermodynamics(c) Second law of thermodynamics (d) Third law of thermodynamics.

22. A control mass undergoes a process from state 1to state 2 as shown in Fig. 10. During this proc-ess, the heat transfer to the system is 200 kJ. Ifthe control mass returned adiabatically from state2 to state 1 by another process, then the workinteraction during the return process (in kN.m)would be

(a) – 400 (b) – 200

(c) 200 (d) 400.1 2 3

100

200

300

V m3

1

2

p

kN/m2

Fig. 10

Page 7: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

910 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

23. Four processes of a thermodynamic cycle are shown above in Fig. 11 on the T-s plane in thesequence 1—2—3—4. The corresponding correct sequence of these processes in the p-Vplane as shown in Fig. 12 will be

3

4

1

2

T

s

T

A

D

C

B

V

Fig. 11 Fig. 12

(a) (C—D—A—B) (b) (D—A—B—C)

(c) (A—B—C—D) (d) (B—C—D—A).

24. The Fig. 13 shows an isometric cooling process1-2 of a pure substance. The ordinate andabscissa are respectively(a) pressure and volume(b) enthalpy and entropy(c) temperature and entropy(d) pressure and enthalpy.

25. For a thermodynamic cycle to be irreversible,it is necessary that

(a) δQT

= 0 (b) δQT

< 0

(c) δQT

> 0 (d) δQT

≥ 0.

26. Neglecting changes in kinetic energy and potential energy, for unit mass the availability ina non-flow process becomes a = φ – φ0 where φ is the availability function of the(a) open system (b) closed system(c) isolated system (d) steady flow process.

27. It can be shown that for a simple compressible substance, the relationship

c c TVT

pvp v

P T

− = ���

���������

–∂∂

∂∂

2

exists

where cp and cv are specific heats at constant pressure and constant volume respectively, Tis temperature, V is volume and p is pressure.Which one of the following statements is NOT true ?(a) cp is always greater than cv

(b) The right side of the equation reduces to R for an ideal gas

1

2

Fig. 13

Page 8: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 911

dharm

\M-therm\Comp1.pm5

(c) Since ∂∂

pV T

���

���

can be either positive or negative, and ∂∂VT p

���

���

must be positive, T must

have a sign which is opposite to that of ∂∂

pV T

������

(d) cp is very nearly equal to cv for liquid water.28. Consider the following statements : In an irreversible process

1. entropy always increases.2. the sum of the entropy of all the bodies taking part in a process always increases.3. once created, entropy cannot be destroyed.Of these statements :(a) 1 and 2 are correct (b) 1 and 3 are correct(c) 2 and 3 are correct (d) 1, 2 and 3 are correct.

29. An ideal cycle is shown in the Fig. 14. Its thermalefficiency is given by

(a) 11

1

3

1

2

1

−−

���

���

−���

���

vv

pp

(b) 11

1

1

3

1

2

1

−−

���

���

−���

���

γ

vv

pp

(c) 1 3 1

2 1

1

1−

−−

γ( )( )

v vp p

pv

(d) 11 3 1

3 1

1

1− −

−γ( )( )p pv v

vp

.

30. Consider the following statements regarding Otto cycle :1. It is not a reversible cycle.2. Its efficiency can be improved by using a working fluid of higher value of ratio of specific

heats.3. The practical way of increasing its efficiency is to increase the compression ratio.4. Carburetted gasoline engines working on Otto cycle can work with compression ratios

more than 12.Of these statements :(a) 1, 3 and 4 are correct (b) 1, 2 and 3 are correct(c) 1, 2 and 4 are correct (d) 2, 3 and 4 are correct.

31. Consider the following statements : The difference between higher and lower heating valuesof the fuels is due to1. heat carried by steam from the moisture content of fuel.2. sensible heat carried away by the flue gases.3. heat carried away by steam from the combustion of hydrogen in the fuel.4. heat lost by radiation.Of these statements :(a) 2, 3 and 4 are correct (b) 1 and 2 are correct(c) 3 alone is correct (d) 1, 2, 3 and 4 are correct.

1 3

2

pv = cg

p

VFig. 14

Page 9: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

912 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

32. Match List I (Gadgets undergoing a thermodynamic process) with List II (Property of thesystem that remains constant) and select the correct answer using the codes given belowthe Lists :

List I List IIA. Bomb calorimeter 1. PressureB. Exhaust gas calorimeter 2. EnthalpyC. Junker gas calorimeter 3. VolumeD. Throttling calorimeter 4. Specific heatsCodes :(a) A B C D (b) A B C D

3 4 1 2 2 4 1 3(c) A B C D (d) A B C D

3 1 4 2 4 3 2 133. Consider the following statements :

The maximum temperature produced by the combustion of an unit mass of fuel depends upon1. LCV 2. ash content 3. mass of air supplied 4. pressure in the furnace.Of these statements :(a) 1 alone is correct (b) 1 and 3 are correct(c) 2 and 4 are correct (d) 3 and 4 are correct.

34. The graph shown in the Fig. 15 representsthe emission of a pollutant from an SI enginefor different fuel/air ratios. The pollutant inquestion is(a) CO(b) CO2

(c) hydrocarbon(d) NOx.

35. Which of the following are the assumptionsinvolved in the auto-ignition theory put forth for the onset of knock in SI engines ?1. Flame velocity is normal before the onset of auto-ignition.2. A number of end-gas elements autoignite simultaneously.3. Preflame reactions are responsible for preparing the end-gas to ignite.Select the correct answer using the codes given below :(a) 1 and 2 (b) 1 and 3(c) 2 and 3 (d) 1, 2 and 3.

36. In a vapour compression refrigeration system, a throttle valve is used in place of anexpander because(a) it considerably reduces the system weight(b) it improves the COP, as the condenser is small(c) the positive work in isentropic expansion of liquid is very small(d) it leads to significant cost reduction.

Fig. 15

Vol

ume

(per

cent

)

0.8 0.9 1.0 1.1 1.2

Equivalence ratio

Page 10: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 913

dharm

\M-therm\Comp1.pm5

37. A cube at high temperature is immersed in a constant temperature bath. It loses heat fromits top, bottom and side surfaces with heat transfer coefficient of h1, h2 and h3, respectively.The average heat transfer coefficient for the cube is(a) h1 + h2 + h3 (b) (h1h2h3)

1/3

(c) 1 1 1

1 2 3h h h+ + (d) None of the above.

38. Match items in List I with those in Lists II and III and select the correct answer using thecodes given the lists :

List I List II List IIIA. Reversed Carnot engine 1. Condenser 6. GeneratorB. Sub-cooling 2. Evaporator 7. Increase in refrigeration effectC. Superheating 3. Vortex refrigerator 8. Highest COPD. Constant enthalpy 4. Throttling 9. Adiabatic

5. Heat pump 10. Dry compressionCodes :(a) A B C D

3, 10 1, 7 2, 9 4, 6(b) A B C D

5, 8 1, 7 2, 10 4, 9(c) A B C D

4, 10 3, 8 3, 10 1, 6(d) A B C D

2, 7 5, 8 4, 6 1, 939. Consider the following statements :

In ammonia refrigeration systems, oil separator is provided because1. oil separation in evaporator would lead to reduction in heat transfer coefficient.2. oil accumulation in the evaporator causes choking of evaporator.3. oil is partially miscible in the refrigerant.4. oil causes choking of expansion device.

Of these statements :(a) 1 and 2 are correct (b) 2 and 4 are correct(c) 2, 3 and 4 are correct (d) 1, 3 and 4 are correct.

40. Consider the following statements :Moisture should be removed from refrigerants to avoid :1. compressor seal failure 2. freezing at the expansion valve3. restriction to refrigerant flow 4. corrosion of steel parts.On these statements :(a) 1, 2, 3 and 4 are correct (b) 1 and 2 are correct(c) 2, 3 and 4 are correct (d) 1, 3 and 4 are correct.

41. Consider the following statements :1. Practically all common refrigerants have approximately the same COP and power

requirement.2. Ammonia mixes freely with lubricating oil and this helps lubrication of compressors.

Page 11: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

914 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

3. Dielectric strength of refrigerants is an important property in hermetrically sealed com-pressor units.

4. Leakage of ammonia can be detected by halide torch method.Of these statements :(a) 1, 2 and 4 are correct (b) 2 and 4 are correct(c) 1, 2 and 4 are correct (d) 1 and 3 are correct.

42. The most commonly used method for the design of duct size is the(a) velocity reduction method (b) equal friction method(c) static regain method (d) dual or double method.

43. The refrigerant used for absorption refrigerators working on heat from solar collectors is amixture of water and(a) carbon dioxide (b) sulphur dioxide(c) lithium bromide (d) freon 12.

44. During the adiabatic cooling of moist air(a) DBT remains constant (b) specific humidity remains constant(c) relative humidity remains constant (d) WBT remains constant.

45. When a stream of moist air is passed over a cold and dry cooling coil such that no condensa-tion takes place, then the air stream will get cooled along the line of(a) constant wet bulb temperature (b) constant dew point temperature(c) constant relative humidity (d) constant enthalpy.

46. For large tonnage (more than 200 tons) air-conditioning applications, which one of thefollowing types of compressors is recommended ?(a) Reciprocating (b) Rotating(c) Centrifugal (d) Screw.

47. In a cooling tower, “approach” is the temperature difference between the(a) hot inlet water and cold outlet water (b) hot inlet water and WBT(c) cold outlet water and WBT (d) DBT and WBT.

48. When the discharge pressure is too high in a refrigeration system, high pressure control isinstalled to(a) stop the cooling fan (b) stop the water circulating pump(c) regulate the flow of cooling water (d) stop the compressor.

49. A refrigerating machine working on reversed Carnot cycle takes out 2 kW per minute ofheat from the system while working between temperature limits of 300 K and 200 K. C.O.P.and Power consumed by the cycle will be respectively(a) 1 and 1 kW (b) 1 and 2 kW(c) 2 and 1 kW (c) 2 and 2 kW.

50. Consider the following statements :In the case of a vapour compression machine, if the condensing temperature of the refriger-ant is closer to the critical temperature, then there will be1. excessive power consumption 2. high compression3. large volume flow.Of these statements :(a) 1, 2 and 3 are correct (b) 1 and 2 are correct(c) 2 and 3 are correct (d) 1 and 3 are correct.

Page 12: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 915

dharm

\M-therm\Comp1.pm5

51. Hydrogen is essential in an Electrolux refrigeration system, because(a) it acts as a catalyst in the evaporator(b) the reaction between hydrogen and ammonia is endothermic in evaporator and exothermic

in absorber(c) the cooled hydrogen leaving the heat exchanger cools the refrigerant entering the

evaporator(d) it helps in maintaining a low partial pressure for the evaporating ammonia.

52. In an ideal refrigeration (reversed Carnot) cycle, the condenser and evaporator tempera-tures are 27°C and – 13°C respectively. The COP of this cycle would be(a) 6.5 (b) 7.5(c) 10.5 (d) 15.0.

53. A single-stage vapour compression refrigeration system cannot be used to produce ultra lowtemperatures because(a) refrigerants for ultra-low temperatures are not available(b) lubricants for ultra-low temperatures are not available(c) volumetric efficiency will decrease considerably(d) heat leakage into the system will be excessive.

54. Vapour absorption refrigeration system works using the(a) ability of a substance to get easily condensed or evaporated(b) ability of a vapour to get compressed or expanded(c) affinity of a substance for another substance(d) absorptivity of a substance.

55. Which one of the following statements regarding ammonia absorption system is correct ?The solubility of ammonia in water is(a) a function of the temperature and pressure of the solution(b) a function of the pressure of the solution irrespective of the temperature(c) a function of the temperature of the solution alone(d) independent of the temperature and pressure of the solution.

56. Consider the following statements :In thermoelectric refrigeration, the coefficient of performance is a function of1. electrical conductivity of materials.2. Peltier coefficient.3. Seebeck coefficient.4. temperature at cold and hot junctions.5. thermal conductivity of materials.Of these statements :(a) 1, 3, 4 and 5 are correct (b) 1, 2, 3 and 5 are correct(c) 1, 2, 4 and 5 are correct (d) 2, 3, 4 and 5 are correct.

57. Air cooling is used for freon compressors whereas water jacketing is adopted for coolingammonia compressors. This is because(a) latent heat of ammonia is higher than that of a freon(b) thermal conductivity of water is higher than that of air(c) specific heat of water is higher than that of air(d) of the larger superheat horn of ammonia compression cycle.

Page 13: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

916 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

58. Consider the following statements :A psychrometer measures1. wet bulb temperature2. dew point temperature3. dry bulb temperature.Of these statements :(a) 1 alone is correct (b) 2 and 3 are correct(c) 1 and 3 are correct (d) 1, 2 and 3 are correct.

59. Hot coffee in a cup is allowed to cool. Its cooling rate is measured and found to be greaterthan the value calculated by conduction, convection and radiation measurements. The dif-ference is due to(a) properties of coffee changing with temperature(b) currents of air flow in the room (c) underestimation of the emissivity of coffee(d) evaporation.

60. For an air-conditioning plant above 300 ton, which one of the following systems wouldnormally be preferred ?(a) Ammonia reciprocating compressor (b) Centrifugal chiller(c) Absorption refrigeration system (d) Hermetic compressor.

61. Fresh air intake (air change per hour) recommended for ventilation purposes in the air-conditioning system of an office building is(a) 1/2 (b) 3/2(c) 9/2 (d) 25/2.

62. Give thatNu = Nusselt number, Re = Reynolds number,Pr = Prandtl number, Sh = Sherwood number,Sc = Schmidt number, and Gr = Grashoff number,

the functional relationship for free convective mass transfer is given as :(a) Nu = f (Gr, Pr) (b) Sh = f (Sc, Gr)(c) Nu = f (Re, Pr) (d) Sh = f (Re, Sc).

63. Air refrigeration cycle is used in(a) commercial refrigerators (b) domestic refrigerators(c) gas liquification (d) air-conditioning.

64. The flash chamber in single-stage simple vapour compression cycle(a) increases the refrigerating effect (b) decrease the refrigerating effect(c) increases the work of compression (d) has no effect on refrigerating effect.

65. Consider the following statements :In a vapour compression system, a thermometer placed in the liquid line can indicate whetherthe1. refrigerant flow is too low 2. water circulation is adequate3. condenser is fouled 4. pump is functioning properly.Of these statements :(a) 1, 2 and 3 are correct (b) 1, 2 and 4 are correct(c) 1, 3 and 4 are correct (d) 2, 3 and 4 are correct.

Page 14: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 917

dharm

\M-therm\Comp1.pm5

66. Match List with List II and select the correct answer using the codes given below the Lists :List I List II

A. Bell Colemen refrigeration 1. CompressorB. Vapour compression refrigeration 2. GeneratorC. Absorption refrigeration 3. Flash chamberD. Jet refrigeration 4. Expansion cylinderCodes :(a) A B C D (b) A B C D

1 4 3 2 4 1 3 2(c) A B C D (d) A B C D

1 4 2 3 4 1 2 3.67. The maximum C.O.P. for the absorption cycle is given by (TG = generator temperature,

TC = environment temperature, TE = refrigerated space temperature)

(a) T T TT T T

E G C

G C E

( )( )

−−

(b) T T TT T T

G C E

E G C

( )( )

−−

(c) T T TT T T

C G E

G C E

( )( )

−−

(d) T T TT T T

G C E

C G E

( )( )

−− .

68. In milk chilling plants, the usual secondary refrigerant is(a) ammonia solution (b) sodium silicate(c) glycol (d) brine.

69. The desirable combination of properties for a refrigerant include(a) high specific heat and low specific volume(b) high heat transfer coefficient and low latent heat(c) high thermal conductivity and low freezing point(d) high specific heat and high boiling point.

70. Which of the following method(s) is/are adopted in the design of air duct system ?1. Velocity reduction method 2. Equal friction method 3. Static regain method.Select the correct answer using the codes given below :Codes :(a) 1 alone (b) 1 and 2(c) 2 and 3 (d) 1, 2 and 3.

71. To fix the state point in respect of air-vapour mixtures, three intrinsic properties are needed.Yet, the psychrometric chart requires only two because(a) water vapour is in the superheated state(b) the chart is for a given pressure(c) the chart is an approximation to true values(d) the mixtures can be treated as a perfect gas.

72. During sensible cooling of air,(a) its wet bulb temperature increases and dew point remains constant(b) its wet bulb temperature decreases and the dew point remains constant(c) its wet bulb temperature increases and the dew point decreases(d) its wet bulb temperature decreases and dew point increases.

Page 15: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

918 ENGINEERING THERMODYNAMICS

dharm

\M-therm\Comp1.pm5

73. The expression 0.622

1

pp p

v

v− is used to determine

(a) relative humidity (b) specific humidity(c) degree of saturation (d) partial pressure.

74. The effective temperature is a measure of the combined effects of(a) dry bulb temperature and relative humidity(b) dry bulb temperature and air motion(c) wet bulb temperature and air motion(d) dry bulb temperature, relative humidity and air motion

75. In air-conditioning design for summer months, the condition inside a factory where heavywork is performed as compared to a factory in which light work is performed should have(a) lower dry bulb temperature and lower relative humidity(b) lower dry bulb temperature and higher relative humidity(c) lower dry bulb temperature and same relative humidity(d) same dry bulb temperature and same relative humidity.

ANSWERS

1. (c) 2. (b) 3. (c) 4. (d) 5. (a) 6. (d) 7. (c)8. (a) 9. (b) 10. (a) 11. (a) 12. (c) 13. (a) 14. (c)

15. (b) 16. (d) 17. (b) 18. (a) 19. (a) 20. (c) 21. (a) 22. (c) 23. (d) 24. (c) 25. (b) 26. (a) 27. (b) 28. (c)29. (c) 30. (b) 31. (c) 32. (a) 33. (b) 34. (d) 35. (d)36. (c) 37. (d) 38. (b) 39. (d) 40. (c) 41. (d) 42. (c)43. (c) 44. (d) 45. (b) 46. (c) 47. (c) 48. (d) 49. (c)50. (b) 51. (d) 52. (a) 53. (d) 54. (c) 55. (a) 56. (b)57. (c) 58. (a) 59. (b) 60. (c) 61. (b) 62. (c) 63. (d)64. (a) 65. (a) 66. (d) 67. (a) 68. (d) 69. (d) 70. (d)71. (b) 72. (a) 73. (b) 74. (d) 75. (a).

SOLUTIONS—COMMENTS6. Because throttling is not actually an isothermal process. The expansion of gas causes a fall

in temperature and increased kinectic energy increases it to the initial level.13. For isothermal process, T1 = T2

or p1V1 = p2V2 ⇒ V1 = p Vp2 2

1

Given :pp

1

2 = 10 and V2 = 0.55 m3

∴ V1 = 0 5510.

= 0.055 m3

For adiabatic expansion, pVγ = constant

or p1V1γ = p2V2

γ ⇒ V2 = pp

V1

2

1

1

1110 0 055

���

��× = ×

γ( ) ..4 = 0.2848 m3

Page 16: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

COMPETITIVE EXAMINATIONS QUESTIONS 919

dharm

\M-therm\Comp1.pm5

14. T1 = T2 ; V2 = V1

2…(Given)

From p1V1 = p2V2, p1V1 = p2 × V1

2⇒ p2 = 2p1

15. Since (∆s)system > (∆s)surrounding, where both (∆s)system > 0 and (∆s)surrounding > 0.40. The compressors seal cannot fail due to moisture, all the other conditions do occur due to

presence of moisture.44. All common refrigerants like F11, F12, F22, NH3 etc. have approximately the same C.O.P.

ranging from 4.76 to 5.09 and H.P./ton varies from 0.99 to 1.01.The electric resistance of the refrigerants is an important factor when it is used in hermeticallysealed unit where the motor is exposed to the refrigerant.

46. The reason why centrifugal compressors are used to large tonnage is that they can handlelarger volumes of refrigerant, also the part load efficiency of this kind is higher.

49. C.O.P. = T

T T2

1 2

200300 200−

=− = 2

Power consumed = Rn (net refrigerating effect)

C.O.P.W= 2

2k

= 1 kW.

Page 17: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

Index

AAdiabatic flame temperature, 506Air refrigeration system, 715Air stand and efficiency, 604Atkinson cycle, 657Available and unavailable energy, 306Availability in non-flow systems, 310Availability in steady-flow systems, 311

BBeattie-Bridgeman equation, 390Binary vapour cycle, 584Brayton cycle, 661

CCalorific values of fuels, 501Carnot cycle, 233, 543, 605Carnot’s theorem, 235

corollary of, 237Chemical equilibrium, 506Chemical thermodynamics, 487Clausius inequality, 231Clausius-Claperyon equation, 353Closed cycle gas turbine, 674Coefficient of performance, 714Compressibility chart, 392Compressible flow, 857

— basic equations of, 857— compressibility correction factor, 871— Mach number, 865— propagation of disturbance, 866— Rankine-Hugoniot equation, 893— shock waves, 892— stagnation properties, 869— through a convergent nozzle, 878— through a convergent-divergent nozzle, 878

DDalton’s law, 411

920

Diesel cycle, 629Dual combustion cycle, 639

EEffectiveness, 312Energy, 46Energy—a property of system, 103Energy relations for flow process, 152Enthalpy, 108Enthalpy-entropy chart, 75Enthalpy of formation (∆Hf), 500Entropy, 252Erricson cycle, 660

FFano Line equation, 776First Law of thermodynamics, 227

limitations of, 227

GGas power cycles, 604Gas turbines, 7Gas turbine fuels, 679

HHeat transfer, 778

by convection, 812by radiation, 832— Kirchhoff’s law, 837— Lambert’s cosine law, 842— Planck’s law, 837— Wien’s law, 839critical thickness of insulation, 808heat exchangers, 815heat transmission by conduction, 778modes of, 778overall heat transfer coefficient, 790thermal resistance, 782

Page 18: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

INDEX 921

DHARM

M-Therm\Index.pm5

IIdeal gas, 33Internal combustion engines, 4Internal energy, 101Irreversibility, 312

JJoule’s law, 107Joule’s-Thompson porous

plug experiment, 162

KKinetic theory of gases, 14

LLaw of conservation of energy, 101Law of corresponding states, 392

MMollier diagram, 75

NNuclear power plant, 3

OOpen cycle gas turbine, 665

PPath function, 22Perfect gas, 105PMM1, 104PMM2, 230Point function, 22Pressure, 33Process, 21Properties of systems, 21Psychrometers, 449Psychrometrics, 449Psychrometric charts, 455Psychrometric processes, 456

— cooling and dehumidification, 461— cooling and humidification, 462— heating and dehumidification, 463— heating and humidification, 463

— mixing of air streams, 458— sensible cooling, 460— sensible heating, 459Psychrometric relations, 450

RRankine cycle, 544

modified, 557Rankine-Hugoniot equations, 893Real gases, 381Refrigeration systems, 10, 714Refrigerants, 764Refrigeration cycles, 713Regenerative cycle, 562Reheat cycle, 576Reversible and irreversible processes, 46, 228Reversed Brayton cycle, 722Reversed Carnot cycle, 716

SSecond law of thermodynamics, 29

— Clausius statement, 229— Kelvin-Planck statement, 229

Shock waves, 892Simple vapour compression system, 730

— actual vapour compression cycle, 737— p-h chart, 734— simple vapour compression cycle, 730— volumetric efficiency, 739

Specific heats, 106Specific volume, 45State, 21Steam formation, 68

dryness fraction, 89— determination of, 89important terms relating to, 70

Standard rating of a refrigeration machine, 715Steam power plant, 1Stoichiometric Air-Fuel (A/F) ratio, 493

TTemperature, 23Temperature-entropy diagram, 257Thermodynamics, 18

definition of, 18Thermodynamic equilibrium, 20Thermodynamic relations, 341

Page 19: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

DHARM

M-Therm\Index.pm5

922 ENGINEERING THERMODYNAMICS

Clausi-Claperyon equation, 353entropy equations, 344some general, 341

Thermodynamic systems, 18— adiabatic system, 19— closed system, 18— heterogeneous system, 19— homogeneous system, 19— isolated system, 19— open system, 18— system, boundary and surroundings, 18

Thermodynamic temperature, 231Third law of thermodynamics, 265Throttling process, 162

UUnsteady flow processes, 210

VVander Waal’s equation, 390Vapour absorption system, 741Vapour power cycles, 543

WWork and heat, 46

ZZenoth law of thermodynamics, 23

Page 20: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLESand

Mollier Diagram(S.I. Units)

dharm

\M-therm\C-steam.pm5

Page 21: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

CONTENTS

Table No. Page No.1. Saturated Water and Steam (Temperature) Tables I … (ii)

2. Saturated Water and Steam (Pressure) Tables II … (iv)

3. Superheated Steam at Various Pressures and Temperatures III … (xiii)

4. Supercritical Steam IV … (xviii)

5. Conversion Factors V … (xix)

SYMBOLS AND UNITS USED IN THE TABLES

t = Temperature, °C

ts = Saturation temperature, °C

p = Pressure, bar

hf = Specific enthalpy of saturated liquid, kJ/kg

hfg = Specific enthalpy of evaporation (latent heat), kJ/kg

hg = Specific enthalpy of saturated vapour, kJ/kg

sf = Specific entropy of saturated liquid, kJ/kg K

sfg = Specific entropy of evaporation, kJ/kg K

sg = Specific entropy of saturated vapour, kJ/kg K

vf = Specific volume of saturated liquid, m3/kg

vg = Specific volume of saturated steam, m3/kg

Page 22: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( ii ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

TABLE I

Saturated Water and Steam (Temperature) Tables

Temp. Absolute Specific enthalpy Specific entropy Specific volume(°C) pressure (kJ/kg) (kJ/kg K) (m3/kg)

(bar)t p hf hfg hg sf sfg sg vf vg

0 0.0061 – 0.02 2501.4 2501.3 – 0.0001 9.1566 9.1565 0.0010002 206.30.01 0.0061 0.01 2501.3 2501.4 0.000 9.156 9.156 0.0010002 206.2

1 0.0065 4.2 2499.0 2503.2 0.015 9.115 9.130 0.0010002 192.62 0.0070 8.4 2496.7 2505.0 0.031 9.073 9.104 0.0010001 179.93 0.0076 12.6 2494.3 2506.9 0.046 9.032 9.077 0.0010001 168.14 0.0081 16.8 2491.9 2508.7 0.061 8.990 9.051 0.0010001 157.25 0.0087 21.0 2489.6 2510.6 0.076 8.950 9.026 0.0010001 147.1

6 0.0093 25.2 2487.2 2512.4 0.091 8.909 9.000 0.0010001 137.77 0.0100 29.4 2484.8 2514.2 0.106 8.869 8.975 0.0010002 129.08 0.0107 33.6 2482.5 2516.1 0.121 8.829 8.950 0.0010002 120.99 0.0115 37.8 2480.1 2517.9 0.136 8.789 8.925 0.0010003 113.410 0.0123 42.0 2477.7 2519.7 0.151 8.750 8.901 0.0010004 106.4

11 0.0131 46.2 2475.4 2521.6 0.166 8.711 8.877 0.0010004 99.8612 0.0140 50.4 2473.0 2523.4 0.181 8.672 8.852 0.0010005 93.7813 0.0150 54.6 2470.7 2525.3 0.195 8.632 8.828 0.0010007 88.1214 0.0160 58.8 2468.3 2527.1 0.210 8.595 8.805 0.0010008 82.8515 0.0170 63.0 2465.9 2528.9 0.224 8.557 8.781 0.0010009 77.93

16 0.0182 67.2 2463.6 2530.8 0.239 8.519 8.758 0.001001 73.3317 0.0194 71.4 2461.2 2532.6 0.253 8.482 8.735 0.001001 69.0418 0.0206 75.6 2458.8 2534.4 0.268 8.444 8.712 0.001001 65.0419 0.0220 79.8 2456.5 2536.3 0.282 8.407 8.690 0.001002 61.2920 0.0234 84.0 2454.1 2538.1 0.297 8.371 8.667 0.001002 57.79

21 0.0249 88.1 2451.8 2539.9 0.311 8.334 8.645 0.001002 54.5122 0.0264 92.3 2449.4 2541.7 0.325 8.298 8.623 0.001002 51.4523 0.0281 96.5 2447.0 2543.5 0.339 8.262 8.601 0.001002 48.5724 0.0298 100.7 2444.7 2545.4 0.353 8.226 8.579 0.001003 45.8825 0.0317 104.9 2442.3 2547.2 0.367 8.191 8.558 0.001003 43.36

26 0.0336 109.1 2439.9 2549.0 0.382 8.155 8.537 0.001003 40.9927 0.0357 113.2 2437.6 2550.8 0.396 8.120 8.516 0.001004 38.7728 0.0378 117.4 2435.2 2552.6 0.409 8.086 8.495 0.001004 36.6929 0.0401 121.6 2432.8 2554.5 0.423 8.051 8.474 0.001004 34.7330 0.0425 125.8 2430.5 2556.3 0.437 8.016 8.453 0.001004 32.89

Page 23: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( iii )

dharm

\M-therm\C-steam.pm5

31 0.0450 130.0 2428.1 2558.1 0.451 7.982 8.433 0.001005 31.1732 0.0476 134.2 2425.7 2559.9 0.464 7.948 8.413 0.001005 29.5433 0.0503 138.3 2423.4 2561.7 0.478 7.915 8.393 0.001005 28.0134 0.0532 142.5 2421.0 2563.5 0.492 7.881 8.373 0.001006 26.5735 0.0563 146.7 2418.6 2565.3 0.505 7.848 8.353 0.001006 25.22

36 0.0595 150.9 2416.2 2567.1 0.519 7.815 8.334 0.001006 23.9437 0.0628 155.0 2413.9 2568.9 0.532 7.782 8.314 0.001007 22.7438 0.0663 159.2 2411.5 2570.7 0.546 7.749 8.295 0.001007 21.6039 0.0700 163.4 2409.1 2572.5 0.559 7.717 8.276 0.001007 20.5340 0.0738 167.6 2406.7 2574.3 0.573 7.685 8.257 0.001008 19.52

41 0.0779 171.7 2404.3 2576.0 0.586 7.652 8.238 0.001008 18.5742 0.0821 175.9 2401.9 2577.8 0.599 7.621 8.220 0.001009 17.6743 0.0865 180.1 2399.5 2579.6 0.612 7.589 8.201 0.001009 16.8244 0.0911 184.3 2397.2 2581.5 0.626 7.557 8.183 0.001010 16.0245 0.0959 188.4 2394.8 2583.2 0.639 7.526 8.165 0.001010 15.26

46 0.1010 192.6 2392.4 2585.0 0.652 7.495 8.147 0.001010 14.5447 0.1062 196.8 2390.0 2586.8 0.665 7.464 8.129 0.001011 13.8648 0.1118 201.0 2387.6 2588.6 0.678 7.433 8.111 0.001011 13.2249 0.1175 205.1 2385.2 2590.3 0.691 7.403 8.094 0.001012 12.6150 0.1235 209.3 2382.7 2592.1 0.704 7.372 8.076 0.001012 12.03

52 0.1363 217.7 2377.9 2595.6 0.730 7.312 8.042 0.001013 10.9754 0.1502 226.0 2373.1 2599.1 0.755 7.253 8.008 0.001014 10.0156 0.1653 234.4 2368.2 2602.6 0.781 7.194 7.975 0.001015 9.14958 0.1817 242.8 2363.4 2606.2 0.806 7.136 7.942 0.001016 8.37260 0.1994 251.1 2358.5 2609.6 0.831 7.078 7.909 0.001017 7.671

62 0.2186 259.5 2353.6 2613.1 0.856 7.022 7.878 0.001018 7.03764 0.2393 267.9 2348.7 2616.5 0.881 6.965 7.846 0.001019 6.46366 0.2617 276.2 2343.7 2619.9 0.906 6.910 7.816 0.001020 5.94368 0.2859 284.6 2338.8 2623.4 0.930 6.855 7.785 0.001022 5.47170 0.3119 293.0 2333.8 2626.8 0.955 6.800 7.755 0.001023 5.042

75 0.3858 313.9 2321.4 2635.3 1.015 6.667 7.682 0.001026 4.13180 0.4739 334.9 2308.8 2643.7 1.075 6.537 7.612 0.001029 3.40785 0.5783 355.9 2296.0 2651.9 1.134 6.410 7.544 0.001033 2.82890 0.7014 376.9 2283.2 2660.1 1.192 6.287 7.479 0.001036 2.36195 0.8455 397.9 2270.2 2668.1 1.250 6.166 7.416 0.001040 1.982100 1.0135 419.0 2257.0 2676.0 1.307 6.048 7.355 0.001044 1.673

Temp. Absolute Specific enthalpy Specific entropy Specific volume(°C) pressure (kJ/kg) (kJ/kg K) (m3/kg)

(bar)t p hf hfg hg sf sfg sg vf vg

Page 24: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( iv ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

TABLE II

Saturated Water and Steam (Pressure) Tables

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

0.006113 0.01 0.01 2 501.3 2 501.4 0.000 9.156 9.156 0.0010002 206.140.010 7.0 29.3 2 484.9 2 514.2 0.106 8.870 8.976 0.0010000 129.210.015 13.0 54.7 2 470.6 2 525.3 0.196 8.632 8.828 0.0010007 87.980.020 17.0 73.5 2 460.0 2 533.5 0.261 8.463 8.724 0.001001 67.000.025 21.1 88.5 2 451.6 2 540.1 0.312 8.331 8.643 0.001002 54.250.030 24.1 101.0 2 444.5 2 545.5 0.355 8.223 8.578 0.001003 45.67

0.035 26.7 111.9 2 438.4 2 550.3 0.391 8.132 8.523 0.001003 39.500.040 29.0 121.5 2 432.9 2 554.4 0.423 8.052 8.475 0.001004 34.800.045 31.0 130.0 2 428.2 2 558.2 0.451 7.982 8.433 0.001005 31.130.050 32.9 137.8 2 423.7 2 561.5 0.476 7.919 8.395 0.001005 28.190.055 34.6 144.9 2 419.6 2 565.5 0.500 7.861 8.361 0.001006 25.77

0.060 36.2 151.5 2 415.9 2 567.4 0.521 7.809 8.330 0.001006 23.740.065 37.6 157.7 2 412.4 2 570.1 0.541 7.761 8.302 0.001007 22.010.070 39.0 163.4 2 409.1 2 572.5 0.559 7.717 8.276 0.001007 20.530.075 40.3 168.8 2 406.0 2 574.8 0.576 7.675 8.251 0.001008 19.240.080 41.5 173.9 2 403.1 2 577.0 0.593 7.636 8.229 0.001008 18.10

0.085 42.7 178.7 2 400.3 2 579.0 0.608 7.599 8.207 0.001009 17.100.090 43.8 183.3 2 397.7 2 581.0 0.622 7.565 8.187 0.001009 16.200.095 44.8 187.7 2 395.2 2 582.9 0.636 7.532 8.168 0.001010 15.400.10 45.8 191.8 2 392.8 2 584.7 0.649 7.501 8.150 0.001010 14.67

0.11 47.7 199.7 2 388.3 2 588.0 0.674 7.453 8.117 0.001011 13.420.12 49.4 206.9 2 384.2 2 591.1 0.696 7.390 8.086 0.001012 12.360.13 51.0 213.7 2 380.2 2 593.9 0.717 7.341 8.058 0.001013 11.470.14 52.6 220.0 2 376.6 2 596.6 0.737 7.296 8.033 0.001013 10.69

0.15 54.0 226.0 2 373.2 2 599.2 0.754 9 7.254 4 8.009 3 0.001014 10.0220.16 55.3 231.6 2 370.0 2 601.6 0.772 1 7.214 8 7.986 9 0.001015 9.4330.17 56.6 236.9 2 366.9 2 603.8 0.788 3 7.177 5 7.965 8 0.001015 8.9110.18 57.8 242.0 2 363.9 2 605.9 0.803 6 7.142 4 7.945 9 0.001016 8.4450.19 59.0 246.8 2 361.1 2 607.9 0.818 2 7.109 0 7.927 2 0.001017 8.027

0.20 60.1 251.5 2 358.4 2 609.9 0.832 1 7.077 3 7.909 4 0.001017 7.6500.21 61.1 255.9 2 355.8 2 611.7 0.845 3 7.047 2 7.892 5 0.001018 7.3070.22 62.2 260.1 2 353.3 2 613.5 0.858 1 7.018 4 7.876 4 0.001018 6.9950.23 63.1 264.2 2 350.9 2 615.2 0.870 2 6.990 8 7.861 1 0.001019 6.7090.24 64.1 268.2 2 348.6 2 616.8 0.882 0 6.964 4 7.846 4 0.001019 6.447

Page 25: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( v )

dharm

\M-therm\C-steam.pm5

0.25 65.0 272.0 2 346.4 2 618.3 0.893 2 6.939 1 7.832 3 0.001020 6.2050.26 65.9 275.7 2 344.2 2 619.9 0.904 1 6.914 7 7.818 8 0.001020 5.9800.27 66.7 279.2 2 342.1 2 621.3 0.914 6 6.891 2 7.805 8 0.001021 5.7720.28 67.5 282.7 2 340.0 2 622.7 0.924 8 6.868 5 7.793 3 0.001021 5.5790.29 68.3 286.0 2 338.1 2 624.1 0.934 6 6.846 6 7.781 2 0.001022 5.398

0.30 69.1 289.3 2 336.1 2 625.4 0.944 1 6.825 4 7.769 5 0.001022 5.2290.32 70.6 295.5 2 332.4 2 628.0 0.962 3 6.785 0 7.747 4 0.001023 4.9220.34 72.0 301.5 2 328.9 2 630.4 0.979 5 6.747 0 7.726 5 0.001024 4.6500.36 73.4 307.1 2 325.5 2 632.6 0.995 8 6.711 1 7.707 0 0.001025 4.4080.38 74.7 312.5 2 322.3 2 634.8 1.011 3 6.677 1 7.688 4 0.001026 4.190

0.40 75.9 317.7 2 319.2 2 636.9 1.026 1 6.644 8 7.670 9 0.001026 3.9930.42 77.1 322.6 2 316.3 2 638.9 1.040 2 6.614 0 7.654 2 0.001027 3.8150.44 78.2 327.3 2 313.4 2 640.7 1.053 7 6.584 6 7.638 3 0.001028 3.6520.46 79.3 331.9 2 310.7 2 642.6 1.066 7 6.556 4 7.623 1 0.001029 3.5030.48 80.3 336.3 2 308.0 2 644.3 1.079 2 6.529 4 7.608 6 0.001029 3.367

0.50 81.3 340.6 2 305.4 2 646.0 1.091 2 6.503 5 7.594 7 0.001030 3.2400.55 83.7 350.6 2 299.3 2 649.9 1.119 4 6.442 8 7.562 3 0.001032 2.9640.60 86.0 359.9 2 293.6 2 653.6 1.145 4 6.387 3 7.532 7 0.001033 2.7320.65 88.0 368.6 2 288.3 2 656.9 1.169 6 6.336 0 7.505 5 0.001035 2.5350.70 90.0 376.8 2 283.3 2 660.1 1.192 1 6.288 3 7.480 4 0.001036 2.369

0.75 92.0 384.5 2 278.6 2 663.0 1.213 1 6.243 9 7.457 0 0.001037 2.2170.80 93.5 391.7 2 274.0 2 665.8 1.233 0 6.202 2 7.435 2 0.001039 2.0870.85 95.1 398.6 2 269.8 2 668.4 1.251 8 3.162 9 7.414 7 0.001040 1.9720.90 96.7 405.2 2 265.6 2 670.9 1.269 6 6.125 8 7.395 4 0.001041 1.8690.95 98.2 411.5 2 261.7 2 673.2 1.286 5 6.090 6 7.377 1 0.001042 1.777

1.0 99.6 417.5 2 257.9 2 675.4 1.302 7 6.057 1 7.359 8 0.001043 1.6941.1 102.3 428.8 2 250.8 2 679.6 1.333 0 5.994 7 7.327 7 0.001046 1.5491.2 104.8 439.4 2 244.1 2 683.4 1.360 9 5.937 5 7.298 4 0.001048 1.4281.3 107.1 449.2 2 237.8 2 687.0 1.386 8 5.884 7 7.271 5 0.001050 1.3251.4 109.3 458.4 2 231.9 2 690.3 1.410 9 5.835 6 7.246 5 0.001051 1.236

1.5 111.3 467.1 2 226.2 2 693.4 1.433 6 5.789 8 7.233 4 0.001053 1.1591.6 113.3 475.4 2 220.9 2 696.2 1.455 0 5.746 7 7.201 7 0.001055 1.0911.7 115.2 483.2 2 215.7 2 699.0 1.475 2 5.706 1 7.181 3 0.001056 1.0311.8 116.9 490.7 2 210.8 2 701.5 1.494 4 5.667 8 7.162 2 0.001058 0.9771.9 118.6 497.8 2 206.1 2 704.0 1.512 7 5.631 4 7.144 0 0.001060 0.929

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

Page 26: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( vi ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

2.0 120.2 504.7 2 201.6 2 706.3 1.530 1 5.596 7 7.126 8 0.001061 0.8852.1 121.8 511.3 2 197.2 2 708.5 1.546 8 5.563 7 7.110 5 0.001062 0.8462.2 123.3 517.6 2 193.0 2 710.6 1.562 7 5.532 1 7.094 9 0.001064 0.8102.3 124.7 523.7 2 188.9 2 712.6 1.578 1 5.501 9 7.080 0 0.001065 0.7772.4 126.1 529.6 2 184.9 2 714.5 1.592 9 5.472 8 7.065 7 0.001066 0.746

2.5 127.4 535.3 2 181.0 2 716.4 1.607 1 5.444 9 7.052 0 0.001068 0.7182.6 128.7 540.9 2 177.3 2 718.2 1.620 9 5.418 0 7.038 9 0.001069 0.6932.7 129.9 546.2 2 173.6 2 719.9 1.634 2 5.392 0 7.026 2 0.001070 0.6682.8 131.2 551.4 2 170.1 2 721.5 1.647 1 5.367 0 7.014 0 0.001071 0.6462.9 132.4 556.5 2 166.6 2 723.1 1.659 5 5.342 7 7.002 3 0.001072 0.625

3.0 133.5 561.4 2 163.2 2 724.7 1.671 6 5.319 3 6.990 9 0.001074 0.6063.1 134.6 566.2 2 159.9 2 726.1 1.683 4 5.296 5 6.979 9 0.001075 0.5873.2 135.7 570.9 2 156.7 2 727.6 1.694 8 5.274 4 6.969 2 0.001076 0.5703.3 136.8 575.5 2 153.5 2 729.0 1.705 9 5.253 0 6.958 9 0.001077 0.5543.4 137.8 579.9 2 150.4 2 730.3 1.716 8 5.232 2 6.948 9 0.001078 0.538

3.5 138.8 584.3 2 147.4 2 731.6 1.727 3 5.211 9 6.939 2 0.001079 0.5243.6 139.8 588.5 2 144.4 2 732.9 1.737 6 5.192 1 6.929 7 0.001080 0.5103.7 140.8 592.7 2 141.4 2 734.1 1.747 6 5.172 9 6.920 5 0.001081 0.4973.8 141.8 596.8 2 138.6 2 735.3 1.757 4 5.154 1 6.911 6 0.001082 0.4863.9 142.7 600.8 2 135.7 2 736.5 1.767 0 5.135 8 6.902 8 0.001083 0.473

4.0 143.6 604.7 2 133.0 2 737.6 1.776 4 5.117 9 6.894 3 0.001084 0.4624.2 145.4 612.3 2 127.5 2 739.8 1.794 5 5.083 4 6.877 9 0.001086 0.4414.4 147.1 619.6 2 122.3 2 741.9 1.812 0 5.050 3 6.862 3 0.001088 0.4234.6 148.7 626.7 2 117.2 2 743.9 1.828 7 5.018 6 6.847 3 0.001089 0.4054.8 150.3 633.5 2 112.2 2 745.7 1.844 8 4.988 1 6.832 9 0.001091 0.390

5.0 151.8 640.1 2 107.4 2 747.5 1.860 4 4.958 8 6.819 2 0.001093 0.3755.2 153.3 646.5 2 102.7 2 749.3 1.875 4 4.930 6 6.805 9 0.001094 0.3615.4 154.7 652.8 2 098.1 2 750.9 1.889 9 4.903 3 6.793 2 0.001096 0.3485.6 156.2 658.8 2 093.7 2 752.5 1.904 0 4.876 9 6.780 9 0.001098 0.3375.8 157.5 664.7 2 089.3 2 754.0 1.917 6 4.851 4 6.769 0 0.001099 0.326

6.0 158.8 670.4 2 085.0 2 755.5 1.930 8 4.826 7 6.757 5 0.001101 0.3156.2 160.1 676.0 2 080.9 2 756.9 1.943 7 4.802 7 6.746 4 0.001102 0.3066.4 161.4 681.5 2 076.8 2 758.2 1.956 2 4.779 4 6.735 6 0.001104 0.2976.6 162.6 686.8 2 072.7 2 759.5 1.968 4 4.756 8 6.725 2 0.001105 0.2886.8 163.8 692.0 2 068.8 2 760.8 1.980 2 4.734 8 6.715 0 0.001107 0.280

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

Page 27: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( vii )

dharm

\M-therm\C-steam.pm5

7.0 165.0 697.1 2 064.9 2 762.0 1.991 8 4.713 4 6.705 2 0.001108 0.2737.2 166.1 702.0 2 061.1 2 763.2 2.003 1 4.692 5 6.695 6 0.001110 0.2657.4 167.2 706.9 2 057.4 2 764.3 2.014 1 4.672 1 6.686 2 0.001111 0.2587.6 168.3 711.7 2 053.7 2 765.4 2.024 9 4.652 2 6.677 1 0.001112 0.2527.8 169.4 716.3 2 050.1 2 766.4 2.035 4 4.632 8 6.668 3 0.001114 0.246

8.0 170.4 720.9 2 046.5 2 767.5 2.045 7 4.613 9 6.659 6 0.001115 0.2408.2 171.4 725.4 2 043.0 2 768.5 2.055 8 4.595 3 6.651 1 0.001116 0.2358.4 172.4 729.9 2 039.6 2 769.4 2.065 7 4.577 2 6.642 9 0.001118 0.2298.6 173.4 734.2 2 036.2 2 770.4 2.075 3 4.559 4 6.634 8 0.001119 0.2248.8 174.4 738.5 2 032.8 2 771.3 2.084 8 4.542 1 6.626 9 0.001120 0.219

9.0 175.4 742.6 2 029.5 2 772.1 2.094 1 4.525 0 6.619 2 0.001121 0.2159.2 176.3 746.8 2 026.2 2 773.0 2.103 3 4.508 3 6.611 6 0.001123 0.2109.4 177.2 750.8 2 023.0 2 773.8 2.112 2 4.492 0 6.604 2 0.001124 0.2069.6 178.1 754.8 2 019.8 2 774.6 2.121 0 4.475 9 6.596 9 0.001125 0.2029.8 179.0 758.7 2 016.7 2 775.4 2.129 7 4.460 1 6.589 8 0.001126 0.198

10.0 179.9 762.6 2 013.6 2 776.2 2.138 2 4.444 6 6.582 8 0.001127 0.19410.5 182.0 772.0 2 005.9 2 778.0 2.158 8 4.407 1 6.565 9 0.001130 0.18511.0 184.1 781.1 1 998.5 2 779.7 2.178 6 4.371 1 6.549 7 0.001133 0.17711.5 186.0 789.9 1 991.3 2 781.3 2.197 7 4.336 6 6.534 2 0.001136 0.17012.0 188.0 798.4 1 984.3 2 782.7 2.216 1 4.303 3 6.519 4 0.001139 0.163

12.5 189.8 806.7 1 977.4 2 784.1 2.233 8 4.271 2 6.505 0 0.001141 0.15713.0 191.6 814.7 1 970.7 2 785.4 2.251 0 4.240 3 6.491 3 0.001144 0.15113.5 193.3 822.5 1 964.2 2 786.6 2.267 6 4.210 4 6.477 9 0.001146 0.14614.0 195.0 830.1 1 957.7 2 787.8 2.283 7 4.181 4 6.465 1 0.001149 0.14114.5 196.7 837.5 1 951.4 2 788.9 2.299 3 4.153 3 6.452 6 0.001151 0.136

15.0 198.3 844.7 1 945.2 2 789.9 2.314 5 4.126 1 6.440 6 0.001154 0.13215.5 199.8 851.7 1 939.2 2 790.8 2.329 2 4.099 6 6.428 9 0.001156 0.12816.0 201.4 858.6 1 933.2 2 791.7 2.343 6 4.073 9 6.417 5 0.001159 0.12416.5 202.8 865.3 1 927.3 2 792.6 2.357 6 4.048 9 6.406 5 0.001161 0.12017.0 204.3 871.8 1 921.5 2 793.4 2.371 3 4.024 5 6.395 7 0.001163 0.117

17.5 205.7 878.3 1 915.9 2 794.1 2.384 6 4.000 7 6.385 3 0.001166 0.11318.0 207.1 884.6 1 910.3 2 794.8 2.397 6 3.977 5 6.375 1 0.001168 0.11018.5 208.4 890.7 1 904.7 2 795.5 2.410 3 3.954 8 6.365 1 0.001170 0.10719.0 209.8 896.8 1 899.3 2 796.1 2.422 8 3.932 6 6.355 4 0.001172 0.10519.5 211.1 902.8 1 893.9 2 796.7 2.434 9 3.911 0 6.345 9 0.001174 0.102

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

Page 28: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( viii ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

20.0 212.4 908.6 1 888.6 2 797.2 2.446 9 3.889 8 6.336 6 0.001177 0.099520.5 213.6 914.3 1 883.4 2 797.7 2.458 5 3.869 0 6.327 6 0.001179 0.097121.0 214.8 920.0 1 878.2 2 798.2 2.470 0 3.848 7 6.318 7 0.001181 0.094921.5 216.1 925.5 1 873.1 2 798.6 2.481 2 3.828 8 6.310 0 0.001183 0.092722.0 217.2 931.0 1 868.1 2 799.1 2.492 2 3.809 3 6.301 5 0.001185 0.0907

22.5 218.4 936.3 1 863.1 2 799.4 2.503 0 3.790 1 6.293 1 0.001187 0.088723.0 219.5 941.6 1 858.2 2 799.8 2.513 6 3.771 3 6.284 9 0.001189 0.086823.5 220.7 946.8 1 853.3 2 800.1 2.524 1 3.752 8 6.276 9 0.001191 0.084924.0 221.8 951.9 1 848.5 2 800.4 2.534 3 3.734 7 6.269 0 0.001193 0.083224.5 222.9 957.0 1 843.7 2 800.7 2.544 4 3.716 8 6.261 2 0.001195 0.0815

25.0 223.9 962.0 1 839.0 2 800.9 2.554 3 3.699 3 6.253 6 0.001197 0.079925.5 225.0 966.9 1 834.3 2 801.2 2.564 0 3.682 1 6.246 1 0.001199 0.078326.0 226.0 971.7 1 829.6 2 801.4 2.573 6 3.665 1 6.238 7 0.001201 0.076926.5 227.1 976.5 1 825.1 2 801.6 2.583 1 3.648 4 6.231 5 0.001203 0.075427.0 228.1 981.2 1 820.5 2 801.7 2.592 4 3.632 0 6.224 4 0.001205 0.0740

27.5 229.1 985.9 1 816.0 2 801.9 2.601 6 3.615 8 6.217 3 0.001207 0.072728.0 230.0 990.5 1 811.5 2 802.0 2.610 6 3.599 8 6.210 4 0.001209 0.071428.5 231.0 995.0 1 807.1 2 802.1 2.619 5 3.584 1 6.203 6 0.001211 0.070129.0 232.0 999.5 1 802.6 2 802.2 2.628 3 3.568 6 6.196 9 0.001213 0.068929.5 233.0 1 004.0 1 798.3 2 802.2 2.637 0 3.553 3 6.190 2 0.001214 0.0677

30.0 233.8 1 008.4 1 793.9 2 802.3 2.645 5 3.538 2 6.183 7 0.001216 0.066630.5 234.7 1 012.7 1 789.6 2 802.3 2.653 9 3.523 3 6.177 2 0.001218 0.065531.0 235.6 1 017.0 1 785.4 2 802.3 2.662 3 3.508 7 6.170 9 0.001220 0.064531.5 236.5 1 021.2 1 781.1 2 802.3 2.670 5 3.494 2 6.164 7 0.001222 0.063432.0 237.4 1 025.4 1 776.9 2 802.3 2.678 6 3.479 9 6.158 5 0.001224 0.0624

32.5 238.3 1 029.6 1 772.7 2 802.3 2.686 6 3.465 7 6.152 3 0.001225 0.061533.0 239.2 1 033.7 1 768.6 2 802.3 2.694 5 3.451 8 6.146 3 0.001227 0.060533.5 240.0 1 037.8 1 764.4 2 802.2 2.702 3 3.438 0 6.140 3 0.001229 0.059634.0 240.9 1 041.8 1 760.3 2 802.1 2.710 1 3.424 4 6.134 4 0.001231 0.058734.5 241.7 1 045.8 1 756.3 2 802.1 2.717 7 3.410 9 6.128 6 0.001233 0.0579

35.0 242.5 1 049.8 1 752.2 2 802.0 2.725 3 3.397 6 6.122 8 0.001234 0.057035.5 243.3 1 053.7 1 748.2 2 801.8 2.732 7 3.384 4 6.117 1 0.001236 0.056236.0 244.2 1 057.6 1 744.2 2 801.7 2.740 1 3.371 4 6.111 5 0.001238 0.055436.5 245.0 1 061.4 1 740.2 2 801.6 2.747 4 3.358 5 6.105 9 0.001239 0.054637.0 245.7 1 065.2 1 736.2 2 801.4 2.754 7 3.345 8 6.100 4 0.001242 0.0539

Page 29: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( ix )

dharm

\M-therm\C-steam.pm5

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

37.5 246.5 1 069.0 1 732.3 2 801.3 2.761 8 3.333 2 6.095 0 0.001243 0.053138.0 247.3 1 072.7 1 728.4 2 801.1 2.768 9 3.320 7 6.089 6 0.001245 0.052438.5 248.1 1 076.4 1 724.5 2 800.9 2.775 9 3.308 3 6.084 2 0.001247 0.051739.0 248.8 1 080.1 1 720.6 2 800.8 2.782 9 3.296 1 6.078 9 0.001249 0.051139.5 249.6 1 083.8 1 716.8 2 800.5 2.789 7 3.284 0 6.073 7 0.001250 0.0504

40.0 250.3 1 087.4 1 712.9 2 800.3 2.796 5 3.272 0 6.068 5 0.001252 0.049741.0 251.8 1 094.6 1 705.3 2 799.9 2.809 9 3.248 3 6.058 2 0.001255 0.048542.0 253.2 1 101.6 1 697.8 2 799.4 2.823 1 3.225 1 6.048 2 0.001259 0.047343.0 254.6 1 108.5 1 690.3 2 798.8 2.836 0 3.202 3 6.038 3 0.001262 0.046144.0 256.0 1 115.4 1 682.9 2 798.3 2.848 7 3.179 9 6.028 6 0.001266 0.0451

45.0 257.4 1 122.1 1 675.6 2 797.7 2.861 2 3.157 9 6.019 1 0.001269 0.044046.0 258.7 1 128.8 1 668.3 2 797.0 2.873 5 3.136 2 6.009 7 0.001272 0.043047.0 260.1 1 135.3 1 661.1 2 796.4 2.885 5 3.114 9 6.000 4 0.001276 0.042148.0 261.4 1 141.8 1 653.9 2 795.7 2.897 4 3.093 9 5.991 3 0.001279 0.041249.0 262.6 1 148.2 1 646.8 2 794.9 2.909 1 3.073 3 5.982 3 0.001282 0.0403

50.0 263.9 1 154.5 1 639.7 2 794.2 2.920 6 3.052 9 5.973 5 0.001286 0.039451.0 265.1 1 160.7 1 632.7 2 793.4 2.931 9 3.032 8 5.964 8 0.001289 0.038652.0 266.4 1 166.8 1 625.7 2 792.6 2.943 1 3.013 0 5.956 1 0.001292 0.037853.0 267.6 1 172.9 1 618.8 2 791.7 2.954 1 2.993 5 5.947 6 0.001296 0.037154.0 268.7 1 178.9 1 611.9 2 790.8 2.965 0 2.974 2 5.939 2 0.001299 0.0363

55.0 269.9 1 184.9 1 605.0 2 789.9 2.975 7 2.955 2 5.930 9 0.001302 0.035656.0 271.1 1 190.8 1 598.2 2 789.0 2.986 3 2.936 4 5.922 7 0.001306 0.034957.0 272.2 1 196.6 1 591.4 2 788.0 2.996 7 2.917 9 5.914 6 0.001309 0.034358.0 273.3 1 202.3 1 584.7 2 787.0 3.007 1 2.899 5 5.906 6 0.001312 0.033659.0 274.4 1 208.0 1 578.0 2 786.0 3.017 2 2.881 4 5.898 6 0.001315 0.0330

60.0 275.5 1 213.7 1 571.3 2 785.0 3.027 3 2.863 5 5.890 8 0.001318 0.032461.0 276.6 1 219.3 1 564.7 2 784.0 3.037 2 2.845 8 5.883 0 0.001322 0.031962.0 277.7 1 224.8 1 558.0 2 782.9 3.047 1 2.828 3 5.875 3 0.001325 0.031363.0 278.7 1 230.3 1 551.5 2 781.8 3.056 8 2.810 9 5.867 7 0.001328 0.030864.0 279.8 1 235.7 1 544.9 2 780.6 3.066 4 2.793 8 5.860 1 0.001332 0.0302

65.0 280.8 1 241.1 1 538.4 2 779.5 3.075 9 2.776 8 5.852 7 0.001335 0.029766.0 281.8 1 246.5 1 531.9 2 778.3 3.085 3 2.760 0 5.845 2 0.001338 0.029267.0 282.8 1 251.8 1 525.4 2 777.1 3.094 6 2.743 3 5.837 9 0.001341 0.028768.0 283.8 1 257.0 1 518.9 2 775.9 3.103 8 2.726 8 5.830 6 0.001345 0.028369.0 284.8 1 262.2 1 512.5 2 774.7 3.112 9 2.710 5 5.823 3 0.001348 0.0278

Page 30: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( x ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

70.0 285.8 1 267.4 1 506.0 2 773.5 3.121 9 2.694 3 5.816 2 0.001351 0.027471.0 286.7 1 272.5 1 499.6 2 772.2 3.130 8 2.678 2 5.809 0 0.001355 0.026972.0 287.7 1 277.6 1 493.3 2 770.9 3.139 7 2.662 3 5.802 0 0.001358 0.026573.0 288.6 1 282.7 1 486.9 2 769.6 3.148 4 2.646 5 5.794 9 0.001361 0.026174.0 289.6 1 287.7 1 480.5 2 768.3 3.157 1 2.630 9 5.788 0 0.001364 0.0257

75.0 290.5 1 292.7 1 474.2 2 766.9 3.165 7 2.615 3 5.781 0 0.001368 0.025376.0 291.4 1 297.6 1 467.9 2 765.5 3.174 2 2.599 9 5.774 2 0.001371 0.024977.0 292.3 1 302.5 1 461.6 2 764.2 3.182 7 2.584 6 5.767 3 0.001374 0.024678.0 293.2 1 307.4 1 455.3 2 762.8 3.191 1 2.569 5 5.760 5 0.001378 0.024279.0 294.1 1 312.3 1 449.1 2 761.3 3.199 4 2.554 4 5.753 8 0.001381 0.0239

80.0 294.9 1 317.1 1 442.8 2 759.9 3.207 6 2.539 5 5.747 1 0.001384 0.023581.0 295.8 1 321.9 1 436.6 2 758.4 3.215 8 2.524 6 5.740 4 0.001387 0.023282.0 296.7 1 326.6 1 430.3 2 757.0 3.223 9 2.509 9 5.733 8 0.001391 0.022983.0 297.5 1 331.4 1 424.1 2 755.5 3.232 0 2.495 2 5.727 2 0.001394 0.022584.0 298.4 1 336.1 1 417.9 2 754.0 3.239 9 2.480 7 5.720 6 0.001397 0.0222

85.0 299.2 1 340.7 1 411.7 2 752.5 3.247 9 2.466 3 5.714 1 0.001401 0.021986.0 300.1 1 345.4 1 405.5 2 750.9 3.255 7 2.451 9 5.707 6 0.001404 0.021687.0 300.9 1 350.0 1 399.3 2 749.4 3.263 6 2.437 6 5.701 2 0.001408 0.021388.0 301.7 1 354.6 1 393.2 2 747.8 3.271 3 2.423 5 5.694 8 0.001411 0.021189.0 302.5 1 359.2 1 387.0 2 746.2 3.279 0 2.409 4 5.688 4 0.001414 0.0208

90.0 303.3 1 363.7 1 380.9 2 744.6 3.286 7 2.395 3 5.682 0 0.001418 0.020591.0 304.1 1 368.3 1 374.7 2 743.0 3.294 3 2.381 4 5.675 7 0.001421 0.020292.0 304.9 1 372.8 1 368.6 2 741.4 3.301 8 2.367 6 5.669 4 0.001425 0.019993.0 305.7 1 377.2 1 362.5 2 739.7 3.309 3 2.353 8 5.663 1 0.001428 0.019794.0 306.4 1 381.7 1 356.3 2 738.0 3.316 8 2.340 1 5.656 8 0.001432 0.0194

95.0 307.2 1 386.1 1 350.2 2 736.4 3.324 2 2.326 4 5.650 6 0.001435 0.019296.0 308.0 1 390.6 1 344.1 2 734.7 3.331 5 2.312 9 5.644 4 0.001438 0.018997.0 308.7 1 395.0 1 338.0 2 733.0 3.338 8 2.299 4 5.638 2 0.001442 0.018798.0 309.4 1 399.3 1 331.9 2 731.2 3.346 1 2.285 9 5.632 1 0.001445 0.018599.0 310.2 1 403.7 1 325.8 2 729.5 3.353 4 2.272 6 5.625 9 0.001449 0.0183

100.0 311.1 1 408.0 1 319.7 2 727.7 3.360 5 2.259 3 5.619 8 0.001452 0.0181102.0 312.4 1 416.7 1 307.5 2 724.2 3.374 8 2.232 8 5.607 6 0.001459 0.0176104.0 313.8 1 425.2 1 295.3 2 720.5 3.388 9 2.206 6 5.595 5 0.001467 0.0172106.0 315.3 1 433.7 1 283.1 2 716.8 3.402 9 2.180 6 5.583 5 0.001474 0.0168108.0 316.6 1 442.2 1 270.9 2 713.1 3.416 7 2.154 8 5.571 5 0.001481 0.0164

Page 31: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( xi )

dharm

\M-therm\C-steam.pm5

110.0 318.0 1 450.6 1 258.7 2 709.3 3.430 4 2.129 1 5.559 5 0.001488 0.0160112.0 319.4 1 458.9 1 246.5 2 705.4 3.444 0 2.103 6 5.547 6 0.001496 0.0157114.0 320.7 1 467.2 1 234.3 2 701.5 3.457 4 2.078 3 5.535 7 0.001504 0.0153116.0 322.1 1 475.4 1 222.0 2 697.4 3.470 8 2.053 1 5.523 9 0.001511 0.0149118.0 323.4 1 483.6 1 209.7 2 693.3 3.484 0 2.028 0 5.512 1 0.001519 0.0146

120.0 324.6 1 491.8 1 197.4 2 689.2 3.497 2 2.003 0 5.500 2 0.001527 0.0143122.0 325.9 1 499.9 1 185.0 2 684.9 3.510 2 1.978 2 5.488 4 0.001535 0.0139124.0 327.1 1 508.0 1 172.6 2 680.6 3.523 2 1.953 3 5.476 5 0.001543 0.0137126.0 328.4 1 516.0 1 160.1 2 676.1 3.536 0 1.928 6 5.464 6 0.001551 0.0134128.0 329.6 1 524.0 1 147.6 2 671.6 3.548 8 1.903 9 5.452 7 0.001559 0.0131

130.0 330.8 1 532.0 1 135.0 2 667.0 3.561 6 1.879 2 5.440 8 0.001567 0.0128132.0 332.0 1 540.0 1 122.3 2 662.3 3.574 2 1.854 6 5.428 8 0.001576 0.0125134.0 333.2 1 547.9 1 109.5 2 657.4 3.586 8 1.830 0 5.416 8 0.001584 0.0123136.0 334.3 1 555.8 1 096.7 2 652.5 3.599 3 1.805 3 5.404 7 0.001593 0.0120138.0 335.5 1 563.7 1 083.8 2 647.5 3.611 8 1.780 7 5.392 5 0.001602 0.0117

140.0 336.6 1 571.6 1 070.7 2 642.4 3.624 2 1.756 0 5.380 3 0.001611 0.0115142.0 337.7 1 579.5 1 057.6 2 637.1 3.636 6 1.731 3 5.367 9 0.001619 0.0112144.0 338.8 1 587.4 1 044.4 2 631.8 3.649 0 1.706 6 5.355 5 0.001629 0.0110146.0 339.9 1 595.3 1 031.0 2 626.3 3.661 3 1.681 8 5.343 1 0.001638 0.0108148.0 341.1 1 603.1 1 017.6 2 620.7 3.673 6 1.656 9 5.330 5 0.001648 0.0106

150.0 342.1 1 611.0 1 004.0 2 615.0 3.685 9 1.632 0 5.317 9 0.001658 0.0103152.0 343.2 1 618.9 990.3 2 609.2 3.698 1 1.607 0 5.305 1 0.001668 0.0101154.0 344.2 1 626.8 976.5 2 603.3 3.710 3 1.581 9 5.292 2 0.001678 0.00991156.0 345.3 1 634.7 962.6 2 597.3 3.722 6 1.556 7 5.279 3 0.001689 0.00971158.0 346.3 1 642.6 948.5 2 591.1 3.734 8 1.531 4 5.266 3 0.001699 0.00951

160.0 347.3 1 650.5 934.3 2 584.9 3.747 1 1.506 0 5.253 1 0.001710 0.00931162.0 348.3 1 658.5 920.0 2 578.5 3.759 4 1.480 6 5.239 9 0.001721 0.00911164.0 349.3 1 666.5 905.6 2 572.1 3.771 7 1.455 0 5.226 7 0.001733 0.00893166.0 350.3 1 674.5 891.0 2 565.5 3.784 2 1.429 0 5.213 2 0.001745 0.00874168.0 351.3 1 683.0 875.6 2 558.6 3.797 4 1.402 1 5.199 4 0.001757 0.00855

170.0 352.3 1 691.7 859.9 2 551.6 3.810 7 1.374 8 5.185 5 0.001769 0.00837172.0 353.2 1 700.4 844.0 2 544.4 3.824 0 1.347 3 5.171 3 0.001783 0.00819174.0 354.2 1 709.0 828.1 2 537.1 3.837 2 1.319 8 5.157 0 0.001796 0.00801176.0 355.1 1 717.6 811.9 2 529.5 3.850 4 1.292 2 5.142 5 0.001810 0.00784178.0 356.0 1 726.2 795.6 2 521.8 3.863 5 1.264 3 5.127 8 0.001825 0.00767

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

Page 32: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( xii ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

180.0 356.9 1 734.8 779.1 2 513.9 3.876 5 1.236 2 5.112 8 0.001840 0.00750182.0 357.8 1 743.4 762.3 2 505.8 3.889 6 1.207 9 5.097 5 0.001856 0.00733184.0 358.7 1 752.1 745.3 2 497.4 3.902 8 1.179 2 5.082 0 0.001872 0.00717186.0 359.6 1 760.9 727.9 2 488.8 3.916 0 1.150 1 5.066 1 0.001889 0.00701188.0 360.5 1 769.7 710.1 2 479.8 3.929 4 1.120 5 5.049 8 0.001907 0.00684

190.0 361.4 1 778.7 692.0 2 470.6 3.942 9 1.090 3 5.033 2 0.001926 0.00668192.0 362.3 1 787.8 673.3 2 461.1 3.956 6 1.059 4 5.016 0 0.001946 0.00652194.0 363.2 1 797.0 654.1 2 451.1 3.970 6 1.027 8 4.998 3 0.001967 0.00636196.0 364.0 1 806.6 634.2 2 440.7 3.984 9 0.995 1 4.980 0 0.001989 0.00620198.0 364.8 1 816.3 613.5 2 429.8 3.999 6 0.961 4 4.961 1 0.002012 0.00604

200.0 365.7 1 826.5 591.9 2 418.4 4.014 9 0.926 3 4.941 2 0.002037 0.00588202.0 366.5 1 837.0 569.2 2 406.2 4.030 8 0.889 7 4.920 4 0.002064 0.00571204.0 367.3 1 848.1 545.1 2 393.3 4.047 4 0.851 0 4.898 4 0.002093 0.00555206.0 368.2 1 859.9 519.5 2 379.4 4.065 1 0.809 9 4.875 0 0.002125 0.00538208.0 368.9 1 872.5 491.7 2 364.2 4.084 1 0.765 7 4.849 8 0.002161 0.00521

210.0 369.8 1 886.3 461.3 2 347.6 4.104 8 0.717 5 4.822 3 0.002201 0.00502212.0 370.6 1 901.5 427.4 2 328.9 4.127 9 0.663 9 4.791 7 0.002249 0.00483214.0 371.3 1 919.0 388.4 2 307.4 4.154 3 0.602 6 4.756 9 0.002306 0.00462216.0 372.1 1 939.9 341.6 2 281.6 4.186 1 0.529 3 4.715 4 0.002379 0.00439218.0 372.9 1 967.2 280.8 2 248.0 4.227 6 0.434 6 4.662 2 0.002483 0.00412

220.0 373.7 2 011.1 184.5 2 195.6 4.294 7 0.285 2 4.579 9 0.002671 0.00373221.2 374.1 2 107.4 0.0 2 107.4 4.442 9 0.0 4.442 9 0.003170 0.00317

Absolute Temp. Specific enthalpy Specific entropy Specific volumepressure (°C) (kJ/kg) (kJ/kg K) (m3/kg)

(bar)p ts hf hfg hg sf sfg sg vf vg

Page 33: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( xiii )

dharm

\M-therm\C-steam.pm5

TABLE III

Superheated Steam at Various Pressures and Temperatures

t (°C) 50 100 150 200 250 300 400 500→

v 149.1 172.2 195.3 218.4 241.5 264.5 310.7 356.80.01 u 2445.4 2516.4 2588.4 2661.6 2736.9 2812.2 2969.0 3132.4(7.0) h 2594.5 2688.6 2783.6 2880.0 2978.4 3076.8 3279.7 3489.2

s 9.242 9.513 9.752 9.967 10.163 10.344 10.671 10.960

v 29.78 34.42 39.04 48.66 48.28 52.9 62.13 71.360.05 u 2444.8 2516.2 2588.4 2661.9 2736.6 2812.6 2969.6 3133.0

(32.9) h 2593.7 2688.1 2783.4 2879.9 2977.6 3076.7 3279.7 3489.2s 8.498 8.770 9.009 9.225 9.421 9.602 9.928 10.218

v 14.57 17.19 19.51 21.82 24.14 26.44 31.06 35.680.1 u 2443.9 2515.5 2587.9 2661.3 2736.0 2812.1 2968.9 3132.3

(45.8) h 2592.6 2687.5 2783.0 2879.5 2977.3 3076.5 3279.6 3489.1s 8.175 8.448 8.688 8.904 9.100 9.281 9.608 9.898

v 34.18 3.889 43.56 4.821 5.284 6.209 7.1340.5 u 2511.6 2585.6 2659.9 2735.0 2811.3 2968.5 3132.0

(81.3) h 2682.5 2780.1 2877.7 2976.0 3075.5 3278.9 3488.7s 7.695 7.940 8.158 8.356 8.537 8.864 9.155

v 2.27 2.587 2.900 3.211 3.520 4.138 4.7550.75 u 2509.2 2584.2 2659.0 2734.4 2810.9 2968.2 3131.8

(92.0) h 2679.4 2778.2 2876.5 2975.2 3074.9 3278.5 3488.4s 7.501 7.749 7.969 8.167 8.349 8.677 8.967

v 1.696 1.936 2.172 2.406 2.639 3.103 3.5651.0 u 2506.2 2582.8 2658.1 2733.7 2810.4 2967.9 3131.6

(99.6) h 2676.2 2776.4 2875.3 2974.3 3074.3 3278.2 3488.1s 7.361 7.613 7.834 8.033 8.216 8.544 8.834

v 1.912 2.146 2.375 2.603 3.062 3.5191.01325 u 2582.6 2658.0 2733.6 2810.3 2967.8 3131.5

(100) h 2776.3 2875.2 2974.2 3074.2 3278.1 3488.0s 7.828 7.827 8.027 8.209 8.538 8.828

v 1.285 1.143 1.601 1.757 2.067 2.3761.5 u 2579.8 2656.2 2732.5 2809.5 2967.3 3131.2

(111.4) h 2772.6 2872.9 2972.7 3073.1 3277.4 3487.6s 7.419 7.643 7.844 8.027 8.356 8.647

↓p (bar)(ts)

Page 34: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( xiv ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

v 0.960 1.080 1.199 1.316 1.549 1.7812.0 u 2576.9 2654.4 2731.2 2808.6 2966.7 3130.8

(120.2) h 2768.8 2870.5 2971.0 3071.8 3276.6 3487.1s 7.279 7.507 7.709 7.893 8.222 8.513

v 0.764 0.862 0.957 1.052 1.238 1.4242.5 u 2574.7 2655.7 2734.9 2813.8 2973.9 3139.6

(127.4) h 2764.5 2868.0 2969.6 3070.9 3275.9 3486.5s 7.169 7.401 7.604 7.789 8.119 8.410

v 0.634 0.716 0.796 0.875 1.031 1.1873.0 u 2570.8 2650.7 2728.7 2806.7 2965.6 3130.0

(133.5) h 2761.0 2865.6 2967.6 3069.3 3275.0 3486.1s 7.078 7.311 7.517 7.702 8.033 8.325

v 0.471 0.534 0.595 0.655 0.773 0.8894.0 u 2564.5 2646.8 2726.1 2804.8 2964.4 3129.2

(143.6) h 2752.8 2860.5 2964.2 3066.8 3273.4 3484.9s 6.930 7.171 7.379 7.566 7.899 8.191

t (°C) 200 250 300 350 400 450 500 600→

v 0.425 0.474 0.523 0.570 0.617 0.664 0.711 0.8045.0 u 2642.9 2723.5 2802.9 2882.6 2963.2 3045.3 3128.4 3299.6

(151.8) h 2855.4 2960.7 3064.2 3167.7 3271.9 3377.2 3483.9 3701.7s 7.059 7.271 7.460 7.633 7.794 7.945 8.087 8.353

v 0.352 0.394 0.434 0.474 0.514 0.553 0.592 0.6706.0 u 2638.9 2720.9 2801.0 2881.2 2962.1 3044.2 3127.6 3299.1

(158.8) h 2850.1 2957.2 3061.6 3165.7 3270.3 3376.0 3482.8 3700.9s 6.967 7.182 7.372 7.546 7.708 7.859 8.002 8.267

v 0.300 0.336 0.371 0.406 0.440 0.473 0.507 0.5747.0 u 2634.8 2718.2 2799.1 2879.7 2960.9 3043.2 3126.8 3298.5

(165.0) h 2844.8 2953.6 3059.1 3163.7 3268.7 3374.7 3481.7 3700.2s 6.886 7.105 7.298 7.473 7.635 7.787 7.930 8.196

v 0.261 0.293 0.324 0.354 0.384 0.414 0.443 0.5028.0 u 2630.6 2715.5 2797.2 2878.2 2959.7 3042.3 3126.0 3297.8

(170.4) h 2839.3 2950.1 3056.5 3161.7 3267.1 3373.4 3480.6 3699.4s 6.816 7.038 7.233 7.409 7.572 7.724 7.867 8.133

t (°C) 50 100 150 200 250 300 400 500→

↓p (bar)(ts)

↓p (bar)(ts)

Page 35: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( xv )

dharm

\M-therm\C-steam.pm5

v 0.230 0.260 0.287 0.314 0.341 0.367 0.394 0.4469.0 u 2626.3 2712.7 2795.2 2876.7 2958.5 3041.3 3125.2 3297.3

(175.4) h 2833.6 2946.3 3053.8 3159.7 3265.5 3372.1 3479.6 3698.6s 6.752 6.979 7.175 7.352 7.516 7.668 7.812 8.078

v 0.206 0.233 0.258 0.282 0.307 0.330 0.354 0.40110.0 u 2621.9 2709.9 2793.2 2875.2 2957.3 3040.3 3124.4 3296.8

(179.9) h 2827.9 2942.6 3051.2 3157.8 3263.9 3370.7 3478.5 3697.9s 6.694 6.925 7.123 7.301 7.465 7.618 7.762 8.029

v 0.132 0.152 0.169 0.187 0.203 0.219 0.235 0.26715.0 u 2598.8 2695.3 2783.1 2867.6 2951.3 3035.3 3120.3 3293.9

(198.3) h 2796.8 2923.3 3037.6 3147.5 3255.8 3364.2 3473.1 3694.0s 6.455 6.709 6.918 7.102 7.269 7.424 7.570 7.839

v 0.111 0.125 0.139 0.151 0.163 0.176 0.20020.0 u 2679.6 2772.6 2859.8 2945.2 3030.5 3116.2 3290.9

(212.4) h 2902.5 3023.5 3137.0 3247.6 3357.5 3467.6 3690.1s 6.545 6.766 6.956 7.127 7.285 7.432 7.702

v 0.0870 0.0989 0.109 0.120 0.130 0.140 0.15925 u 2662.6 2761.6 2851.9 2939.1 3025.5 3112.1 3288.0

(223.9) h 2880.1 3008.8 3126.3 3239.3 3350.8 3462.1 3686.3s 6.408 6.644 6.840 7.015 7.175 7.323 7.596

v 0.0706 0.0811 0.0905 0.0994 0.108 0.116 0.13230 u 2644.0 2750.1 2843.7 2932.8 3020.4 3108.0 3285.0

(233.8) h 2855.8 2993.5 3115.3 3230.9 3344.0 3456.5 3682.3s 6.287 6.539 6.743 6.921 7.083 7.234 7.509

v 0.0588 0.0664 0.0734 0.080 0.0864 0.098940 u 2725.3 2826.7 2919.9 3010.2 3099.5 3279.1

(250.4) h 2960.7 3092.5 3213.6 3330.3 3445.3 3674.4s 6.362 6.582 6.769 6.936 7.090 7.369

v 0.0453 0.0519 0.0578 0.0633 0.0686 0.078750 u 2698.0 2808.7 2906.6 2999.7 3091.0 3273.0

(263.9) h 2924.5 3068.4 3195.7 3316.2 3433.8 3666.5s 6.208 6.449 6.646 6.819 6.976 7.259

t (°C) 200 250 300 350 400 450 500 600→

↓p (bar)(ts)

Page 36: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( xvi ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

t (°C) 200 250 300 350 400 450 500 600→

↓p (bar)(ts)

v 0.0362 0.0422 0.0474 0.0521 0.0567 0.065360 u 2667.2 2789.6 2892.9 2988.9 3082.2 3266.9

(275.5) h 2884.2 3043.0 3177.2 3301.8 3422.2 3658.4s 6.067 6.333 6.541 6.719 6.880 7.168

v 0.0295 0.0352 0.0399 0.0442 0.0481 0.055770 u 2632.2 2769.4 2878.6 2978.0 3073.4 3260.7

(285.8) h 2838.4 3016.0 3158.1 3287.1 3410.3 3650.3s 5.931 6.228 6.448 6.633 6.798 7.089

t (°C) 350 375 400 450 500 550 600 700→

80 v 0.02995 0.03222 0.03432 0.03817 0.04175 0.04516 0.04845 0.05481(294.9) h 2987.3 3066.1 3138.3 3272.0 3398.3 3521.0 3642.0 3882.4

s 6.130 6.254 6.363 6.555 6.724 6.878 7.021 7.281

90 v 0.0258 0.02796 0.02993 0.03350 0.03677 0.03987 0.04285 0.04857(303.3) h 2956.6 3041.3 3117.8 3256.6 3386.1 3511.0 3633.7 3876.5

s 6.036 6.169 6.285 6.484 6.658 6.814 6.959 7.222

100 v 0.02242 0.02453 0.02641 0.02975 0.03279 0.03564 0.03837 0.04358(311.0) h 2923.4 3015.4 3096.5 3240.9 3373.7 3500.9 3625.3 3870.5

s 5.944 6.089 6.212 6.419 6.597 6.756 6.903 7.169

110 v 0.01961 0.02169 0.02351 0.02668 0.02952 0.03217 0.03470 0.03950(318.0) h 2887.3 2988.2 3074.3 3224.7 3361.0 3490.7 3616.9 3864.5

s 5.853 6.011 6.142 6.358 6.540 6.703 6.851 7.120

120 v 0.01721 0.01931 0.02108 0.02412 0.02680 0.02929 0.03164 0.03610(324.6) h 2847.7 2958.9 3051.3 3208.2 3348.2 3480.4 3608.3 3858.4

s 5.760 5.935 6.075 6.300 6.487 6.653 6.804 7.075

130 v 0.01511 0.01725 0.01900 0.02194 0.0245 0.02684 0.02905 0.03322(330.8) h 2803.3 2927.9 3027.2 3191.3 3335.2 3469.9 3599.7 3852.3

s 5.663 5.859 6.009 6.245 6.437 6.606 6.759 7.033

140 v 0.01322 0.01546 0.01722 0.02007 0.02252 0.02474 0.02683 0.03075(336.6) h 2752.6 2894.5 3001.9 3174.0 3322.0 3459.3 3591.1 3846.2

s 5.559 5.782 5.945 6.192 6.390 6.562 6.712 6.994

150 v 0.01145 0.01388 0.01565 0.01845 0.02080 0.02293 0.02491 0.02861(342.1) h 2692.4 2858.4 2975.5 3156.2 3308.6 3448.6 3582.3 3840.1

s 5.442 5.703 5.881 6.140 6.344 6.520 6.679 6.957

↓p (bar)(ts)

Page 37: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( xvii )

dharm

\M-therm\C-steam.pm5

160 v 0.00975 0.01245 0.01426 0.01701 0.01930 0.02134 0.02323 0.02674(347.3) h 2615.7 2818.9 2947.6 3138.0 3294.9 3437.8 3573.5 3833.9

s 5.302 5.622 5.188 6.091 6.301 6.480 6.640 6.922

170 v 0.01117 0.01302 0.01575 0.01797 0.01993 0.02174 0.02509(352.3) h 2776.8 2918.2 3119.3 3281.1 3426.9 3564.6 3827.7

s 5.539 5.754 6.042 6.259 6.442 6.604 6.889

180 v 0.00996 0.01190 0.01462 0.01678 0.01868 0.02042 0.02362(356.9) h 2727.9 2887.0 3100.1 3267.0 3415.9 3555.6 3821.5

s 5.448 5.689 5.995 6.218 6.405 6.570 6.858

190 v 0.00881 0.01088 0.01361 0.01572 0.01756 0.01924 0.02231(361.4) h 2671.3 2853.8 3080.4 3252.7 3404.7 3546.6 3815.3

s 5.346 5.622 5.948 6.179 6.369 6.537 6.828

200 v 0.00767 0.00994 0.01269 0.9477 0.01655 0.01818 0.02113(365.7) h 2602.5 2818.1 3060.1 3238.2 3393.5 3537.6 3809.0

s 5.227 5.554 5.902 6.140 6.335 6.505 6.799

210 v 0.00645 0.00907 0.01186 0.01390 0.01564 0.01722 0.02006(369.8) h 2511.0 2779.6 3039.3 3223.5 3382.1 3528.4 3802.8

s 5.075 5.483 5.856 6.103 6.301 6.474 6.772

220 v 0.00482 0.00825 0.01110 0.01312 0.01481 0.01634 0.01909(373.7) h 2345.1 2737.6 3017.9 3208.6 3370.6 3519.2 3796.5

s 4.810 5.407 5.811 6.066 6.269 6.444 6.745

t (°C) 350 375 400 450 500 550 600 700→

↓p (bar)(ts)

Page 38: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( xviii ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

TABLE IV

Supercritical Steam

350 375 400 425 450 500 600 700 800→

230 v 0.00162 0.00221 0.00748 0.00915 0.01040 0.01239 0.01554 0.01821 0.02063h 1632.8 1912.2 2691.2 2869.2 2995.8 3193.4 3510.0 3790.2 4056.2s 3.137 4.137 5.327 5.587 5.765 6.030 6.415 6.719 6.980

250 v 0.00160 0.00197 0.00600 0.00788 0.00916 0.01112 0.01414 0.01665 0.01891h 1623.5 1848.0 2580.2 2806.3 2949.7 3162.4 3491.4 3775.5 4047.1s 3.680 4.032 5.142 5.472 5.674 5.959 6.360 6.671 6.934

300 v 0.00155 0.00179 0.00279 0.00530 0.00673 0.00868 0.01145 0.01366 0.01562h 1608.5 1791.5 2151.1 2614.2 2821.4 3081.1 3443.9 3745.6 4024.2s 3.643 3.930 4.473 5.150 5.442 5.790 6.233 6.561 6.833

350 v 0.00152 0.00110 0.00210 0.00343 0.00496 0.00693 0.00953 0.01153 0.01328h 1597.1 1762.4 1987.6 2373.4 2672.4 2994.4 3395.5 3713.5 4001.5s 3.612 3.872 4.213 4.775 5.196 5.628 6.118 6.463 6.745

400 v 0.00149 0.00164 0.00191 0.00253 0.00369 0.00562 0.00809 0.00994 0.01152h 1588.3 1742.8 1930.9 2198.1 2512.8 2903.3 3346.4 3681.2 3978.7s 3.586 3.829 4.113 4.503 4.946 5.470 6.011 6.375 6.666

500 v 0.00144 0.00156 0.00173 0.00201 0.00249 0.00389 0.00611 0.00773 0.00908h 1575.3 1716.6 1874.6 2060.0 2284.0 2720.1 3247.6 3616.8 3933.6s 3.542 3.764 4.003 4.273 4.588 5.173 5.818 6.219 6.529

600 v 0.00140 0.00150 0.00163 0.00182 0.00209 0.00296 0.00483 0.00627 0.00746h 1566.4 1699.5 1843.4 2001.7 2179.0 2567.9 3151.2 3553.5 3889.1s 3.505 3.764 3.932 4.163 4.412 4.932 5.645 6.082 6.411

700 v 0.00137 0.00146 0.00157 0.00171 0.00189 0.00247 0.00398 0.00526 0.00632h 1560.4 1687.7 1822.8 1967.2 2122.7 2463.2 3061.7 3492.4 3845.7s 3.473 3.673 3.877 4.088 4.307 4.762 5.492 5.961 6.307

800 v 0.00135 0.00142 0.00152 0.00163 0.00177 0.00219 0.00339 0.00452 0.00548h 1556.4 1679.4 1808.3 1943.9 2086.9 2394.0 2982.7 3434.6 3803.8s 3.444 3.638 3.833 4.031 4.232 4.642 5.360 5.851 6.213

900 v 0.00133 0.00139 0.00147 0.00157 0.00169 0.00201 0.00297 0.00397 0.00484h 1553.9 1673.4 1797.7 1927.2 2062.0 2346.7 2915.6 3381.1 3763.8s 3.419 3.607 3.795 3.984 4.174 4.554 5.247 5.753 6.128

1000 v 0.01308 0.00137 0.00144 0.00152 0.00163 0.00189 0.00267 0.00355 0.00434h 1552.7 1669.4 1790.0 1914.8 2043.8 2312.8 2859.8 3332.3 3726.1s 3.396 3.579 3.762 3.944 4.126 4.485 5.151 5.664 6.050

p(bar) t (°C)

Page 39: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

STEAM TABLES AND MOLLIER DIAGRAM ( xix )

dharm

\M-therm\C-steam.pm5

TABLE V

Conversion FactorsForce

1 newton = 1 kg-m/sec2

= 0.012 kgf1 kgf = 9.81 N

Pressure

1 bar = 750.06 mm Hg= 0.9869 atm= 105 N/m2

= 103 kg/m-sec2

1 N/m2 = 1 pascal= 10 – 5 bar= 10 – 2 kg/m-sec2

1 atm = 760 mm Hg= 1.03 kgf/cm2 = 1.01325 bar= 1.01325 × 105 N/m2

Work, Energy or Heat

1 joule = 1 newton metre= 1 watt-sec= 2.7778 × 10 – 7 kWh= 0.239 cal= 0.239 × 10 – 3 kcal

1 cal = 4.184 joule= 1.1622 × 10 – 6 kWh

1 kcal = 4.184 × 103 joule= 427 kgfm= 1.1622 × 10 – 3 kWh

1 kWh = 8.6 × 105 cal= 860 kcal= 3.6 × 106 joule

1 kgfm =1

427���

���

kcal = 9.81 joules

Power

1 watt = 1 joule/sec = 0.86 kcal/h1 h.p. = 75 mkgf/sec = 0.1757 kcal/sec

= 735.3 watt1 kW = 1000 watts

= 860 kcal/h

Page 40: COMPETITIVE EXAMINATIONS QUESTIONS · 2017-12-05 · COMPETITIVE EXAMINATIONS QUESTIONS 905 dharm \M-therm\Comp1.pm5 3. The heat transfer Q, the work done W and the change in internal

( xx ) ENGINEERING THERMODYNAMICS

dharm

\M-therm\C-steam.pm5

Specific heat

1 kcal/kg - °K = 4.18 kJ/kg-K

Thermal conductivity

1 watt/m-K = 0.8598 kcal/h-m-°C1 kcal/h-m-°C = 1.16123 watt/m-K

= 1.16123 joules/s-m-K

Heat transfer co-efficient

1 watt/m2-K = 0.86 kcal/m2-h-°C1 kcal/m2-h-°C = 1.163 watt/m2-K

IMPORTANT ENGINEERING CONSTANTS AND EXPRESSIONS IN SI UNITS

Engineering constants M.K.S. system S.I. unitsand expressions

1. Value of g0 9.81 kg-m/kgf-sec2 1 kg-m/N-sec2

2. Universal gas constant 848 kgf-m/kg mole-°K 848 × 9.81 = 8314 J/kg-mole-°K(� 1 kgf-m = 9.81 joules)

3. Gas constant (R) 29.27 kgf m/kg-°K for air8314

29 = 287 joules/kg-K for air

4. Specific heats (for air) cv = 0.17 kcal/kg-°K cv = 0.17 × 4.184 = 0.71128 kJ/kg-K

cp = 0.24 kcal/kg-°K cp = 0.24 × 4.184 = 1 kJ/kg-K

5. Flow through nozzle-exit 91.5 √U where U is in kcal 44.7 √U where U is in kJvelocity (C2)

6. Refrigeration 1 ton = 50 kcal/min = 210 kJ/min

7. Heat transferThe Stefan Boltzman Q = σT4 kcal/m2-h Q = σT4 watts/m2-hLaw is given by : when σ = 4.9 × 10 – 8 when σ = 5.67 × 10 – 8

kcal/h-m2-°K4 W/m2K4