24
Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories

Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

Complex Hydrides forHydrogen Storage

George Thomas, ConsultantSandia National Laboratories

Page 2: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Efficient onboard hydrogen storage is a critical enabling technology for the use of

hydrogen in vehicles

• The low volumetric density of gaseous fuels requires a storage method which densifies the fuel.– This is particularly true for hydrogen because of its

lower energy density relative to hydrocarbon fuels.• Storage methods result in additional weight and

volume above that of the fuel.

How do we achieve adequate stored energy in an efficient, safe and cost-effective system?

Page 3: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

However, the storage media must meet certain requirements:

– reversible hydrogen uptake/release– lightweight– low cost– cyclic stability– rapid kinetic properties– equilibrium properties (P,T) consistent

with near ambient conditions.

One storage option is to chemically bond hydrogen in a solid material

• This storage approach should have the highest hydrogen packing density.

Page 4: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Where do we start? G r o u p

P e r i o dI A V I I I A

11

H1 . 0 0 8 I I A I I I A I V A V A V I A V I I A

2

H e4 . 0 0 3

23

L i6 . 9 4 1

4

B e9 . 0 1 2

5

B1 0 . 8 1

6

C1 2 . 0 1

7

N1 4 . 0 1

8

O1 6 . 0 0

9

F1 9 . 0 0

1 0

N e2 0 . 1 8

31 1

N a2 2 . 9 9

1 2

M g2 4 . 3 1 I I I B I V B V B V I B V I I B - - - - - - - V I I I - - - - - I B I I B

1 3

A l2 6 . 9 8

1 4

S i2 8 . 0 9

1 5

P3 0 . 9 7

1 6

S3 2 . 0 7

1 7

C l3 5 . 4 5

1 8

A r3 9 . 9 5

41 9

K3 9 . 1 0

2 0

C a4 0 . 0 8

2 1

S c4 4 . 9 6

2 2

T i4 7 . 8 8

2 3

V5 0 . 9 4

2 4

C r5 2 . 0 0

2 5

M n5 4 . 9 4

2 6

F e5 5 . 8 5

2 7

C o5 8 . 4 7

2 8

N i5 8 . 6 9

2 9

C u6 3 . 5 5

3 0

Z n6 5 . 3 9

3 1

G a6 9 . 7 2

3 2

G e7 2 . 5 9

3 3

A s7 4 . 9 2

3 4

S e7 8 . 9 6

3 5

B r7 9 . 9 0

3 6

K r8 3 . 8 0

53 7

R b8 5 . 4 7

3 8

S r8 7 . 6 2

3 9

Y8 8 . 9 1

4 0

Z r9 1 . 2 2

4 1

N b9 2 . 9 1

4 2

M o9 5 . 9 4

4 3

T c( 9 8 )

4 4

R u1 0 1 . 1

4 5

R h1 0 2 . 9

4 6

P d1 0 6 . 4

4 7

A g1 0 7 . 9

4 8

C d1 1 2 . 4

4 9

I n1 1 4 . 8

5 0

S n1 1 8 . 7

5 1

S b1 2 1 . 8

5 2

T e1 2 7 . 6

5 3

I1 2 6 . 9

5 4

X e1 3 1 . 3

65 5

C s1 3 2 . 9

5 6

B a1 3 7 . 3

5 7

L a *1 3 8 . 9

7 2

H f1 7 8 . 5

7 3

T a1 8 0 . 9

7 4

W1 8 3 . 9

7 5

R e1 8 6 . 2

7 6

O s1 9 0 . 2

7 7

I r1 9 0 . 2

7 8

P t1 9 5 . 1

7 9

A u1 9 7 . 0

8 0

H g2 0 0 . 5

8 1

T l2 0 4 . 4

8 2

P b2 0 7 . 2

8 3

B i2 0 9 . 0

8 4

P o( 2 1 0 )

8 5

A t( 2 1 0 )

8 6

R n( 2 2 2 )

78 7

F r( 2 2 3 )

8 8

R a( 2 2 6 )

8 9

A c ~( 2 2 7 )

1 0 4

R f( 2 5 7 )

1 0 5

D b( 2 6 0 )

1 0 6

S g( 2 6 3 )

1 0 7

B h( 2 6 2 )

1 0 8

H s( 2 6 5 )

1 0 9

M t( 2 6 6 )

1 1 0

- - -( )

1 1 1

- - -( )

1 1 2

- - -( )

1 1 4

- - -( )

1 1 6

- - -( )

1 1 8

- - -( )

L a n t h a n i d eS e r i e s *

5 8

C e1 4 0 . 1

5 9

P r1 4 0 . 9

6 0

N d1 4 4 . 2

6 1

P m( 1 4 7 )

6 2

S m1 5 0 . 4

6 3

E u1 5 2 . 0

6 4

G d1 5 7 . 3

6 5

T b1 5 8 . 9

6 6

D y1 6 2 . 5

6 7

H o1 6 4 . 9

6 8

E r1 6 7 . 3

6 9

T m1 6 8 . 9

7 0

Y b1 7 3 . 0

7 1

L u1 7 5 . 0

A c t i n i d e S e r i e s ~9 0

T h2 3 2 . 0

9 1

P a( 2 3 1 )

9 2

U( 2 3 8 )

9 3

N p( 2 3 7 )

9 4

P u( 2 4 2 )

9 5

A m( 2 4 3 )

9 6

C m( 2 4 7 )

9 7

B k( 2 4 7 )

9 8

C f( 2 4 9 )

9 9

E s( 2 5 4 )

1 0 0

F m( 2 5 3 )

1 0 1

M d( 2 5 6 )

1 0 2

N o( 2 5 4 )

1 0 3

L r( 2 5 7 )

The online data basehydpark.ca.sandia.gov

lists over 2000 elements, compounds and alloys that form hydrides.

Page 5: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Where do we start? G r o u p

P e r i o dI A V I I I A

11

H1 . 0 0 8 I I A I I I A I V A V A V I A V I I A

2

H e4 . 0 0 3

23

L i6 . 9 4 1

4

B e9 . 0 1 2

5

B1 0 . 8 1

6

C1 2 . 0 1

7

N1 4 . 0 1

8

O1 6 . 0 0

9

F1 9 . 0 0

1 0

N e2 0 . 1 8

31 1

N a2 2 . 9 9

1 2

M g2 4 . 3 1 I I I B I V B V B V I B V I I B - - - - - - - V I I I - - - - - I B I I B

1 3

A l2 6 . 9 8

1 4

S i2 8 . 0 9

1 5

P3 0 . 9 7

1 6

S3 2 . 0 7

1 7

C l3 5 . 4 5

1 8

A r3 9 . 9 5

41 9

K3 9 . 1 0

2 0

C a4 0 . 0 8

2 1

S c4 4 . 9 6

2 2

T i4 7 . 8 8

2 3

V5 0 . 9 4

2 4

C r5 2 . 0 0

2 5

M n5 4 . 9 4

2 6

F e5 5 . 8 5

2 7

C o5 8 . 4 7

2 8

N i5 8 . 6 9

2 9

C u6 3 . 5 5

3 0

Z n6 5 . 3 9

3 1

G a6 9 . 7 2

3 2

G e7 2 . 5 9

3 3

A s7 4 . 9 2

3 4

S e7 8 . 9 6

3 5

B r7 9 . 9 0

3 6

K r8 3 . 8 0

53 7

R b8 5 . 4 7

3 8

S r8 7 . 6 2

3 9

Y8 8 . 9 1

4 0

Z r9 1 . 2 2

4 1

N b9 2 . 9 1

4 2

M o9 5 . 9 4

4 3

T c( 9 8 )

4 4

R u1 0 1 . 1

4 5

R h1 0 2 . 9

4 6

P d1 0 6 . 4

4 7

A g1 0 7 . 9

4 8

C d1 1 2 . 4

4 9

I n1 1 4 . 8

5 0

S n1 1 8 . 7

5 1

S b1 2 1 . 8

5 2

T e1 2 7 . 6

5 3

I1 2 6 . 9

5 4

X e1 3 1 . 3

65 5

C s1 3 2 . 9

5 6

B a1 3 7 . 3

5 7

L a *1 3 8 . 9

7 2

H f1 7 8 . 5

7 3

T a1 8 0 . 9

7 4

W1 8 3 . 9

7 5

R e1 8 6 . 2

7 6

O s1 9 0 . 2

7 7

I r1 9 0 . 2

7 8

P t1 9 5 . 1

7 9

A u1 9 7 . 0

8 0

H g2 0 0 . 5

8 1

T l2 0 4 . 4

8 2

P b2 0 7 . 2

8 3

B i2 0 9 . 0

8 4

P o( 2 1 0 )

8 5

A t( 2 1 0 )

8 6

R n( 2 2 2 )

78 7

F r( 2 2 3 )

8 8

R a( 2 2 6 )

8 9

A c ~( 2 2 7 )

1 0 4

R f( 2 5 7 )

1 0 5

D b( 2 6 0 )

1 0 6

S g( 2 6 3 )

1 0 7

B h( 2 6 2 )

1 0 8

H s( 2 6 5 )

1 0 9

M t( 2 6 6 )

1 1 0

- - -( )

1 1 1

- - -( )

1 1 2

- - -( )

1 1 4

- - -( )

1 1 6

- - -( )

1 1 8

- - -( )

L a n t h a n i d eS e r i e s *

5 8

C e1 4 0 . 1

5 9

P r1 4 0 . 9

6 0

N d1 4 4 . 2

6 1

P m( 1 4 7 )

6 2

S m1 5 0 . 4

6 3

E u1 5 2 . 0

6 4

G d1 5 7 . 3

6 5

T b1 5 8 . 9

6 6

D y1 6 2 . 5

6 7

H o1 6 4 . 9

6 8

E r1 6 7 . 3

6 9

T m1 6 8 . 9

7 0

Y b1 7 3 . 0

7 1

L u1 7 5 . 0

A c t i n i d e S e r i e s ~9 0

T h2 3 2 . 0

9 1

P a( 2 3 1 )

9 2

U( 2 3 8 )

9 3

N p( 2 3 7 )

9 4

P u( 2 4 2 )

9 5

A m( 2 4 3 )

9 6

C m( 2 4 7 )

9 7

B k( 2 4 7 )

9 8

C f( 2 4 9 )

9 9

E s( 2 5 4 )

1 0 0

F m( 2 5 3 )

1 0 1

M d( 2 5 6 )

1 0 2

N o( 2 5 4 )

1 0 3

L r( 2 5 7 )

Transition metals (IIIB, IVB, VB) form metallic bond hydrides

• moderate P,T properties• equilibrium properties can be

adjusted over a wide range by alloying.

• Interstitial H: good kinetics• low capacity (heavy metals,

modest H/M)

Page 6: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Where do we start? G r o u p

P e r i o dI A V I I I A

11

H1 . 0 0 8 I I A I I I A I V A V A V I A V I I A

2

H e4 . 0 0 3

23

L i6 . 9 4 1

4

B e9 . 0 1 2

5

B1 0 . 8 1

6

C1 2 . 0 1

7

N1 4 . 0 1

8

O1 6 . 0 0

9

F1 9 . 0 0

1 0

N e2 0 . 1 8

31 1

N a2 2 . 9 9

1 2

M g2 4 . 3 1 I I I B I V B V B V I B V I I B - - - - - - - V I I I - - - - - I B I I B

1 3

A l2 6 . 9 8

1 4

S i2 8 . 0 9

1 5

P3 0 . 9 7

1 6

S3 2 . 0 7

1 7

C l3 5 . 4 5

1 8

A r3 9 . 9 5

41 9

K3 9 . 1 0

2 0

C a4 0 . 0 8

2 1

S c4 4 . 9 6

2 2

T i4 7 . 8 8

2 3

V5 0 . 9 4

2 4

C r5 2 . 0 0

2 5

M n5 4 . 9 4

2 6

F e5 5 . 8 5

2 7

C o5 8 . 4 7

2 8

N i5 8 . 6 9

2 9

C u6 3 . 5 5

3 0

Z n6 5 . 3 9

3 1

G a6 9 . 7 2

3 2

G e7 2 . 5 9

3 3

A s7 4 . 9 2

3 4

S e7 8 . 9 6

3 5

B r7 9 . 9 0

3 6

K r8 3 . 8 0

53 7

R b8 5 . 4 7

3 8

S r8 7 . 6 2

3 9

Y8 8 . 9 1

4 0

Z r9 1 . 2 2

4 1

N b9 2 . 9 1

4 2

M o9 5 . 9 4

4 3

T c( 9 8 )

4 4

R u1 0 1 . 1

4 5

R h1 0 2 . 9

4 6

P d1 0 6 . 4

4 7

A g1 0 7 . 9

4 8

C d1 1 2 . 4

4 9

I n1 1 4 . 8

5 0

S n1 1 8 . 7

5 1

S b1 2 1 . 8

5 2

T e1 2 7 . 6

5 3

I1 2 6 . 9

5 4

X e1 3 1 . 3

65 5

C s1 3 2 . 9

5 6

B a1 3 7 . 3

5 7

L a *1 3 8 . 9

7 2

H f1 7 8 . 5

7 3

T a1 8 0 . 9

7 4

W1 8 3 . 9

7 5

R e1 8 6 . 2

7 6

O s1 9 0 . 2

7 7

I r1 9 0 . 2

7 8

P t1 9 5 . 1

7 9

A u1 9 7 . 0

8 0

H g2 0 0 . 5

8 1

T l2 0 4 . 4

8 2

P b2 0 7 . 2

8 3

B i2 0 9 . 0

8 4

P o( 2 1 0 )

8 5

A t( 2 1 0 )

8 6

R n( 2 2 2 )

78 7

F r( 2 2 3 )

8 8

R a( 2 2 6 )

8 9

A c ~( 2 2 7 )

1 0 4

R f( 2 5 7 )

1 0 5

D b( 2 6 0 )

1 0 6

S g( 2 6 3 )

1 0 7

B h( 2 6 2 )

1 0 8

H s( 2 6 5 )

1 0 9

M t( 2 6 6 )

1 1 0

- - -( )

1 1 1

- - -( )

1 1 2

- - -( )

1 1 4

- - -( )

1 1 6

- - -( )

1 1 8

- - -( )

L a n t h a n i d eS e r i e s *

5 8

C e1 4 0 . 1

5 9

P r1 4 0 . 9

6 0

N d1 4 4 . 2

6 1

P m( 1 4 7 )

6 2

S m1 5 0 . 4

6 3

E u1 5 2 . 0

6 4

G d1 5 7 . 3

6 5

T b1 5 8 . 9

6 6

D y1 6 2 . 5

6 7

H o1 6 4 . 9

6 8

E r1 6 7 . 3

6 9

T m1 6 8 . 9

7 0

Y b1 7 3 . 0

7 1

L u1 7 5 . 0

A c t i n i d e S e r i e s ~9 0

T h2 3 2 . 0

9 1

P a( 2 3 1 )

9 2

U( 2 3 8 )

9 3

N p( 2 3 7 )

9 4

P u( 2 4 2 )

9 5

A m( 2 4 3 )

9 6

C m( 2 4 7 )

9 7

B k( 2 4 7 )

9 8

C f( 2 4 9 )

9 9

E s( 2 5 4 )

1 0 0

F m( 2 5 3 )

1 0 1

M d( 2 5 6 )

1 0 2

N o( 2 5 4 )

1 0 3

L r( 2 5 7 )

Group IA, IIA elements form ionic or covalent bond hydrides

•high energy bond: high T, low P•high capacity (lightweight materials)

Page 7: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Where do we start? G r o u p

P e r i o dI A V I I I A

11

H1 . 0 0 8 I I A I I I A I V A V A V I A V I I A

2

H e4 . 0 0 3

23

L i6 . 9 4 1

4

B e9 . 0 1 2

5

B1 0 . 8 1

6

C1 2 . 0 1

7

N1 4 . 0 1

8

O1 6 . 0 0

9

F1 9 . 0 0

1 0

N e2 0 . 1 8

31 1

N a2 2 . 9 9

1 2

M g2 4 . 3 1 I I I B I V B V B V I B V I I B - - - - - - - V I I I - - - - - I B I I B

1 3

A l2 6 . 9 8

1 4

S i2 8 . 0 9

1 5

P3 0 . 9 7

1 6

S3 2 . 0 7

1 7

C l3 5 . 4 5

1 8

A r3 9 . 9 5

41 9

K3 9 . 1 0

2 0

C a4 0 . 0 8

2 1

S c4 4 . 9 6

2 2

T i4 7 . 8 8

2 3

V5 0 . 9 4

2 4

C r5 2 . 0 0

2 5

M n5 4 . 9 4

2 6

F e5 5 . 8 5

2 7

C o5 8 . 4 7

2 8

N i5 8 . 6 9

2 9

C u6 3 . 5 5

3 0

Z n6 5 . 3 9

3 1

G a6 9 . 7 2

3 2

G e7 2 . 5 9

3 3

A s7 4 . 9 2

3 4

S e7 8 . 9 6

3 5

B r7 9 . 9 0

3 6

K r8 3 . 8 0

53 7

R b8 5 . 4 7

3 8

S r8 7 . 6 2

3 9

Y8 8 . 9 1

4 0

Z r9 1 . 2 2

4 1

N b9 2 . 9 1

4 2

M o9 5 . 9 4

4 3

T c( 9 8 )

4 4

R u1 0 1 . 1

4 5

R h1 0 2 . 9

4 6

P d1 0 6 . 4

4 7

A g1 0 7 . 9

4 8

C d1 1 2 . 4

4 9

I n1 1 4 . 8

5 0

S n1 1 8 . 7

5 1

S b1 2 1 . 8

5 2

T e1 2 7 . 6

5 3

I1 2 6 . 9

5 4

X e1 3 1 . 3

65 5

C s1 3 2 . 9

5 6

B a1 3 7 . 3

5 7

L a *1 3 8 . 9

7 2

H f1 7 8 . 5

7 3

T a1 8 0 . 9

7 4

W1 8 3 . 9

7 5

R e1 8 6 . 2

7 6

O s1 9 0 . 2

7 7

I r1 9 0 . 2

7 8

P t1 9 5 . 1

7 9

A u1 9 7 . 0

8 0

H g2 0 0 . 5

8 1

T l2 0 4 . 4

8 2

P b2 0 7 . 2

8 3

B i2 0 9 . 0

8 4

P o( 2 1 0 )

8 5

A t( 2 1 0 )

8 6

R n( 2 2 2 )

78 7

F r( 2 2 3 )

8 8

R a( 2 2 6 )

8 9

A c ~( 2 2 7 )

1 0 4

R f( 2 5 7 )

1 0 5

D b( 2 6 0 )

1 0 6

S g( 2 6 3 )

1 0 7

B h( 2 6 2 )

1 0 8

H s( 2 6 5 )

1 0 9

M t( 2 6 6 )

1 1 0

- - -( )

1 1 1

- - -( )

1 1 2

- - -( )

1 1 4

- - -( )

1 1 6

- - -( )

1 1 8

- - -( )

L a n t h a n i d eS e r i e s *

5 8

C e1 4 0 . 1

5 9

P r1 4 0 . 9

6 0

N d1 4 4 . 2

6 1

P m( 1 4 7 )

6 2

S m1 5 0 . 4

6 3

E u1 5 2 . 0

6 4

G d1 5 7 . 3

6 5

T b1 5 8 . 9

6 6

D y1 6 2 . 5

6 7

H o1 6 4 . 9

6 8

E r1 6 7 . 3

6 9

T m1 6 8 . 9

7 0

Y b1 7 3 . 0

7 1

L u1 7 5 . 0

A c t i n i d e S e r i e s ~9 0

T h2 3 2 . 0

9 1

P a( 2 3 1 )

9 2

U( 2 3 8 )

9 3

N p( 2 3 7 )

9 4

P u( 2 4 2 )

9 5

A m( 2 4 3 )

9 6

C m( 2 4 7 )

9 7

B k( 2 4 7 )

9 8

C f( 2 4 9 )

9 9

E s( 2 5 4 )

1 0 0

F m( 2 5 3 )

1 0 1

M d( 2 5 6 )

1 0 2

N o( 2 5 4 )

1 0 3

L r( 2 5 7 )

Hydrogen can also form complexeswith some elements

Page 8: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Complex hydrides give you another “knob to twist”

• Complex hydrides consist of a H=M complex with additional bonding element(s)

• hydrogen complexes include:– (AlH4)– (alanates)– (BH4)–

– with Group VIII elements• features:

– ionic, covalent, metallic bonding– can have lower formation energy– can have high H/M

• 173 complex hydrides listed on hydpark.ca.sandia.gov

Page 9: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

0 2 4 6 8 10 12weight percent hydrogen

Sn(AlH4)4

Ce(AlH4)3

Zr(AlH4)4

In(AlH4)3

Ti(AlH4)4

CsAlH4

Ga(AlH4)3

Ti(AlH4)3

AgAlH4

Fe(AlH4)2

Mn(AlH4)2

Ca(AlH4)2

CuAlH4

Mg(AlH4)2

Na2LiAlH6

Be(AlH4)2

KAlH4

NaAlH4

LiAlH4

incr

easi

ng m

ol. w

eigh

tTotal hydrogen content of some alanates

Page 10: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Issues with complex hydrides

• Reversibility– role of catalyst or dopant

• Thermodynamics– pressure, temperature

• Kinetics– long-range transport of heavy species

• Cyclic stability• Synthesis• Compatibility/safety

only NaAlH4 has been studied in detail to datethis material serves as a model system to better

understand other complex hydrides

Page 11: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Brief history of NaAlH4

• Compound first reported by Finholt & Schlesinger in 1955

• Direct synthesis developed by Ashby (1958) and Clasen (1961)

• Principal use has been as a chemical reducing agent• There have been numerous characterization studies:

(Dymova, Zakharkin, Claudy, Wiberg...)• Reversibility demonstrated by use of Ti catalyst

(Bogdanovic and Schwickardi MH96, JAC 253(1997) 1)this development spurred renewed interest in using

complex hydrides as storage materials

Page 12: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Na Alanate -a reversible complex hydride

• There are five labs within USDOE program during FY02 working on complex-based hydrides, focused mainly on NaAlH4

– Univ. of Hawaii Prof. C. Jensen– Sandia Nat. Lab. Dr. K. Gross– Florida Solar Energy Center Dr. D. Slattery– United Tech. Res. Center Dr. D. Anton– Savannah River Tech. Center Dr. R. Zidan

• These labs have formed a working group tocorrdinate their activities and share information.

Page 13: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Na Alanate -a reversible complex hydride

• There are development projects outside of the US.– B. Bogdanovic, Max Planck Inst., Mulheim, Germany

• GM Opel support– A. Zaluska, L. Zaluski

• recently left McGill Univ. (Canada)• HERA (HydroQuebec, GfE, ShellHydrogen)

– Japan funding development through WENET, AIST

• Ames Laboratory has recently published some work on Li alanate

Page 14: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

catalystcatalyst3NaAlH4 Na3AlH6 + 2Al +3H2 3NaH + Al + 3/2H2

0.1

1

10

100

1000

2 2.5 3 3.51000/T

Pres

sure

(atm

)

33o C

110o C

100o C180o C 25o C

Bogdanovic, et alSandia Nat. Lab.

Thermodynamic data

NaAlH4 to Na3AlH6∆Hf = 37 kJ/mol

Na3AlH6 to NaH∆Hf = 47 kJ/mol

melting point

Page 15: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Current studies on NaAlH4

• Mechanisms– experimental– modelling

• catalysts, doping

• mechanical processing

• synthesis

• engineering properties

Page 16: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Understanding NaAlH4 mechanisms will help in developing higher capacity hydrides

NMR shows Ti doping enhances proton mobility

ESR spectracharacterisitic of Ti+3

Decomposition of undoped NaAlH4

Page 17: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Crystal structure and modeling

Ab initio calculations using VASP

Neutron diffractionRietveld refinement

Page 18: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Catalysts/Doping

• Initially, reversibility believed due to catalytic effects.recent evidence, however, indicates bulk doping.

• 3 factors affect hydride performance:(1) catalyst/dopant

• numerous compounds evaluated.• Ti-based most effective.

(2) method of introduction• mechanical mixing (dry process)• wet chemistry• precursor must react with alanate

(3) amount of catalyst/dopant

Page 19: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Catalyst/Doping level affects kineticsNaAlH4

• Initial kinetics exhibit Arrhenius behavior• different activiation energy in doped

material• activation energy constant for 2 mol%

and greater doping• faster kinetics with higher doping levels

(G. Sandrock, K. J. Gross, G. Thomas, JAC 339 (2002) 299)

• Trade-off between faster kinetics and loss of capacity with increasing doping levels

and capacity

Page 20: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Engineering Properties

• Thermal conductivity– similar to IM hydrides

cycling– stable to ~100 cycles

• material compatibility– no issues with Al, SS

• safety– sensitive to impact,

thermal environment with air exposure.

NaAlH 4 +4 mol% Ti - Temperature Profile During 125ÞC/60 atm Charging2nd Absorption

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5

Time, hrs

Outer Midplane Midradius Midplane Center Midplane

Simulated Bulk Autoignition Test (SBAT)

-10

-5

0

5

10

15

20

25

30

35

40

100 150 200 250 300 350 400 450 500

Reference Temperature, deg F

<<<E

ndot

herm

, deg

F |

Ex

othe

rm, d

egF>

>>

Page 21: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

Volumes of 5 kg H2 Systems

100

150

200

250

300

350

400

0 1 2 3 4Number of Cylindrical Tanks

Volu

me

(lite

rs) 20 cm (8 in.)

25 cm (10 in.)30 cm (12 in.)

Tank Diameter

10 cm (4 in.)15 cm (6 in.)20 cm (8 in.)

cryotank 40 cm diameter

High pressure Tanks5000 psi

5 wt.% Alanate

5 kg H2 system volumes

1200 Wh/liter

560 Wh/liter

Target: 1100 Wh/liter

Reformer2005 target

Page 22: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

System weights for 5 kg H2

0

50

100

150

200

0 1 2 3 4

Number of Cylinders

Wei

ght (

kg)

alanate

cryotank

compressed gas

5 kg H2 system weights

1100 Wh/kg

1300 Wh/kg

2500 Wh/kg7.5 wt.% tanks

Target: 2000 Wh/kgReformer

2005 target

Page 23: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

A complex hydride based on BH4– forms the

basis for a chemical hydride storage system

• Development efforts largely financed privately.– Millenium Cell

an IP company with no plans to manufacture.– Kogakuin Univ., Japan (Prof. S. Suda)

• Both based on borohydride chemistry.– each use different catalyst.

• System has 4-10 wt.% capacity• reversibility a problem with boron-based systems

NaBH4 + 2H2O → NaBO2 + 4H2 + heat

20 - 35% sol.Stabilized with

1-3% NaOH

Borax in NaOH

Proprietarycatalyst

Page 24: Complex Hydrides for Hydrogen Storage - Energy · 2006. 3. 8. · Complex Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories. G. J. Thomas Efficient

G. J. Thomas

• What’s beyond NaAlH4?– Capacity appears limited to ~5 wt.%– modifications or new complexes needed.

• Some improvements in weight, volume and cost can be realized by better container engineering.

Intermetallic hydrides were studied for thirty years before doped alanates provided a significant

improvement in capacity.

Where do we go from here?

We need to be a little faster!