1
Composite machining with abrasive waterjet (AWJ) for aerostructures The use of carbonfibre composites as a structural material for commercial airframes is increasing significantly. This material represents 50% by weight of the new Boeing 787 and 52% on the Airbus 350XWB frames. AWJ cuts offer an acceptable surface finish and high integrity. CuLng rates are faster than with convenMonal rouMng. Significant advances have been made in the hardware, soPware, and process reliability, flexibility, and producMvity, making the AWJ process a mainstream tool for airframe manufacturers and their subcontractors. The use of advanced materials such as composites has been expanding rapidly over the past three decades, especially in the aerospace industry, coincident with the introduc:on of AWJ technology to the marketplace in the 1980s. This ar:cle briefly discusses AWJ hardware, soEware, and common machining processes such as trimming and drilling of carbon fibre composites. Composite Carbonfibrebased composites for aerostructures were ini:ally used in military airframes. Now, carbonfibre composites are used extensively in commercial aircraE to produce parts such as wing components (covers, spars, leading edges, flaps), fuselage components (panels, stringers, frames, clips, doors), tail components (VTP & HTP covers, rudder, and flaps), keel beams, centre wing boxes, or belly fairings. AWJ machined components are used in the following examples: Boeing 787: wing box, wing skins, spars, stringers, fixed leading edge, Boeing 777 horizontal and ver:cal stabilizer, Airbus 350XWB: wing spars; wing skins, fuselage, Airbus 320: Empenage skins, ribs Bell Helicopter V22 Osprey: wing skins, spars, ribs, fuselage, s:ff rotors; Raytheon Premier I: fuselage; Most revolu:onary in the use of composites on commercial liners is the Boeing 787, which will contain 50% composite structure by weight and 90% by volume, and the Airbus A350XWB with similar composite usage. In comparison, the 777, which entered service just over ten years ago, contains only 10% composite structure by weight. AWJ technology offers several advantages over conven:onal machining methods. Among these advantages are: no distor:on due to limited jet forces and the nature of micromachining ac:on, no heataffected zones, higher cuang speeds than routers, reduced fixturing and tooling, no delamina:on, no subsequent processing, no splintering or fraying edges, possible process automa:on and mul:opera:ons, no dust. AWJ technology advances for composite machining There have been many advances in AWJ composite machining for airframes. These can be grouped into two basic categories: machinery (hardware) process, and soEware advances. Some of these advances are described below. Hardware Cu#ng heads The use of vacuum assist in AWJ cuang heads (see Figure 1) has been cri:cal for successful shapecuang of composites. An external vacuum source is used to draw abrasives into the cuang head before star:ng the waterjet. This insures instantaneous ac:on of the AWJ upon firing the waterjet. It has been shown that no delimita:on occurs when piercing composites using this approach. www.JECcomposites.com Mohamed Hashish, SR. Vice President, Technology at Flow Interna:onal Corpora:on Fig. 3: Composite stringer Flexible fixturing Flexible fixturing is a key component in AWJ machining cells due to the wide variety of shapes and contours of airframe parts. Flow has developed versa:le fixtures that consist of several linear actuators with vacuum cups, as well as hard loca:on surfaces and points for accurately loca:ng the part and rigidly holding it during cuang. SoPware Most airframe parts are designed using CATIA solid modeling soEware. In order to develop a CNC program to trim and drill parts, a postprocessor program is needed to translate the drawing so that the machine controller can execute it. This postprocessor also includes informa:on about the process, such as cuang speed, tool diameter, etc. This is a most cri:cal element of the AWJ machining system, as most parts are complex 3D shapes. Waterjet processes The most common waterjet processes used for airframe are trimming, shapecuang, and drilling. Trimming is typically performed on the edges, while shapecuang is performed on the interior surfaces to produce openings such as access holes or windows. Trimming and shapecu#ng A wide range of parameters has been found acceptable for cuang a wide range of thicknesses (2 to 100 mm) of graphite epoxy. The cut surfaces of befer than 10 micrometers (as typically specified by Boeing) are achieved at rela:vely high produc:vity levels. For example, a cuang speed of 500 mm/min can be used to trim a 10mm thick carbon fibre using a 0.15 mm AWJ at 3800 bar. Trimming Ibeam (stringer) composites requires special tooling such as catchers and cuang heads. Figure 3 shows a cross sec:on of a stringer with the top flange trimmed at 90 degrees with an AWJ while the bofom flange is cut at 45° chamfer. These stringers, especially the ones used in the wings, are rela:vely long, over 40 m, and thus they require special machinery to handle them during cuang. The end trimming of composite stringers (Ibeams) is another applica:on that requires a careful 5axis manipula:on strategy as not to cause the exit jet damage the opposite sides of the stringer. Figure 3 shows a trimmed sec:on from the end of a stringer. A rate of 25 mm/min can be used to cut through a 76mm thick sec:on producing an acceptable 10.16 micrometer surface finish. A most challenging cuang applica:on is the cuang of composite honeycomb structures as shown in Figure 4. Cuang this class of materials introduces addi:onal challenges, as the cuang path is not con:nuous. A cut at the bofom of a honeycomb structure appears as a series of punched holes. Cuang at a lead angle (a few degrees) has been found to be effec:ve for minimizing this effect, as shown in Figure 5. Fig. 4: Examples of honeycomb structures Fig. 2: Hybrid waterjet system Fig. 1: AWJ cu#ng head with vacuum assist. Hybrid waterjet system In order to trim and rout composites, both waterjets and solid tool routers have been incorporated on special hybrid systems, as shown in Figure 2. In these systems, two 5 axis masts are used: one for the AWJ and another for the router. Fig. 5: BoKom surface of 25mmthick honeycomb cut

Composite machining with abrasive waterjet (AWJ) for ...images.jeccomposites.com/PostersSessions/JAM12/JECAmericas12... · Composite machining with abrasive waterjet (AWJ) for aerostructures

  • Upload
    hakhanh

  • View
    227

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Composite machining with abrasive waterjet (AWJ) for ...images.jeccomposites.com/PostersSessions/JAM12/JECAmericas12... · Composite machining with abrasive waterjet (AWJ) for aerostructures

Composite  machining  with  abrasive  waterjet  (AWJ)    for  aerostructures  

The  use  of  carbon-­‐fibre  composites  as  a  structural  material  for  commercial  airframes  is  increasing  significantly.  This  material  represents  50%  by  weight  of  the  new  Boeing  787  and  52%  on  the  Airbus  350XWB  frames.  AWJ  cuts  offer  an  acceptable  surface  finish  and  high  integrity.  CuLng  rates  are  faster  than  with  convenMonal  rouMng.  Significant  advances  have  been  made  in  the  hardware,  soPware,  and  process  reliability,  flexibility,  and  producMvity,  making  the  AWJ  process  a  mainstream  tool  for  airframe  manufacturers  and  their  subcontractors.  

The  use  of  advanced  materials  such  as  composites  has  been  expanding  rapidly  over  the  past  three  decades,  especially  in  the  aerospace  industry,  coincident  with  the  introduc:on  of  AWJ  technology  to  the  marketplace  in  the  1980s.  This  ar:cle  briefly  discusses  AWJ  hardware,  soEware,  and  common  machining  processes  such  as  trimming  and  drilling  of  carbon  fibre  composites.    Composite    Carbon-­‐fibre-­‐based  composites  for  aerostructures  were  ini:ally  used  in  military  airframes.  Now,  carbon-­‐fibre  composites  are  used  extensively  in  commercial  aircraE  to  produce  parts  such  as  wing  components  (covers,  spars,  leading  edges,  flaps),  fuselage  components  (panels,  stringers,  frames,  clips,  doors),  tail  components  (VTP  &  HTP  covers,  rudder,  and  flaps),  keel  beams,  centre  wing  boxes,  or  belly  fairings.  AWJ-­‐machined  components  are  used  in  the  following  examples:  -­‐  Boeing  787:  wing  box,  wing  skins,  spars,  stringers,  fixed  leading  edge,  -­‐  Boeing  777  horizontal  and  ver:cal  stabilizer,    -­‐  Airbus  350XWB:  wing  spars;  wing  skins,    fuselage,      -­‐  Airbus  320:  Empenage  skins,  ribs  -­‐  Bell  Helicopter  V-­‐22  Osprey:  wing  skins,  spars,  ribs,  fuselage,  s:ff  rotors;  -­‐   Raytheon  Premier  I:  fuselage;    Most  revolu:onary  in  the  use  of  composites  on  commercial  liners  is  the  Boeing  787,  which  will  contain  50%  composite  structure  by  weight  and  90%  by  volume,  and  the  Airbus  A350XWB  with  similar  composite  usage.  In  comparison,  the  777,  which  entered  service  just  over  ten  years  ago,  contains  only  10%  composite  structure  by  weight.      AWJ  technology  offers  several  advantages  over  conven:onal  machining  methods.  Among  these  advantages  are:  -­‐  no  distor:on  due  to  limited  jet  forces  and  the  nature  of  micromachining  ac:on,  -­‐  no  heat-­‐affected  zones,  -­‐  higher  cuang  speeds  than  routers,  -­‐   reduced  fixturing  and  tooling,  -­‐  no  delamina:on,  -­‐  no  subsequent  processing,  -­‐  no  splintering  or  fraying  edges,  -­‐   possible  process  automa:on  and  mul:-­‐opera:ons,  -­‐   no  dust.  

AWJ  technology  advances  for  composite  machining    There  have  been  many  advances  in  AWJ  composite  machining  for  airframes.  These  can  be  grouped  into  two  basic  categories:  machinery  (hardware)  process,  and  soEware  advances.  Some  of  these  advances  are  described  below.    Hardware      Cu#ng  heads  The  use  of  vacuum  assist  in  AWJ  cuang  heads  (see  Figure  1)  has  been  cri:cal  for  successful  shape-­‐cuang  of  composites.  An  external  vacuum  source  is  used  to  draw  abrasives  into  the  cuang  head  before  star:ng  the  waterjet.  This  insures  instantaneous  ac:on  of  the  AWJ  upon  firing  the  waterjet.  It  has  been  shown  that  no  delimita:on  occurs  when  piercing  composites  using  this  approach.          

     

www.JECcomposites.com

Mohamed  Hashish,  SR.  Vice  President,  Technology    at  Flow  Interna:onal  Corpora:on  

Fig.  3:  Composite  stringer  

Flexible  fixturing  Flexible  fixturing  is  a  key  component  in  AWJ  machining  cells  due  to  the  wide  variety  of  shapes  and  contours  of  airframe  parts.  Flow  has  developed  versa:le  fixtures  that  consist  of  several  linear  actuators  with  vacuum  cups,  as  well  as  hard  loca:on  surfaces  and  points  for  accurately  loca:ng  the  part  and  rigidly  holding  it  during  cuang.      SoPware    Most  airframe  parts  are  designed  using  CATIA  solid  modeling  soEware.  In  order  to  develop  a  CNC  program  to  trim  and  drill  parts,  a  post-­‐processor  program  is  needed  to  translate  the  drawing  so  that  the  machine  controller  can  execute  it.  This  postprocessor  also  includes  informa:on  about  the  process,  such  as  cuang  speed,  tool  diameter,  etc.  This  is  a  most  cri:cal  element  of  the  AWJ  machining  system,  as  most  parts  are  complex  3-­‐D  shapes.    Waterjet  processes    The  most  common  waterjet  processes  used  for  airframe  are  trimming,  shape-­‐cuang,  and  drilling.  Trimming  is  typically  performed  on  the  edges,  while  shape-­‐cuang  is  performed  on  the  interior  surfaces  to  produce  openings  such  as  access  holes  or  windows.    Trimming  and  shape-­‐cu#ng  A  wide  range  of  parameters  has  been  found  acceptable  for  cuang  a  wide  range  of  thicknesses  (2  to  100  mm)  of  graphite  epoxy.  The  cut  surfaces  of  befer  than  10  micrometers  (as  typically  specified  by  Boeing)  are  achieved  at  rela:vely  high  produc:vity  levels.  For  example,  a  cuang  speed  of  500  mm/min  can  be  used  to  trim  a  10-­‐mm  thick  carbon  fibre  using  a  0.15  mm  AWJ  at  3800  bar.    Trimming  I-­‐beam  (stringer)  composites  requires  special  tooling  such  as  catchers  and  cuang  heads.  Figure  3  shows  a  cross  sec:on  of  a  stringer  with  the  top  flange  trimmed  at  90  degrees  with  an  AWJ  while  the  bofom  flange  is  cut  at  45°  chamfer.  These  stringers,  especially  the  ones  used  in  the  wings,  are  rela:vely  long,  over  40  m,  and  thus  they  require  special  machinery  to  handle  them  during  cuang.          

The  end  trimming  of  composite  stringers  (I-­‐beams)  is  another  applica:on  that  requires  a  careful  5-­‐axis  manipula:on  strategy  as  not  to  cause  the  exit  jet  damage  the  opposite  sides  of  the  stringer.  Figure  3  shows  a  trimmed  sec:on  from  the  end  of  a  stringer.  A  rate  of  25  mm/min  can  be  used  to  cut  through  a  76-­‐mm  thick  sec:on  producing  an  acceptable  10.16  micrometer  surface  finish.  A  most  challenging  cuang  applica:on  is  the  cuang  of  composite  honeycomb  structures  as  shown  in  Figure  4.  Cuang  this  class  of  materials  introduces  addi:onal  challenges,  as  the  cuang  path  is  not  con:nuous.  A  cut  at  the  bofom  of  a  honeycomb  structure  appears  as  a  series  of  punched  holes.  Cuang  at  a  lead  angle  (a  few  degrees)  has  been  found  to  be  effec:ve  for  minimizing  this  effect,  as  shown  in  Figure  5.  

Fig.  4:  Examples  of  honeycomb  structures  

Fig.  2:  Hybrid  waterjet  system  

Fig.  1:  AWJ  cu#ng  head  with  vacuum  assist.  

Hybrid  waterjet  system  In  order  to  trim  and  rout  composites,  both  waterjets  and  solid  tool  routers  have  been  incorporated  on  special  hybrid  systems,  as  shown  in  Figure  2.  In  these  systems,  two  5-­‐axis  masts  are  used:  one  for  the  AWJ  and  another  for  the  router.            

     

Fig.  5:  BoKom  surface  of  25-­‐mm-­‐thick  honeycomb  cut