39
Composite structures Potentials for improved performance and function integration Martin Wiedemann 32nd Risø International Symposium on Materials Science 09-06-11

Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Embed Size (px)

Citation preview

Page 1: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Composite structures Potentials for improved performance and function integration

Martin Wiedemann32nd Risø International Symposium on Materials Science09-06-11

Page 2: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 2Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Overview

Some words about the DLR – The German Aerospace CenterCore competencies at the DLR-Institute Composite Structures and Adaptive SystemsPotential contributions to further performance improvements

MaterialSimulationDesignManufacturing TechnologiesFunction IntegrationComposite Process Technologies

Conclusion and Perspectives

Page 3: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 3Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

German Aerospace Research Center Space Agency of the Federal Republic of Germany

The DLR

Page 4: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 4Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Sites and employees

6900 employees working

in 33 research institutes and

facilities

at 8 sites

and in 7 field offices.

Offices in Brussels,

Paris and Washington.

Köln-Porz

Lampoldshausen

Stuttgart

Oberpfaffenhofen

Braunschweig

Göttingen

Berlin--Adlershof

Bonn

Trauen

Hamburg Neustrelitz

Weilheim

Berlin-Charlottenburg

Sankt Augustin

Darmstadt

Page 5: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 5Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Mission

To open up new dimensions for exploring the earth and the universe, for protecting the environment and for promoting mobility, communication and security:

Research portfolio ranging from basic research to innovative applications and the products of tomorrowOperating large-scale research facilities for DLR’s own projects and as a service provider for its clients and partnersPromoting the next generation of scientistsAdvisory services to government

Page 6: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 6Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Space

Transportation

Energy

Aeronautics

DLR Research Fields

Page 7: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 7Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Executive Board

Prof. Dr-Ing. Johann-Dietrich WörnerChairman

Overall strategy and development External relations Corporate Communication ESA Council

Klaus HamacherVice Chairman

Human Resources, Finance, Corporate Organisation Quality Assurance and Infrastructure Technology Marketing Information technology Project Management Agency

Gerd Gruppe Space Agency National/ESA program

Prof. Dr-Ing. Rolf Henke (temporarily)

Space:research, programs, projects, technology transfer

Prof. Dr-Ing. Rolf Henke Aeronautics:research, programs, projects, technology transfer

Approved Design Organisation

Prof. Dr-Ing. Ulrich Wagner Transport and Energy:research, programs, projects, technology transfer

Page 8: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 8Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Program Management

Program Directorates

Institutes and Facilities

Service and resourceagreements

ProjectsPrograms

AeronauticsSpaceEnergyTransport

Know-how, Research facilities

Resources

Page 9: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 9Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

288

215

45

46

95

62 in Mio. Euro

DLR Total income 2010 – Research, operations and management tasks (excluding trustee funding from the Space Agency/ DLR Project Management Agency): 751 Mio.€

Space

Aeronautics

Transport

Energy

Space Agency / DLR Project Management Agency

Other income / earnings

Page 10: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 10Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Large-scale facilities (1)

Research aircraftResearch helicoptersCompressor and turbine test rigsGerman Space Operations Center (GSOC)German Remote Sensing Data Center (DFD)

Page 11: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 11Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

DLR Large-scale facilities (2)

Space propulsion test rigsWind tunnelsSolar furnaceSolar fieldsAutoclavesTraffic tower

Page 12: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 12Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Flight-Guidance

Aerodynamics& Flow Techn.

Robotics & Mechatronics

Materials /Structures

MaterialsResearch

Structures & Design

Comp.Struc.Adaptronics

Air Transport &Airport ResearchCombustion-

technologyPropulsion-technology

Propulsion /Combustion

Communicat. Navigation

Aerospace MedicineAero-

elasticity

AircraftSystems

FlightSystems

TechnicalThermodyn.

Technical Physics

Flight Dept.

Air Transport Air Transport SystemSystem

Atmospheric Physics

DLR Aeronautics

Page 13: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 13Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

13

Our Profile

We are experts for the design and realization of innovative lightweight systems.Our research serves to improvement:

• Safety• Cost efficiency• Functionality• Comfort• Environmental protection

Institute of Composite Structures and Adaptive Systems

Page 14: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 14Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Our Professional Competences in theInstitute of Composite Structuresand Adaptive Systems

Our Professional Competences

Page 15: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 15Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

15

We align our research along the entire process chain for building adaptable, tolerant, efficiently manufactured light weight structures.

For excellent results in the basic research and industrial application.

ManufacturingtechnologiesManufacturingtechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

Compositeprocess

technologies

CompositedesignCompositedesign

Our Professional Competences – Bricks of theProcess Chain of High Performance Lightweight Structures

Our Professional Competences

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

Multifunctionalmaterials

Page 16: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 16Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Evolution in wind turbine size

Source: Blade System Design Studies Volume II: Preliminary Blade Designs and Recommended Test Matrix; SANDIA REPORT SAND2004-0073 Unlimited ReleasePrinted June 2004

Source: www.terramagnetica.com/

E-126 65 to

Mass growth for commercial MW-scale blade designs (primarily fiberglass)

Page 17: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 17Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Production technologiesfor large parts / high volume

Efficient manufacturing and tooling concepts

Performance and production optimized lightweight design

MorphingVibration Control

DLR-FA Competencies and potentials for wind energy

Source: Gurit Cost efficient materials SHM

Multifunctionalmaterials

Structuralmechanics

Composite design

Manufacturing technologies

Adaptronics Composite processtechnologies

Sizing Methods, Effects of Defects, Testing

Page 18: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 18Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Multifunctional materials

ManufacturingtechnologiesManufacturingtechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

Compositeprocess

technologies

CompositedesignCompositedesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

MultifunctionalMultifunctionalmaterialsmaterials

• Fiber- and nanocomposites• Smart materials• Structural health monitoring • Material characterization

From materials to intelligent composites

We increase the ability of the materials!

Page 19: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 19Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

MultifunctionalMaterials

Multifunction materialsSpecific Strength and Strain of Lightweight Metals and Composite Laminates

Wood

AlMgZn

Steel (12%Cr)

UD AFK (Kevlar); 60% FVG

UD GFK (60% FVG)

UD CFK (60% FVG) HTUD CFK (60% FVG) HM

UD CFK (60% FVG) UMS

UD Flax & Phenol (50%FVG) Titan

NiCr 20 TiAl

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160

Specific Strength (Strength Length) / [km]

Spec

ific

Stiff

ness

(Str

ain

Leng

th)

E/

[km

]

Page 20: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 20Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Structure health monitoring by lamb wavesWorking principle

S0 S1 S2 A0 A1 A2

x

zSymmetric modes Anti-symmetric modes

Generation and reception of lamb-waves with piezo transducers to identify damagesVisualization of wave propagation to allow an interpretation of the complex signals received by the piezo sensor Below a certain frequency fg only two modes are excited:

Symmetric mode (S0 - longitudinal mode)Antimetric mode (A0 - bending mode)

Piezo actuator damage Piezo sensor

Page 21: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 21Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Structure health monitoring by lamb wavesExample of structure wave propagation with and without defect(visualized by ultrasonic measurement of surface displacements)

Received signal with intact stringer bonding Received signal with defect in stringer bonding

Page 22: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 22Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Structural mechanics

ManufacturingtechnologiesManufacturingtechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

Compositeprocess

technologies

CompositedesignCompositedesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralStructuralmechanicsmechanics

Multifunctionalmaterials

Multifunctionalmaterials

• Global design methods• Stability and damage

tolerance • Structural dynamics• Thermal analysis• Multi-scale analysis• Process simulation

From the phenomenon via modeling to simulation

With high fidelity to virtual reality for the entire life cycle!

Page 23: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 23Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Structural mechanics - goals

Method developmentSizing methodsEffects of defectsVirtual Structures

Full Rotor

Virtual testing

ExperimentalPhenomenaPropertiesValidation

Page 24: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 24Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Structural mechanics – effects of defects

Develop validated and reliable methods to predict the strength of composite structures with manufacturing defects for assessment of defect criticality and need for repair.

Voids Folds Waves

Page 25: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 25Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composite design

• Design and Sizing• Structure concepts and

assessment• Multi-functional structures• Shape-variable structures• Hybrid structures

From requirements via concepts to multi-functional structures

Our design for your structures!

ManufacturingtechnologiesManufacturingtechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

Compositeprocess

technologies

CompositedesignCompositeCompositedesigndesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

Multifunctionalmaterials

Page 26: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 26Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composite design - Hybrid in couplings

Composite Design

High Performance Material Combination

• Alternative coupling concepts for root-hub joint and blade segements

• Hybrid structures for local reinforcement of highly loaded areas

• Minimum tolerance design

Bearing strength (�LB) against the metal contentfor different hybrid material configurations.Source: Axel Fink, DLR-FA

Page 27: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 27Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composite design – function integration Function integration• Coupled aero-structure design• Force flow optimized design• Integration of actuators,

sensors, wiring, antennas…

Sou

rce:

ww

w.ro

torte

chni

k.at

Source: Gurit

Page 28: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 28Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composite design – CFRP nacelle

Source: Internet - VDE

Casted rotor nacelle NordexN-80 (weight 15 t)

Concept Study • Differential design• Fiber-, force flow and

load bearing optimized• CFRP root joints• Metal Hub• Shear load carrying

joints made from metal• Load transfer from

CFRP to metal via hybrid material combination

Composite Design

Page 29: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 29Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Manufacturing technologies

ManufacturingtechnologiesManufacturingManufacturingtechnologiestechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

Compositeprocess

technologies

CompositedesignCompositedesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

Multifunctionalmaterials

• New technologies for manufacturing

• Hybrid manufacturing• Assembly• Repair• Process automation

From the idea via processes to prototypes

Tailored Manufacturing Concepts

Page 30: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 30Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Manufacturing technologies - units and tooling

Manufacturing technologies

Concepts• Continuous preforming• Draping and infusion/

injection technologies• Resin flow simulation and concepts• Smart and flexible tooling• Tolerance management and high

fidelity production

Claas-Fertigungstechnik

Page 31: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 31Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Manufacturing technologies – dielectric heating

• Glasfiber composites have good dielectric properties

• Microwaves can heat resin in glasfiber laminates effectively

• The heating is contactless, selective in the resin zone and minimal since nothing else is heated

• Large parts like rotor blades can be heated by microwaves up to full polymerization

• The microwave can be used with flexible portal units for heating locally and with flexible timing

Page 32: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 32Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Process control• Tolerance management• Thickness control• Reproducibility• Adjustability • Correctability

Optical MeasurementOpticalSensors

Ultra sonic sensor measurement

Manufacturing technologies – process control

Reinharzmessung RTM 6

5,00E-07

7,00E-07

9,00E-07

1,10E-06

1,30E-06

1,50E-06

1,70E-06

1,90E-06

2,10E-06

2,30E-06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t [s]

Lauf

zeit

[s]

0

50

100

150

200

250

300

350

rel.

Am

plitu

de [%

]

SignallaufzeitAmplitudeTemperatur

Glasübergang

Aufheizphase Vernetzungsphase

80 °C

180 °C

Page 33: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 33Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Adaptronics

ManufacturingtechnologyManufacturingtechnology

AdaptronicsAdaptronicsAdaptronics Compositeprocess

technology

Compositeprocess

technology

CompositedesignCompositedesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

Multifunctionalmaterials

From functional composites to adaptive systems

• Simulation and demonstration of adaptive systems

• Active vibration control• Active noise control• Active shape control• Autarkic Systems

The adaptronics pionieers in Europe!

Page 34: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 34Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Adaptronics - Active Vibration Control

Adaptronics

www.windkraftkonstruktion.vogel.de

ww

w.w

indt

urbi

nest

ar.c

om

Challenge:Decoupling of the blade-born vibration from transmitting into the gear box or tower

Solution:

Use of active lightweight struts with integrated piezoelectric ceramic stack actuators

In combination with robust control algorithms a significant reduction of the vibration levels can be achieved

Threated – pressure plate pressure disk

Compression rodElectric wire

Rod shaftConnecting tubePiezo - actuator

Page 35: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 35Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Adaptronics - morphing

Adaptronics

Challenge:Individual twist actuation (+/-2°) of a helicopter rotor blade for noise and vibration reduction and performance improvement

Solution:Integration of anisotropic actuation in the rotor blade skinDevelopment, manufacturing and test of a model rotor blade in a centrifugal and wind tunnel test (proof of concept, validation)

Adaptive rotor

ActuatorSensor

Activetwist

Activetwist

Sour

ce: H

. Jan

ocha

; Ada

ptro

nics

and

Smar

t St

ruct

ures

; Sp

ringe

r-V

erla

g, B

erlin

Hei

delb

erg

New

Yor

k; 1

999;

ISBN

3-5

40-6

1484

-2

Page 36: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 36Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Adaptronics

Adaptronics - morphing

Main lever of the actuation mechanism

Drive shaft and bearing at front spar

Interface elements

Omega shaped stiffeners

Hinged Struts

Fiber reinforced skin

Front Spar

0 100 200 300 400 500 600-250

-200

-150

-100

-50

0

50

100

150

200

x-axis in mm

z-a

xis

in m

m

FE undeformedFE deformedMeasured deformed

Page 37: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 37Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composite process technologies

ManufacturingtechnologiesManufacturingtechnologies

AdaptronicsAdaptronics Compositeprocess

technologies

CompositeCompositeprocessprocess

technologiestechnologies

CompositedesignCompositedesign

TheThe aimaim: : adaptable, tolerant, adaptable, tolerant, efficiently manufactured, efficiently manufactured, lightweight structureslightweight structures

StructuralmechanicsStructuralmechanics

Multifunctionalmaterials

Multifunctionalmaterials

• Automated FP und TL• Online QA within Autoclaves• Automated Manufacturing

for mass-production• Simulation methods for

maximum process reliability und process assessment

For sustainable processes

Research with industrialdimension

Page 38: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 38Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Composites Process Technologies Cooperating robots working on large parts

Grofi Anlage im ZLP Stade (DLR)Composite Process

Technologies

Winding with robots

Page 39: Composite Structures - Potentials 3 - elib.dlr.deelib.dlr.de/71815/1/Composite_Structures_-_Potentials.pdf · mechanics Composite design Manufacturing technologies Adaptronics

Slide 39Composite Structures – Potentials for further improvement and function integration, M. Wiedemann, 09-06-2011

Conclusion on potentialsfor future improvements and function integration

Hybrids and CFRP materials allow more lightweight and efficient design Structural health monitoring by lamb waves with integrated networks help to ease maintenanceBetter methods for simulation may replace full scale testing partiallyIntensive simulation of defects allow better assessment of criticalitiesWeight and material saving potentials in design of blades and nacelle Further function integration into the structure can be usedFaster and less energy consuming manufacturing technologies are availableFlexible toolings allow savings in manufacturingProcess control for better quality is in development Active vibration control can be integrated into the structureActive morphing of structure profiles with integrated functional materials is possible, for example for gust loads alleviationProcess technologies for fast fiber layup in large structures are in development