1
www.postersession.com Case* Results [1] [2] A B Case* Structure A B Knowledge for Tomorrow Wissen für Morgen Comprehensive numerical tool for performance evaluation and design of porous ceramic microstructures in solar thermal application Raffaele Capuano 1 ; Thomas Fend 2 ; Bernhard Hoffschmidt 2 1 - German Aerospace Center - Karl-Heinz-Beckurts-Str. 13, 52428 Jülich, Germany 2 - German Aerospace Center - Linder Höhe, 51147 Köln, Germany Contact: [email protected] Institute of Solar Research Heliostats Solar receiver Steam Condenser Turbine Introduction & main aim Porous ceramic structures like extruded monoliths, foams and combined micro-shapes have been tested during the last years as thermal absorbers in open volumetric solar receivers to be used in solar tower power plants. Incoming radiation Incoming air flow Porous structure Hot air exit flow In order to have high efficiency, material structure parameters and coefficients (porosity, specific surface area, optical properties) must be optimized. Numerical optimization has to be carried out for the designing procedure. Due to the complexity of the structure, numerical simulation can be computationally heavy and slow optimized numerical approach needed Scientific approach Comprehensive numerical tool: discrete models for effective properties evaluation + continuum-based numerical simulation for absorber performance evaluation Discrete numerical tool s- Effective properties evaluation Discrete representation of porous absorber unit element. Carbon-based Honeycomb Monoliths – Single channel Carbon-based foams – Weaire & Phelan foam cell 0 10 20 30 40 50 60 0 0,5 1 1,5 2 Nusselt number Inlet flow velocity [m/s] Sim. Result - Foam cell 76% por. Dittus-Boelter correlation Exp. Result - Foam cell 76% (Wu et al.) Convective heat transfer analysis Effective parameter: Nusselt number Effective parameter: Extinction coefficient π 2 π 1 Radiative heat transfer analysis Continuum-based numerical tool – Absorber performance evaluation Homogeneous representation of porous absorber by means of effective properties. 2 cm 2 cm 14 cm 14 cm 14 cm 14 cm Continuum representation Heat transfer coefficient Specific area Air inlet volume Homogeneous volume Channel depth [m] 0 0,01 0,02 0,03 0,04 0,05 1 0,75 0,5 0,25 0 Discrete Ordinates (DO) Ray-tracer(STRAL) Attenuation curve Channel depth [m] 0 0,002 0,004 0,006 0,008 0,01 400 350 300 350 200 150 100 50 0 ξ Incoming air flow Single channel Foam cell Cont.Model Hoffsch. Pitz-Paal Fluid outlet temperature [K] Efficiency Cont.Model Hoffsch. Pitz-Paal Fluid outlet temperature [K] Efficiency Cont.Model Experiment Cont.Model Experiment 1200 800 400 0 1200 800 400 0 1 0,5 0 1 0,5 0 1048 1046 1050 0,777 0,775 0,779 979 976 0,710 0,709 * Different environmental conditions T volume distribution 1179 1050 Channel depth [m] 0 0,01 0,02 0,03 0,04 0,05 1400 1200 1000 800 600 400 200 0 Temperature linear distribution Temperature [K] T volume distribution 1163 979 Channel depth [m] 0 0,01 0,02 0,03 0,04 0,05 0,06 1400 1200 1000 800 600 400 200 0 Temperature linear distribution Temperature [K] Solid temperature Fluid temperature Solid temperature Fluid temperature y (STRAL) = 0.9895 e -231.6x y (DO) = 0.9923 e -220.1x (STRAL) = 231.6 [1/m] (DO) = 220.1 [1/m] Irradiation directions Extinction coefficient (ξ) Conclusions In the present work, a comprehensive numerical tool for the design and optimization of porous structures has been developed leading to a faster and computationally lighter complete numerical simulation. With the combined use of continuum and discrete approach, it is now possible to predict with a good approximation the thermodynamic performances of ceramic absorbers and, furthermore, to optimize their shape in order to reduce the losses and to enhance the heat transfer efficiency in high temperature solar applications. Acknowledgements This work was carried out with financial support from the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia (MIWF NRW), Germany under contract 323-2010-006 (Start-SF). References [1] Hoffschmidt, B.: Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger, Deutsches Zentrum für Luft- und Raumfahrt e.V., RWTH Dissertation,1996. [2] Pitz-Paal, R.: Entwicklung eines selektiven, volumetrischen Receivers für Solarturmkraftwerke- Parameterunterschungen und exergetische Bewertung, Dissertation. DLR-Forschungsbericht,1993. Gordon Research Conferences - Ceramics, Solid State Studies in Mount Holyoke College, South Hadley, MA, U.S. - July 20-25, 2014

Comprehensive numerical tool for performance evaluation ... Gordon Research Conference - final... · Carbon-based Honeycomb Monoliths – Single channel Carbon-based foams – Weaire

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comprehensive numerical tool for performance evaluation ... Gordon Research Conference - final... · Carbon-based Honeycomb Monoliths – Single channel Carbon-based foams – Weaire

www.postersession.com

Case* Results [1] [2]

A –

B –

Case* Structure

A –

B –

Knowledge for Tomorrow

Wissen für Morgen

Comprehensive numerical tool for performance evaluation and design of porous ceramic microstructures in solar thermal application

Raffaele Capuano 1; Thomas Fend 2; Bernhard Hoffschmidt 2

1 - German Aerospace Center - Karl-Heinz-Beckurts-Str. 13, 52428 Jülich, Germany 2 - German Aerospace Center - Linder Höhe, 51147 Köln, Germany

Contact: [email protected]

Institute of Solar Research

Heliostats

Solar receiver Steam

Condenser

Turbine

Introduction & main aim Porous ceramic structures like extruded monoliths, foams and combined micro-shapes have been tested during the last years as thermal absorbers in open volumetric solar receivers to be used in solar tower power plants.

Incoming radiation

Incoming air flow

Porous structure

Hot air exit flow

In order to have high efficiency, material structure parameters and coefficients (porosity, specific surface area, optical properties) must be optimized.

Numerical optimization has to be carried out for the designing procedure.

Due to the complexity of the structure, numerical simulation can be computationally heavy and slow optimized numerical approach needed

Scientific approach Comprehensive numerical tool: discrete models for effective properties evaluation + continuum-based numerical simulation for absorber performance evaluation

Discrete numerical tool s- Effective properties evaluation

Discrete representation of porous absorber unit element.

Carbon-based Honeycomb Monoliths – Single channel Carbon-based foams – Weaire & Phelan foam cell

0

10

20

30

40

50

60

0 0,5 1 1,5 2

Nu

sse

lt n

um

be

r

Inlet flow velocity [m/s]

Sim. Result - Foam cell 76% por.

Dittus-Boelter correlation

Exp. Result - Foam cell 76% (Wu et al.)

Convective heat transfer analysis

Effective parameter: Nusselt number

Effective parameter: Extinction coefficient

π2

π1

Radiative heat transfer analysis

Continuum-based numerical tool – Absorber performance evaluation

Homogeneous representation of porous absorber by means of effective properties.

2 cm

2 cm

14 cm

14 cm

14 cm

14 cm

Continuum representation Heat transfer

coefficient Specific area

Air inlet volume

Homogeneous volume

Channel depth [m]

0 0,01 0,02 0,03 0,04 0,05

1

0,75

0,5

0,25

0

Discrete Ordinates (DO)

Ray-tracer (STRAL)

Attenuation curve

Channel depth [m]

0 0,002 0,004 0,006 0,008 0,01

400

350

300

350

200

150

100

50

0

ξ

Incoming air flow

Single channel

Foam cell

Cont.Model Hoffsch. Pitz-Paal

Fluid outlet temperature [K] Efficiency

Cont.Model Hoffsch. Pitz-Paal

Cont.Model Experimental Cont.Model Experimental

Fluid outlet temperature [K] Efficiency

Cont.Model Experiment Cont.Model Experiment

1200

800

400

0

1200

800

400

0

1

0,5

0

1

0,5

0

1048 1046 1050 0,777 0,775 0,779

979 976 0,710 0,709

* Different environmental conditions

T volume distribution 1179

1050

Channel depth [m] 0 0,01 0,02 0,03 0,04 0,05

1400

1200

1000

800

600

400

200

0

Temperature linear distribution

Tem

per

ature

[K

]

T volume distribution 1163

979

Channel depth [m] 0 0,01 0,02 0,03 0,04 0,05 0,06

1400

1200

1000

800

600

400

200

0

Temperature linear distribution

Tem

per

ature

[K

] Solid temperature

Fluid temperature

Solid temperature

Fluid temperature

y(STRAL) = 0.9895 e -231.6x y(DO) = 0.9923 e -220.1x

(STRAL) = 231.6 [1/m] (DO) = 220.1 [1/m]

Irradiation directions Extinction coefficient (ξ)

Conclusions In the present work, a comprehensive numerical tool for the design and optimization of porous structures has been developed leading to a faster and computationally lighter complete numerical simulation. With the combined use of continuum and discrete approach, it is now possible to predict with a good approximation the thermodynamic performances of ceramic absorbers and, furthermore, to optimize their shape in order to reduce the losses and to enhance the heat transfer efficiency in high temperature solar applications.

Acknowledgements This work was carried out with financial support from the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia (MIWF NRW), Germany under contract 323-2010-006 (Start-SF).

References [1] Hoffschmidt, B.: Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger, Deutsches Zentrum für Luft- und Raumfahrt e.V., RWTH Dissertation,1996. [2] Pitz-Paal, R.: Entwicklung eines selektiven, volumetrischen Receivers für Solarturmkraftwerke- Parameterunterschungen und exergetische Bewertung, Dissertation. DLR-Forschungsbericht,1993.

Gordon Research Conferences - Ceramics, Solid State Studies in Mount Holyoke College, South Hadley, MA, U.S. - July 20-25, 2014