66
Computational Solid Mechanics Computational Plasticity C. Agelet de Saracibar ETS Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña (UPC), Barcelona, Spain International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain Chapter 2. 1D Plasticity Algorithms

Computational Solid Mechanics

  • Upload
    others

  • View
    37

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computational Solid Mechanics

Computational Solid Mechanics Computational Plasticity

C. Agelet de Saracibar ETS Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña (UPC), Barcelona, Spain

International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain

Chapter 2. 1D Plasticity Algorithms

Page 2: Computational Solid Mechanics

Contents 1. Introduction 2. 1D Rate independent plasticity algorithms

1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

3. 1D Rate dependent plasticity algorithms 1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

4. 1D Computational plasticity assignment

1D Plasticity Algorithms > Contents

Contents

April 14, 2015 Carlos Agelet de Saracibar 2

Page 3: Computational Solid Mechanics

Contents 1. Introduction 2. 1D Rate independent plasticity algorithms

1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

3. 1D Rate dependent plasticity algorithms 1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

4. 1D Computational plasticity assignment

1D Plasticity Algorithms > Contents

Contents

April 14, 2015 Carlos Agelet de Saracibar 3

Page 4: Computational Solid Mechanics

1D Plasticity Algorithms > Introduction

Time integration algorithm

April 14, 2015 Carlos Agelet de Saracibar 4

pnE 1

pn+E

1n+E

Time integration algorithm

Page 5: Computational Solid Mechanics

Contents 1. Introduction 2. 1D Rate independent plasticity algorithms

1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

3. 1D Rate dependent plasticity algorithms 1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

4. 1D Computational plasticity assignment

1D Plasticity Algorithms > Contents

Contents

April 14, 2015 Carlos Agelet de Saracibar 5

Page 6: Computational Solid Mechanics

1. Additive split of strains

2. Constitutive equations

3. Associative plastic flow rule

4. Yield function

5. Kuhn-Tucker loading/unloading conditions

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

1D Rate independent plasticity model

April 14, 2015 Carlos Agelet de Saracibar 6

( ) { } { }, , , diag , ,ee e q q E K Hψ σ= ∂ = =

ES E CE S: , C :=

{ } { } { }: : ,0,0 , : , , , : , ,e p p p e eε ε ξ ξ ε ξ ξ= + = = = − −E E E , E E E

( )p fγ= ∂

SE S

( ) Yf q qσ σ= − − +S

( ) ( )0, 0, 0f fγ γ≥ ≤ =S S

Page 7: Computational Solid Mechanics

Associative plastic flow rule: plastic strains at time n+1

Using a Backward-Euler (BE) time integration scheme yields,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 7

( )p fγ= ∂

SE S

( )11 1 1n

p pn n n nfγ

++ + += + ∂SE E S

( )

( )

1 1 1 1

1 1

1 1 1 1

sgn

sgn

p pn n n n n

n n n

n n n n n

q

q

ε ε γ σ

ξ ξ γ

ξ ξ γ σ

+ + + +

+ +

+ + + +

= + − = + = − −

Page 8: Computational Solid Mechanics

Constitutive equations: stress state at time n+1

The time-discrete constituve equation at time n+1 takes the form,

Substituting the plastic strain variables at time n+1 yields,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 8

( ) ( ) { }, diag , ,ee e p E K Hψ= ∂ = = −

ES E CE C E E C :=

( )1 1 1 1e p

n n n n+ + + += = −S CE C E E

( )( )( ) ( )

1

1

1 1 1 1

1 1 1

n

n

pn n n n n

pn n n n

f

f

γ

γ+

+

+ + + +

+ + +

= − − ∂

= − − ∂

S

S

S C E E S

C E E C S

Page 9: Computational Solid Mechanics

Trial state at time n+1 The trial state at time n+1 is defined by freezing the plastic behaviour at the time step, yielding

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 9

( ) ( )( )

,1

, ,1 1 1

, ,1 1 1 1 1

1 1

:

:

:

:

p trial pn ne trial p trialn n n

trial e trial p trial pn n n n n n

trial trialn nf f

+

+ + +

+ + + + +

+ +

=

= −

= = − = −

=

E E

E E E

S CE C E E C E E

S

Page 10: Computational Solid Mechanics

Return mapping algorithm The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 10

( )11 1 1 1n

trialn n n nfγ

++ + + += − ∂SS S C S

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

E q

q q Kq q H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − − = − = + −

Page 11: Computational Solid Mechanics

1. Additive split of strains at time n+1

2. Stresses at time n+1. Return mapping algorithm

3. Plastic internal variables at time n+1

4. Yield function at time n+1

5. Kuhn-Tucker loading/unloading conditions at time n+1

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 11

( )1 1 1 1 1:n n n n Y nf f q qσ σ+ + + + += = − − +S

1 1 1 10, 0, 0n n n nf fγ γ+ + + +≥ ≤ =

( )11 1 1 1n

trialn n n nfγ

++ + + += − ∂SS S C S

1 1 1: e pn n n+ + += +E E E

( )11 1 1n

p pn n n nfγ

++ + += + ∂SE E S

Page 12: Computational Solid Mechanics

Theorem 1. Elastic step/plastic step If the yield function is convex and the constitutive matrix is definite-positive, the following condition holds,

and Kuhn-Tucker loading/unloading conditions can be decided just in terms of the trial yield function according to,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 12

( ) ( )1 1trialn nf f+ +≥S S

( )( )

1 1

1 1

Elastic step

Plastic s

0 0

0 t0 ep

trialn n

trialn n

f

f

γ

γ

+ +

+ +

< ⇒ =

> ⇒ >

S

S

Page 13: Computational Solid Mechanics

Proof 1. Convexity of the yield function yields,

Using the return mapping equation, yields,

Definite-positiveness of the constitutive matrix yields,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 13

( ) ( ) ( ) ( )11 1 1 1 1n

trial trialn n n n nf f f

++ + + + +− ≥ − ∂SS S S S S

( ) ( ) ( ) ( )1 11 1 1 1 1n n

trialn n n n nf f f fγ

+ ++ + + + +− ≥ ∂ ∂S SS S S C S

( )11 1 1 1n

trialn n n nfγ

++ + + += − ∂SS S C S

( ) ( ) ( ) ( )( ) ( )

1 11 1 1 1 1

1 1

0n n

trialn n n n n

trialn n

f f f f

f f

γ+ ++ + + + +

+ +

− ≥ ∂ ∂ ≥

S SS S S C S

S S

Page 14: Computational Solid Mechanics

Proof 2. The trial yield function at time n+1 determines the discrete plastic loading/elastic unloading conditions according to,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 14

( )( ) ( )

( )( )

( )( ) ( )

1

1

1 1

1 1 1

1

1 1 1 1

1 1 1 1

if 0 then

0

0 Elastic step

Plastic

0

else if 0 then

0, 0 0 ste

en if

p

d

n

trialn

trialn n

n n n

trialn

trialn n n n

n n n n

f

f f

f

f

f

f f

γ γ

γ

γ γ+

+

+ +

+ + +

+

+ + + +

+ + + +

<

≤ <

= ⇒ =

= − ∂

> = ⇒ =

S

S

S S

S

S

S S C S

S S

Page 15: Computational Solid Mechanics

Theorem 2. Closest-point-projection The stress state at time n+1 is the closest-point-projection (cpp) of the trial stress state at n+1 onto the space of admissible stresses, measured in the complementary energy norm, where the complementary energy is given by,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 15

( )1 1arg min trialn n σ+ += Ξ − ∀ ∈S S S S E

( )( ) ( )

1

211 12

1 11 12

trial trialn n

trial trialn n

−+ +

−+ +

Ξ − = −

= − −C

S S S S

S S C S S

Page 16: Computational Solid Mechanics

Proof 1. The stress state at time n+1, the closest-point-projection of the trial stress state at n+1 onto the space of admissible stresses, is the solution of the following constrained minimization problem,

Using the Lagrange multipliers method, the constrained minimization problem can be transformed into an unconstrained minimization problem defined as,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 16

( )1 1arg min trialn n σ+ += Ξ − ∀ ∈S S S S E

( ) ( ) ( )1 1, :trial trialn n fγ γ+ += Ξ − +S S; S S SL

( )1 1 1arg min ,trialn n nγ+ + += ∀S S S; SL

Page 17: Computational Solid Mechanics

The optimality conditions of the unconstrained minimization problem read, The return mapping algorithm arises as the solution of the unconstrained minimization problem yielding,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorthms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 17

( ) ( ) ( )

( ) ( )1 1 1

1

1 1 1 1 1 1 1

11 1 1 1

, :

: 0

;n n n

n

trial trialn n n n n n n

trialn n n n

f

f

γ γ

γ+ + +

+

+ + + + + + +

−+ + + +

∂ = ∂ Ξ − + ∂

= − − + ∂ =

S S S

S

S S S S S

C S S S

L

( ) ( )1 1 1 10, 0, 0n n n nf fγ γ+ + + +≥ ≤ =S S

( )11 1 1 1n

trialn n n nfγ

++ + + += − ∂SS S C S

Page 18: Computational Solid Mechanics

Return mapping algorithm The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 18

( )11 1 1 1n

trialn n n nfγ

++ + + += − ∂SS S C S

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

E q

q q Kq q H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − − = − = + −

Page 19: Computational Solid Mechanics

The solution for the return mapping algorithm yields,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 19

( ) ( )1 1 1 1 1 1 1sgntrial trialn n n n n n nq q E H qσ σ γ σ+ + + + + + +− = − − + −

( ) ( )( ) ( )

1 1 1 1 1 1 1 1

1 1 1

sgn sgn

sgn

trial trial trial trialn n n n n n n n

n n n

q q q q

E H q

σ σ σ σ

γ σ+ + + + + + + +

+ + +

− − = − −

− + −

( )( ) ( )( )

1 1 1 1 1

1 1 1 1

sgn

sgnn n n n n

trial trial trial trialn n n n

q E H q

q q

σ γ σ

σ σ

+ + + + +

+ + + +

− + + − =

= − −

( )( ) ( )

1 1 1 1 1

1 1 1 1sgn sgn

trial trialn n n n n

trial trialn n n n

q E H q

q q

σ γ σ

σ σ

+ + + + +

+ + + +

− + + = −

− = −

Page 20: Computational Solid Mechanics

For the non-trivial case (plastic loading), using the discrete Kuhn-Tucker loading/unloading conditions, the discrete plastic multiplier (or discrete plastic consistency parameter) reads,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 20

( )1 1 1 1if 0 then , , 0n n n nf q qγ σ+ + + +> =

( )( )

( ) ( )

1 1 1 1 1 1

1 1 1 1

1 1 1 1

, ,

, , 0

n n n n n Y n

trial trial trialn n n Y n

trial trial trialn n n n

f q q q q

q E K H q

f q q E K H

σ σ σ

σ γ σ

σ γ

+ + + + + +

+ + + +

+ + + +

= − − +

= − − + + − +

= − + + =

( ) ( )11 1 1 1, , 0trial trial trial

n n n nE K H f q qγ σ−+ + + += + + >

( ) ( )1 1 1 1 1 1 1 10, , , 0, , , 0n n n n n n n nf q q f q qγ σ γ σ+ + + + + + + +≥ ≤ =

Page 21: Computational Solid Mechanics

The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 21

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

E q

q q Kq q H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − − = − = + −

( ) ( ) ( )( ) ( )( ) ( )

11 1 1 1 1 1 1

11 1 1 1 1

11 1 1 1 1 1 1

, , sgn

: , ,

: , , sgn

trial trial trial trial trial trialn n n n n n n

trial trial trial trialn n n n n

trial trial trial trial trialn n n n n n n

E K H f q q E q

q q E K H f q q K

q q E K H f q q H q

σ σ σ σ

σ

σ σ

−+ + + + + + +

−+ + + + +

−+ + + + + + +

= − + + −

= − + +

= + + + −( )trial

Page 22: Computational Solid Mechanics

The update of the plastic internal variables takes the form,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 22

( )

( )

1 1 1 1

1 1

1 1 1 1

sgn

sgn

p pn n n n n

n n n

n n n n n

q

q

ε ε γ σ

ξ ξ γ

ξ ξ γ σ

+ + + +

+ +

+ + + +

= + − = + = − −

( ) ( ) ( )( ) ( )( ) ( ) ( )

11 1 1 1 1 1

11 1 1 1

11 1 1 1 1 1

, , sgn

, ,

, , sgn

p p trial trial trial trial trialn n n n n n n

trial trial trialn n n n n

trial trial trial trial trialn n n n n n n

E K H f q q q

E K H f q q

E K H f q q q

ε ε σ σ

ξ ξ σ

ξ ξ σ σ

−+ + + + + +

−+ + + +

−+ + + + + +

= + + + − = + + +

= − + + −

Page 23: Computational Solid Mechanics

Consistent elastoplastic tangent modulus The consistent elastoplastic tangent modulus is computed taking the variation of the stress at time n+1, yielding, where

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Consistent elastoplastic tangent modulus

April 14, 2015 Carlos Agelet de Saracibar 23

( ) ( )11 1 1 1 1sgntrial trial trial trial

n n n n nE K H f E qσ σ σ−+ + + + += − + + −

( ) ( )11 1 1 1 1sgntrial trial trial trial

n n n n nd d E K H df E qσ σ σ−+ + + + += − + + −

( )( ) ( )

( ) ( )

,1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

sgn

sgn sgn

trial e trial pn n n n n

trial trial trial trial trial trial trialn n n n n n n

trial trial trial trial trialn n n n n n

d Ed E d E d

df d q q d q

q d q E d

σ ε ε ε ε

σ σ σ

σ σ σ ε

+ + + +

+ + + + + + +

+ + + + + +

= = − =

= − = − −

= − = −

Page 24: Computational Solid Mechanics

The consistent elastoplastic tangent modulus takes the form,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Consistent elastoplastic tangent modulus

April 14, 2015 Carlos Agelet de Saracibar 24

( ) ( )

( ) ( ) ( )( )( )

11 1 1 1 1

1 11

1 1 1 1 1

11 1

sgn

sgn sgn

1

trial trial trial trialn n n n n

n n

trial trial trial trialn n n n n

n n

d d E K H df E q

d E d

E K H q E d E q

d E E E K H d

σ σ σ

σ ε

σ ε σ

σ ε

−+ + + + +

+ +

−+ + + + +

−+ +

= − + + −

=

− + + − −

= − + +

( )( )11 1, : 1ep ep

n nd E d E E E E K Hσ ε −+ += = − + +

Page 25: Computational Solid Mechanics

1D Plasticity algorithm Step 1. Given the strain at time n+1 (strain driven problem), and the stored plastic internal variables at time n (plastic internal variables database) Step 2. Compute the trial state at time n+1

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 25

( ) ( )

,1

, ,1 1 1

, ,1 1 1 1 1

1 1 1 1

:

:

:

:

p trial pn ne trial p trialn n n

trial e trial p trial pn n n n n n

trial trial trial trialn n n Y nf q qσ σ

+

+ + +

+ + + + +

+ + + +

=

= −

= = − = −

= − − +

E E

E E E

S CE C E E C E E

Page 26: Computational Solid Mechanics

Step 3. Check the trial yield function at time n+1 Step 4. Compute discrete plastic multiplier at time n+1

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 26

( ) ( )1 1 1if 0 then set , and exittrialtrial ep

n n nf E E+ + +

≤ • = • =

( ) 11 1

trialn nE K H fγ −+ += + +

Page 27: Computational Solid Mechanics

Step 5. Return mapping algorithm (closest-point-projection)

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 27

( ) ( )( )( ) ( )

11 1 1 1 1

11 1 1

11 1 1 1 1

sgn

:

: sgn

trial trial trial trialn n n n n

trial trialn n n

trial trial trial trialn n n n n

E K H f E q

q q E K H f K

q q E K H f H q

σ σ σ

σ

−+ + + + +

−+ + +

−+ + + + +

= − + + − = − + +

= + + + −

( )1

1 1 1 1trialn

trial trialn n n nfγ

++ + + += − ∂

SS S C S

Page 28: Computational Solid Mechanics

Step 6. Update plastic internal variables database at time n+1 Step 7. Compute the consistent elastoplastic tangent modulus

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 28

( ) ( )( )( ) ( )

11 1 1 1

11 1

11 1 1 1

sgn

sgn

p p trial trial trialn n n n n

trialn n n

trial trial trialn n n n n

E K H f q

E K H f

E K H f q

ε ε σ

ξ ξ

ξ ξ σ

−+ + + +

−+ +

−+ + + +

= + + + − = + + +

= − + + −

( )( )1: 1epE E E E K H −= − + +

( )1

1 1 1trialn

p p trialn n n nfγ

++ + += + ∂

SE E S

Page 29: Computational Solid Mechanics

Nonlinear isotropic hardening Exponential saturation law + linear hardening

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 29

( ) ( ):q ξ ξψ ξ ξ′= −∂ = −∂ Π = −Π

( ) ( )( ): : 1 expYq Kξψ σ σ δξ ξ∞= −∂ = − − − − −

( ) ( ) ( )( )1 expY Kξ σ σ δξ ξ∞′Π = − − − +

Page 30: Computational Solid Mechanics

Time discrete nonlinear isotropic hardening

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 30

( ) ( )( ) ( )

( ) ( )

1 1 1

1 1

1 1 1

:

:

:

n n n n

trial trialn n n n

trialn n n n n

q

q q

q q

ξ ξ γ

ξ ξ

ξ γ ξ

+ + +

+ +

+ + +

′ ′= −Π = −Π +

′ ′= −Π = −Π =

′ ′= −Π + +Π

Page 31: Computational Solid Mechanics

Plastic loading: Yield function at time n+1 Nonlinear residual scalar equation on the plastic multiplier at time n+1

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 31

( ) ( ) ( )( )1 1 1 1 0trialn n n n n nf f E Hγ ξ γ ξ+ + + +′ ′= − + − Π + −Π =

( )( ) ( ) ( )( )

1 1 1

1 1 1 1

: 0

: 0n n n

trialn n n n n n

g g f

g f E H

γ

γ ξ γ ξ

+ + +

+ + + +

= = =

′ ′= − + − Π + −Π =

Page 32: Computational Solid Mechanics

Newton-Raphson iterative solution algorithm Step 1. Initialize iteration counter and plastic multiplier Step 2. Compute the residual g at time n+1, iteration k Step 3. While the absolute value of the current residual at time n+1, iteration k, is greater than a given tolerance Step 4. Solve the linarized equation Step 5. Update the plastic multiplier at time n+1, iteration k+1 Step 6. Compute the residual g at time n+1, iteration k+1 Step 7. Increment iteration counter k=k+1 and go to Step 3

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 32

10, 0knk γ += =

1 1 1 0k k kn n ng Dg γ+ + ++ ∆ =

11 1 1

k k kn n nγ γ γ++ + += + ∆

Page 33: Computational Solid Mechanics

Newton-Raphson iterative solution algorithm

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 33

( ) ( ) ( )( )( ) ( )

( )( )

1 1 1 1

1 1 1 1 1

1 1

11 1 1

:

:

:

:

k trial k kn n n n n n

k k k k kn n n n n n

k kn n n

k k kn n n

g f E H

Dg E H

E H

γ ξ γ ξ

γ γ ξ γ γ

ξ γ γ

γ γ γ

+ + + +

+ + + + +

+ +

++ + +

′ ′= − + − Π + −Π

′′∆ = − + ∆ −Π + ∆

′′= − +Π + + ∆

∆ = −

1 1 1 0k k kn n ng Dg γ+ + ++ ∆ =

Page 34: Computational Solid Mechanics

Consistent elastoplastic tangent modulus The consistent elastoplastic tangent modulus is computed taking the variation of the stress at time n+1, yielding, where the variations of the trial stress tensor, and plastic multiplier, at time n+1, have to be computed.

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 34

( )( )

1 1 1 1 1

1 1 1 1 1

sgn

sgn

trial trial trialn n n n n

trial trial trialn n n n n

E q

d d d E q

σ σ γ σ

σ σ γ σ

+ + + + +

+ + + + +

= − −

= − −

Page 35: Computational Solid Mechanics

The variation of the plastic multiplier at time n+1 is computed setting the variation of the residual at time n+1 equal to zero,

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 35

( ) ( ) ( )( )( ) ( )

( )( )( )( )

1 1 1 1

1 1 1 1 1

1 1 1

1

1 1 1

: 0

:

: 0

trialn n n n n n

trialn n n n n n

trialn n n n

trialn n n n

g f E H

dg df d E H d

df d E H

d E H df

γ ξ γ ξ

γ ξ γ γ

γ ξ γ

γ ξ γ

+ + + +

+ + + + +

+ + +

+ + +

′ ′= − + − Π + −Π =

′′= − + −Π +

′′= − +Π + + =

′′= +Π + +

Page 36: Computational Solid Mechanics

Substituting the variations shown before, the following discrete tangent constitutive equation is obtained, where the consistent elastoplastic tangent modulus at time n+1 is given by

1D Plasticity Algorithms > 1D Rate Independent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 36

1 1 1ep

n n nd E dσ ε+ + +=

( )( )( )1

1 11epn n nE E E E Hξ γ

+ +′′= − +Π + +

Page 37: Computational Solid Mechanics

Contents 1. Introduction 2. 1D Rate independent plasticity algorithms

1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

3. 1D Rate dependent plasticity algorithms 1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

4. 1D Computational plasticity assignment

1D Plasticity Algorithms > Contents

Contents

April 14, 2015 Carlos Agelet de Saracibar 37

Page 38: Computational Solid Mechanics

1. Additive split of strains

2. Constitutive equations

3. Associative plastic flow rule

4. Yield function

5. Plastic multiplier

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

1D Rate dependent plasticity model

April 14, 2015 Carlos Agelet de Saracibar 38

( ) { } { }, , , diag , ,ee e q q E K Hψ σ= ∂ = =

ES E CE S: , C :=

{ } { } { }: : ,0,0 , : , , , : , ,e p p p e eε ε ξ ξ ε ξ ξ= + = = = − −E E E , E E E

( )p fγ= ∂

SE S

( ) Yf q qσ σ= − − +S

( )1 0fηγ = ≥S

Page 39: Computational Solid Mechanics

Associative plastic flow rule: plastic strains at time n+1

Using a Backward-Euler (BE) time integration scheme yields,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 39

( )p fγ= ∂

SE S

( )11 1 1n

p pn n n nt fγ

++ + += + ∆ ∂SE E S

Page 40: Computational Solid Mechanics

Constitutive equations: stress state at time n+1

The time-discrete constituve equation at time n+1 takes the form,

Substituting the plastic strains at time n+1 yields,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 40

( ) ( ) { }, diag , ,ee e p E K Hψ= ∂ = = −

ES E CE C E E C :=

( )1 1 1 1e p

n n n n+ + + += = −S CE C E E

( )( )( ) ( )

1

1

1 1 1 1

1 1 1

n

n

pn n n n n

pn n n n

t f

t f

γ

γ+

+

+ + + +

+ + +

= − − ∆ ∂

= − − ∆ ∂

S

S

S C E E S

C E E C S

Page 41: Computational Solid Mechanics

Trial state at time n+1 The trial state at time n+1 is defined by freezing the plastic behaviour at the time step, yielding

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 41

( ) ( )( )

,1

, ,1 1 1

, ,1 1 1 1 1

1 1

:

:

:

:

p trial pn ne trial p trialn n n

trial e trial p trial pn n n n n n

trial trialn nf f

+

+ + +

+ + + + +

+ +

=

= −

= = − = −

=

E E

E E E

S CE C E E C E E

S

Page 42: Computational Solid Mechanics

Return mapping algorithm The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 42

( )11 1 1 1n

trialn n n nt fγ

++ + + += − ∆ ∂SS S C S

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

t E q

q q t Kq q t H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − ∆ − = − ∆ = + ∆ −

Page 43: Computational Solid Mechanics

1. Additive split of strains at time n+1

2. Stresses at time n+1. Return mapping algorithm

3. Plastic internal variables at time n+1

4. Yield function at time n+1

5. Plastic multiplier at time n+1

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 43

( )1 1 1 1 1:n n n n Y nf f q qσ σ+ + + + += = − − +S

( )11 1 1 1n

trialn n n nt fγ

++ + + += − ∆ ∂SS S C S

1 1 1: e pn n n+ + += +E E E

( )11 1 1n

p pn n n nt fγ

++ + += + ∆ ∂SE E S

( )11 1 0n nfηγ + += ≥S

Page 44: Computational Solid Mechanics

Return mapping algorithm The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 44

( )11 1 1 1n

trialn n n nt fγ

++ + + += − ∆ ∂SS S C S

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

t E q

q q t Kq q t H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − ∆ − = − ∆ = + ∆ −

Page 45: Computational Solid Mechanics

The solution for the return mapping algorithm yields,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 45

( ) ( )1 1 1 1 1 1 1sgntrial trialn n n n n n nq q t E H qσ σ γ σ+ + + + + + +− = − − ∆ + −

( ) ( )( ) ( )

1 1 1 1 1 1 1 1

1 1 1

sgn sgn

sgn

trial trial trial trialn n n n n n n n

n n n

q q q q

t E H q

σ σ σ σ

γ σ+ + + + + + + +

+ + +

− − = − −

− ∆ + −

( )( ) ( )( )

1 1 1 1 1

1 1 1 1

sgn

sgnn n n n n

trial trial trial trialn n n n

q t E H q

q q

σ γ σ

σ σ

+ + + + +

+ + + +

− + ∆ + − =

= − −

( )( ) ( )

1 1 1 1 1

1 1 1 1sgn sgn

trial trialn n n n n

trial trialn n n n

q t E H q

q q

σ γ σ

σ σ

+ + + + +

+ + + +

− + ∆ + = −

− = −

Page 46: Computational Solid Mechanics

For the non-trivial case (plastic loading), the yield function and the discrete plastic multiplier are greater than zero, and the following expressions hold,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 46

( )1 1 1 1 1if 0 then , , 0n n n n nf q qγ σ γ η+ + + + +> = >

( )( )

( ) ( )

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

, ,

, ,

n n n n n Y n

trial trial trialn n n Y n

trial trial trialn n n n n

f q q q q

q t E K H q

f q q t E K H

σ σ σ

σ γ σ

σ γ γ η

+ + + + + +

+ + + +

+ + + + +

= − − +

= − − ∆ + + − +

= − ∆ + + =

( )1

1 1 1 1, , 0trial trial trialn n n nt E K H f q q

tηγ σ

+ + + + ∆ = + + + > ∆

Page 47: Computational Solid Mechanics

The return mapping algorithm takes the form,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 47

( )

( )

1 1 1 1 1

1 1 1

1 1 1 1 1

sgn

:

: sgn

trialn n n n n

trialn n n

trialn n n n n

t E q

q q t Kq q t H q

σ σ γ σ

γ

γ σ

+ + + + +

+ + +

+ + + + +

= − ∆ − = − ∆ = + ∆ −

( ) ( )( )( ) ( )

11 1 1 1 1

11 1 1

11 1 1 1 1

sgn

:

: sgn

trial trial trial trialn n n n n

trial trialn n n

trial trial trial trialn n n n n

E K H t f E q

q q E K H t f K

q q E K H t f H q

σ σ η σ

η

η σ

−+ + + + +

−+ + +

−+ + + + +

= − + + + ∆ − = − + + + ∆

= + + + + ∆ −

Page 48: Computational Solid Mechanics

The update of the plastic internal variables takes the form,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Return mapping algorithm

April 14, 2015 Carlos Agelet de Saracibar 48

( )

( )

1 1 1 1

1 1

1 1 1 1

sgn

:

: sgn

p pn n n n n

n n n

n n n n n

t q

tt q

ε ε γ σ

ξ ξ γ

ξ ξ γ σ

+ + + +

+ +

+ + + +

= + ∆ − = + ∆ = − ∆ −

( ) ( )( )( ) ( )

11 1 1 1

11 1

11 1 1 1

sgn

:

: sgn

p p trial trial trialn n n n n

trialn n n

trial trial trialn n n n n

E K H t f q

E K H t f

E K H t f q

ε ε η σ

ξ ξ η

ξ ξ η σ

−+ + + +

−+ +

−+ + + +

= + + + + ∆ − = + + + + ∆

= − + + + ∆ −

Page 49: Computational Solid Mechanics

Consistent elastoplastic tangent modulus The consistent elastoplastic tangent modulus is computed taking the variation of the stress at time n+1, yielding, where

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Consistent elastoplastic tangent modulus

April 14, 2015 Carlos Agelet de Saracibar 49

( ) ( )11 1 1 1 1sgntrial trial trial trial

n n n n nE K H t f E qσ σ η σ−+ + + + += − + + + ∆ −

( ) ( )11 1 1 1 1sgntrial trial trial trial

n n n n nd d E K H t df E qσ σ η σ−+ + + + += − + + + ∆ −

( )( ) ( )

( ) ( )

,1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

sgn

sgn sgn

trial e trial pn n n n n

trial trial trial trial trial trial trialn n n n n n n

trial trial trial trial trialn n n n n n

d Ed E d E d

df d q q d q

q d q E d

σ ε ε ε ε

σ σ σ

σ σ σ ε

+ + + +

+ + + + + + +

+ + + + + +

= = − =

= − = − −

= − = −

Page 50: Computational Solid Mechanics

The consistent elastoplastic tangent modulus takes the form,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Consistent elastoplastic tangent modulus

April 14, 2015 Carlos Agelet de Saracibar 50

( ) ( )

( ) ( )( )( )

11 1 1 1 1

1 11 2

1 1 1

11 1

sgn

sgn

1

trial trial trial trialn n n n n

n n

trial trialn n n

n n

d d E K H t df E q

d E d

E K H t q E E d

d E E E K H t d

σ σ η σ

σ ε

η σ ε

σ η ε

−+ + + + +

+ +

−+ + +

−+ +

= − + + + ∆ −

=

− + + + ∆ −

= − + + + ∆

( )( )11 1, : 1ep ep

n nd E d E E E E K H tσ ε η −+ += = − + + + ∆

Page 51: Computational Solid Mechanics

1D Plasticity algorithm Step 1. Given the strain at time n+1 (strain driven problem), and the stored plastic internal variables at time n (plastic internal variables database) Step 2. Compute the trial state at time n+1

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 51

( ) ( )

,1

, ,1 1 1

, ,1 1 1 1 1

1 1 1 1

:

:

:

:

p trial pn ne trial p trialn n n

trial e trial p trial pn n n n n n

trial trial trial trialn n n Y nf q qσ σ

+

+ + +

+ + + + +

+ + + +

=

= −

= = − = −

= − − +

E E

E E E

S CE C E E C E E

Page 52: Computational Solid Mechanics

Step 3. Check the trial yield function at time n+1 Step 4. Compute the discrete plastic multiplier at time n+1

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 52

( ) ( )1 1 1if 0 then set , and exittrialtrial ep

n n nf E E+ + +

≤ • = • =

( ) 11 1

trialn nt E K H t fγ η −+ +∆ = + + + ∆

Page 53: Computational Solid Mechanics

Step 5. Return mapping algorithm (closest-point-projection)

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 53

( ) ( )( )( ) ( )

11 1 1 1 1

11 1 1

11 1 1 1 1

sgn

:

: sgn

trial trial trial trialn n n n n

trial trialn n n

trial trial trial trialn n n n n

E K H t f E q

q q E K H t f K

q q E K H t f H q

σ σ η σ

η

η σ

−+ + + + +

−+ + +

−+ + + + +

= − + + + ∆ − = − + + + ∆

= + + + + ∆ −

( )1

1 1 1 1trialn

trial trialn n n nt fγ

++ + + += − ∆ ∂

SS S C S

Page 54: Computational Solid Mechanics

Step 6. Update plastic internal variables database at time n+1 Step 7. Compute the consistent elastoplastic tangent modulus

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

1D Plasticity algorithm

April 14, 2015 Carlos Agelet de Saracibar 54

( ) ( )( )( ) ( )

11 1 1 1

11 1

11 1 1 1

sgn

sgn

p p trial trial trialn n n n n

trialn n n

trial trial trialn n n n n

E K H t f q

E K H t f

E K H t f q

ε ε η σ

ξ ξ η

ξ ξ η σ

−+ + + +

−+ +

−+ + + +

= + + + + ∆ − = + + + + ∆

= − + + + ∆ −

( )( )1: 1epE E E E K H tη −= − + + + ∆

( )1

1 1 1trialn

p p trialn n n nt fγ

++ + += + ∆ ∂

SE E S

Page 55: Computational Solid Mechanics

Nonlinear isotropic hardening Exponential saturation law + linear hardening

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 55

( ) ( ):q ξ ξψ ξ ξ′= −∂ = −∂ Π = −Π

( ) ( )( ): : 1 expYq Kξψ σ σ δξ ξ∞= −∂ = − − − − −

( ) ( ) ( )( )1 expY Kξ σ σ δξ ξ∞′Π = − − − +

Page 56: Computational Solid Mechanics

Time discrete nonlinear isotropic hardening

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 56

( ) ( )( ) ( )

( ) ( )

1 1 1

1 1

1 1 1

:

:

:

n n n n

trial trialn n n n

trialn n n n n

q t

q q

q q t

ξ ξ γ

ξ ξ

ξ γ ξ

+ + +

+ +

+ + +

′ ′= −Π = −Π + ∆

′ ′= −Π = −Π =

′ ′= −Π + ∆ +Π

Page 57: Computational Solid Mechanics

Plastic loading: Yield function at time n+1 Nonlinear residual scalar equation on the plastic multiplier at time n+1

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 57

( ) ( ) ( )( )1 1 1 1 1 0trialn n n n n n nf f t E H tγ ξ γ ξ γ η+ + + + +′ ′= − ∆ + − Π + ∆ −Π = >

( )( ) ( )( )

1 1 1 1

1 1 1 1

: 0

: 0

n n n n

trialn n n n n n

g g f

g f t E H tt

γ γ η

ηγ ξ γ ξ

+ + + +

+ + + +

= = − =

′ ′= − ∆ + + − Π + ∆ −Π = ∆

Page 58: Computational Solid Mechanics

Newton-Raphson iterative solution algorithm Step 1. Initialize iteration counter and plastic multiplier Step 2. Compute the residual g at time n+1, iteration k Step 3. While the absolute value of the current residual at time n+1, iteration k, is greater than a tolerance Step 4. Solve the linarized equation Step 5. Update the plastic multiplier at time n+1, iteration k+1 Step 6. Compute the residual g at time n+1, iteration k+1 Step 7. Increment iteration counter k=k+1 and go to Step 3

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 58

10, 0knk γ += =

1 1 1 0k k kn n ng Dg γ+ + ++ ∆ =

11 1 1

k k kn n nγ γ γ++ + += + ∆

Page 59: Computational Solid Mechanics

Newton-Raphson iterative solution algorithm

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 59

( ) ( )( )

( )

( )

1 1 1 1

1 1 1 1 1

1 1

11 1 1

:

:

:

:

k trial k kn n n n n n

k k k k kn n n n n n

k kn n n

k k kn n n

g f t E H tt

Dg E H t t tt

E t H tt

ηγ ξ γ ξ

ηγ γ ξ γ γ

ηξ γ γ

γ γ γ

+ + + +

+ + + + +

+ +

++ + +

′ ′= − ∆ + + − Π + ∆ −Π ∆ ′′∆ = − + + ∆ ∆ −Π + ∆ ∆ ∆ ∆ ′′= − +Π + ∆ + + ∆ ∆ ∆

∆ = −

1 1 1 0k k kn n ng Dg γ+ + ++ ∆ =

Page 60: Computational Solid Mechanics

Consistent elastoplastic tangent modulus The consistent elastoplastic tangent modulus is computed taking the variation of the stress at time n+1, yielding, where the variations of the trial stress tensor, and plastic multiplier, at time n+1, have to be computed.

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 60

( )( )

1 1 1 1 1

1 1 1 1 1

sgn

sgn

trial trial trialn n n n n

trial trial trialn n n n n

t E q

d d d t E q

σ σ γ σ

σ σ γ σ

+ + + + +

+ + + + +

= − ∆ −

= − ∆ −

Page 61: Computational Solid Mechanics

The variation of the plastic multiplier at time n+1 is computed setting the variation of the residual at time n+1 equal to zero,

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 61

( ) ( )( )

( )

( )

( )

1 1 1 1

1 1 1 1 1

1 1 1

1

1 1

: 0

:

: 0

trialn n n n n n

trialn n n n n n

trialn n n n

n n n n

g f t E H tt

dg df d t E H t d tt

df d t E t Ht

d t E t H dft

ηγ ξ γ ξ

ηγ ξ γ γ

ηγ ξ γ

ηγ ξ γ

+ + + +

+ + + + +

+ + +

+ + +

′ ′= − ∆ + + − Π + ∆ −Π = ∆ ′′= − ∆ + + −Π + ∆ ∆ ∆ ′′= − ∆ +Π + ∆ + + = ∆

′′∆ = +Π + ∆ + + ∆ 1

trial

Page 62: Computational Solid Mechanics

Substituting the variations shown before, the following discrete tangent constitutive equation is obtained, where the consistent elastoplastic tangent modulus at time n+1 is given by

1D Plasticity Algorithms > 1D Rate Dependent Plasticity Algorithms

Nonlinear isotropic hardening

April 14, 2015 Carlos Agelet de Saracibar 62

1 1 1ep

n n nd E dσ ε+ + +=

( )1

1 11epn n nE E E E t H

tηξ γ

+ +

′′= − +Π + ∆ + + ∆

Page 63: Computational Solid Mechanics

Contents 1. Introduction 2. 1D Rate independent plasticity algorithms

1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

3. 1D Rate dependent plasticity algorithms 1. Return mapping algorithm 2. Consistent elastoplastic tangent modulus 3. Step by step algorithm 4. Nonlinear isotropic hardening

4. 1D Computational plasticity assignment

1D Plasticity Algorithms > Contents

Contents

April 14, 2015 Carlos Agelet de Saracibar 63

Page 64: Computational Solid Mechanics

Implement in MATLAB the BE time-stepping algorithm for 1D rate-independent/rate-dependent hardening plasticity models, including linear and nonlinear isotropic hardening, and linear kinematic hardening

Perform the numerical simulation of uniaxial cyclic plastic loading/elastic unloading examples for the following cases: o Rate-independent/rate-dependent perfect plasticity o Rate-independent/rate-dependent linear isotropic hardening plasticity o Rate-independent/rate-dependent nonlinear isotropic hardening

plasticity, considering an exponential saturation law o Rate-independent/rate-dependent linear kinematic hardening

plasticity o Rate-independent/rate-dependent nonlinear isotropic and linear

kinematic hardening plasticity

1D Plasticity Algorithms > 1D Computational Plasticity Assignment

1D Computational plasticity assignment

April 14, 2015 Carlos Agelet de Saracibar 64

Page 65: Computational Solid Mechanics

For the perfect plasticity models, plot the stress-strain curves For the linear isotropic/linear kinematic hardening models,

plot the stress-strain curves showing the influence of the isotropic/kinematic hardening parameters

For the nonlinear isotropic hardening model, plot the stress-strain curves showing the influence of the exponential coefficient of the exponential saturation law on the stress-strain curves

For the rate-dependent plasticity models, plot the stress-strain, and the stress-time curves showing the influence of the viscosity parameter and the loading rate.

Show that the rate-independent response can be recovered from the rate-dependent results using very small values for the viscosity or the loading rate

1D Plasticity Algorithms > 1D Computational Plasticity Assignment

1D Computational plasticity assignment

April 14, 2015 Carlos Agelet de Saracibar 65

Page 66: Computational Solid Mechanics

Write a comprehensive deliverable report (10 pages) providing the data of the cyclic loading and material properties considered, the stress-strain curves, and the stress-time curves for the rate-dependent plasticity examples. Add suitable comments on the results, comparing the influence of the different material parameters and loading conditions.

Add a printed copy of the subroutines as an Appendix

1D Plasticity Algorithms > 1D Computational Plasticity Assignment

1D Computational plasticity assignment

April 14, 2015 Carlos Agelet de Saracibar 66