84
Computational Uncertainty Quantification for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana SIAM Conference on Imaging Science, June 2018

Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Computational Uncertainty Quantification forInverse Problems: Part 1, Linear Problems

John BardsleyUniversity of Montana

SIAM Conference on Imaging Science, June 2018

Page 2: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Outline

Computational Uncertainty Quantifications for Inverse Problems

MATLAB codes:https://github.com/bardsleyj/SIAMBookCodes

to be published by SIAM in late-summer/early-fall 2018

• Characteristics of inverse problems.

• Prior Modeling Using Gaussian Markov random fields.

• Hierarchical Bayesian Inverse Problems and MCMC

Page 3: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

General Statistical Model

Consider the linear, Gaussian statistical model

y = Ax + ε,

where

• y ∈ Rm is the vector of observations;

• x ∈ Rn is the vector of unknown parameters;

• A : Rn → Rm;

• ε ∼ N (0, λ−1I), i.e., ε is i.i.d. Gaussian with mean 0 andvariance λ−1.

Page 4: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Numerical Discretization of a Physical Model

For us, y = [y1, . . . , ym]T , with

yi = y(si)

=

∫Ωa(si, s

′)x(s′)ds′(

def= [Amx]i

)

≈ 1

∆s′

n∑j=1

a(si, s′j)x(s′j) (numerical quadrature)

= [Ax]i

([A]ij =

1

∆s′a(si, s

′j) & x = [x(s′1), . . . , x(s′n)]T

),

where Ω = [0, 1] or [0, 1]× [0, 1], defines the equation

y = Ax.

Page 5: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Numerical Discretization of a Physical Model

For us, y = [y1, . . . , ym]T , with

yi = y(si)

=

∫Ωa(si, s

′)x(s′)ds′(

def= [Amx]i

)≈ 1

∆s′

n∑j=1

a(si, s′j)x(s′j) (numerical quadrature)

= [Ax]i

([A]ij =

1

∆s′a(si, s

′j) & x = [x(s′1), . . . , x(s′n)]T

),

where Ω = [0, 1] or [0, 1]× [0, 1], defines the equation

y = Ax.

Page 6: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Synthetic ExamplesData y examples:

Corresponding true images x:

Page 7: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Naive Solutions: xLS = A†y

Corresponding true images x:

Page 8: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Properties of the model matrix A

It is typical in inverse problems that if the matrix A has SVD

A =

r∑i=1

σiuivTi , where r = rank(A).

Characteristics of Inverse Problems:

• the σi’s decay to 0 as i→ r;

• the ui,vi’s become increasingly oscillatory as i→ n.

The least squares solution can then be written

A†y = A†(Ax + ε)

=r∑i=1

(vTi x)vi︸ ︷︷ ︸portion due to signal

+r∑i=1

(uTi ε

σi

)vi︸ ︷︷ ︸

portion due to noise

Page 9: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Properties of the model matrix A

It is typical in inverse problems that if the matrix A has SVD

A =

r∑i=1

σiuivTi , where r = rank(A).

Characteristics of Inverse Problems:

• the σi’s decay to 0 as i→ r;

• the ui,vi’s become increasingly oscillatory as i→ n.

The least squares solution can then be written

A†y = A†(Ax + ε)

=

r∑i=1

(vTi x)vi︸ ︷︷ ︸portion due to signal

+

r∑i=1

(uTi ε

σi

)vi︸ ︷︷ ︸

portion due to noise

Page 10: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Least Squares Solutions: A†y =∑r

i=1(vTi x)vi +∑r

i=1

(uTi εσi

)vi

Corresponding true images x:

Page 11: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Fix: Regularization

Parameter Set P Data Set D

Knowledge

Prior

REGULARIZATION

ILL−POSED

Page 12: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Bayes Law:

p(x|y, λ, δ)︸ ︷︷ ︸posterior

∝ p(y|x, λ)︸ ︷︷ ︸likelihood

p(x|δ)︸ ︷︷ ︸prior

.

For our assumed statistical model,

p(y|x, λ) ∝ exp

(−λ

2‖Ax− y‖2

).

In this talk, we will assume a Gaussian prior

p(x|δ) ∝ exp

(−δ

2xTLx

),

so that

p(x|y, λ, δ) ∝ exp

(−λ

2‖Ax− y‖2 − δ

2xTLx

).

Page 13: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Bayes Law:

p(x|y, λ, δ)︸ ︷︷ ︸posterior

∝ p(y|x, λ)︸ ︷︷ ︸likelihood

p(x|δ)︸ ︷︷ ︸prior

.

For our assumed statistical model,

p(y|x, λ) ∝ exp

(−λ

2‖Ax− y‖2

).

In this talk, we will assume a Gaussian prior

p(x|δ) ∝ exp

(−δ

2xTLx

),

so that

p(x|y, λ, δ) ∝ exp

(−λ

2‖Ax− y‖2 − δ

2xTLx

).

Page 14: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Maximum a Posteriori (MAP) Estimation

The maximizer of the posterior density is

xMAP = arg minx

λ

2‖Ax− y‖2 +

δ

2xTLx

which is the regularized solution xα with α = δ/λ.

α = 2.5× 10−4 α = 1.05× 10−4.

Page 15: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Modeling the Prior p(x|δ)

Parameter Set P Data Set D

Knowledge

Prior

REGULARIZATION

ILL−POSED

Page 16: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Gaussian Markov Random field (GMRF) priors

The neighbor values for xij are below (in black)

x∂ij = xi−1,j , xi,j−1, xi+1,j , xi,j+1

=

xi,j+1

xi−1,j xij xi+1,j

xi,j−1

.

Then we assume

xij |x∂ij ∼ N(x∂ij , δ

−1),

where x∂ij = 1nij

∑(r,s)∈∂ij xrs and nij = |∂ij |.

Page 17: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Gaussian Markov Random field (GMRF) priors

The neighbor values for xij are below (in black)

x∂ij = xi−1,j , xi,j−1, xi+1,j , xi,j+1

=

xi,j+1

xi−1,j xij xi+1,j

xi,j−1

.Then we assume

xij |x∂ij ∼ N(x∂ij , δ

−1),

where x∂ij = 1nij

∑(r,s)∈∂ij xrs and nij = |∂ij |.

Page 18: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Gaussian Markov Random field (GMRF) priors

This leads to the prior

p(x|δ) ∝ δn exp

(−δ

2xTLx

),

where if r = (i, j) after column-stacking 2D arrays

[L]rs =

4 s = r,−1 s ∈ ∂r,0 otherwise.

NOTE: L = 2D discrete unscaled (by 1/h2) negative-Laplacian.Recall the MAP estimator

xα = arg minx

1

2‖Ax− y‖2 +

α

2xTLx

Page 19: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

α = 2.5× 10−4 α = 1.05× 10−4

Page 20: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

2D GMRF Increment ModelsFor a 2D signal, suppose

xi+1,j − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j+1 − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

√n∑

i,j=1

wij(xi+1,j − xij)2

×exp

−δ2

√n∑

i,j=1

wij(xi,j+1 − xij)2

= δn/2 exp

(−δ

2xT (DT

hΛDh + DTv ΛDv)x

),

• Dh = I⊗D, Dv = D⊗ I, where D = 1D difference matrix;

• Λ = diag(vec(wij√n

ij=1))

Page 21: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

2D GMRF Increment ModelsFor a 2D signal, suppose

xi+1,j − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j+1 − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

√n∑

i,j=1

wij(xi+1,j − xij)2

×exp

−δ2

√n∑

i,j=1

wij(xi,j+1 − xij)2

= δn/2 exp

(−δ

2xT (DT

hΛDh + DTv ΛDv)x

),

• Dh = I⊗D, Dv = D⊗ I, where D = 1D difference matrix;

• Λ = diag(vec(wij√n

ij=1))

Page 22: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

2D GMRF Increment ModelsFor a 2D signal, suppose

xi+1,j − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j+1 − xij ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

√n∑

i,j=1

wij(xi+1,j − xij)2

×exp

−δ2

√n∑

i,j=1

wij(xi,j+1 − xij)2

= δn/2 exp

(−δ

2xT (DT

hΛDh + DTv ΛDv)x

),

• Dh = I⊗D, Dv = D⊗ I, where D = 1D difference matrix;

• Λ = diag(vec(wij√n

ij=1))

Page 23: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

2D GMRF Increment ModelsThe matrix 1

∆s2DThΛDh + 1

∆t2DTv ΛDv is a discretization of

− ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

)

Left: wij = 1 for all ij.Right: wij = 0.01 for ij on the circle boundary.

Page 24: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

GMRF Edge-Preserving Reconstruction

0. Set Λ = I.

1. Define L = DThΛDh + DT

v ΛDv, where

2. Computexα = (ATA + αL)−1ATy

using PCG with α obtained via L-curve, GCV, etc.

3. Set

Λ(xα) = diag

(1√

(Dhxα)2 + (Dvxα)2 + β1

),

0 < β 1, and return to Step 1.

NOTE: This is just the lagged-diffusivity iteration.

Page 25: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Numerical Results

Page 26: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Infinite Dimnensional Limit

Question: When is

p(x|y, λ, δ) def= lim

n→∞p(x|y, λ, δ)

well defined?

First

limn→∞

‖Ax− y‖2 = ‖Amx− y‖2,

where

[Amx]i =

∫Ωa(si, s

′)x(s′)ds′, i = 1, . . . ,m.

Note: Am : C∞(Ω)→ Rm, where Ω = [0, 1] or [0, 1]× [0, 1], andC∞(Ω) is the space of smooth functions on Ω.

Page 27: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Infinite Dimnensional Limit

Question: When is

p(x|y, λ, δ) def= lim

n→∞p(x|y, λ, δ)

well defined? First

limn→∞

‖Ax− y‖2 = ‖Amx− y‖2,

where

[Amx]i =

∫Ωa(si, s

′)x(s′)ds′, i = 1, . . . ,m.

Note: Am : C∞(Ω)→ Rm, where Ω = [0, 1] or [0, 1]× [0, 1], andC∞(Ω) is the space of smooth functions on Ω.

Page 28: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

Next,

limn→∞

c(n)xTLx = 〈x,Lx〉 def=

∫Ωx(s′)Lx(s′) ds′,

where c(n) = n in one-dimension and

L = − d

ds

(w(s)

d

ds

), 0 < s < 1;

whereas c(n) = 1 in two-dimensions and

L = − ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

), 0 < s, t < 1.

Page 29: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

Next,

limn→∞

c(n)xTLx = 〈x,Lx〉 def=

∫Ωx(s′)Lx(s′) ds′,

where c(n) = n in one-dimension and

L = − d

ds

(w(s)

d

ds

), 0 < s < 1;

whereas c(n) = 1 in two-dimensions and

L = − ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

), 0 < s, t < 1.

Page 30: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

limn→∞

λ

2‖Ax− y‖2 +

δc(n)

2xTLx

2‖Amx−y‖2 +

δ

2〈x,Lx〉,

and hence

p(x|y, λ, δ) ∝ exp

(−λ

2‖Amx− y‖2 − δ

2〈x,Lx〉

).

Question: When is the resulting probability measure well-defined:

µpost(A)def=

∫Ap(x|y, λ, δ) dx, A ⊂ L2(Ω)?

Answer [Stuart]: When L−1 is a trace-class operator on L2(Ω),i.e., when

∑∞i=1〈φi,L−1φi〉 <∞ for any o.n. basis φi of L2(Ω).

Page 31: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

limn→∞

λ

2‖Ax− y‖2 +

δc(n)

2xTLx

2‖Amx−y‖2 +

δ

2〈x,Lx〉,

and hence

p(x|y, λ, δ) ∝ exp

(−λ

2‖Amx− y‖2 − δ

2〈x,Lx〉

).

Question: When is the resulting probability measure well-defined:

µpost(A)def=

∫Ap(x|y, λ, δ) dx, A ⊂ L2(Ω)?

Answer [Stuart]: When L−1 is a trace-class operator on L2(Ω),i.e., when

∑∞i=1〈φi,L−1φi〉 <∞ for any o.n. basis φi of L2(Ω).

Page 32: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

limn→∞

λ

2‖Ax− y‖2 +

δc(n)

2xTLx

2‖Amx−y‖2 +

δ

2〈x,Lx〉,

and hence

p(x|y, λ, δ) ∝ exp

(−λ

2‖Amx− y‖2 − δ

2〈x,Lx〉

).

Question: When is the resulting probability measure well-defined:

µpost(A)def=

∫Ap(x|y, λ, δ) dx, A ⊂ L2(Ω)?

Answer [Stuart]: When L−1 is a trace-class operator on L2(Ω),i.e., when

∑∞i=1〈φi,L−1φi〉 <∞ for any o.n. basis φi of L2(Ω).

Page 33: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

In one-dimension, if

L = − d

ds

(w(s)

d

ds

), 0 < s < 1,

then L−1 is trace class.

In two-dimensions, if

L = − ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

), 0 < s, t < 1,

then L−1 is not trace-class.

FIX: in two-dimensions, use L def= L2, which is trace class; note

that if w = w = 1 above, this is called the biharmonic operator.

Page 34: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

In one-dimension, if

L = − d

ds

(w(s)

d

ds

), 0 < s < 1,

then L−1 is trace class.

In two-dimensions, if

L = − ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

), 0 < s, t < 1,

then L−1 is not trace-class.

FIX: in two-dimensions, use L def= L2, which is trace class; note

that if w = w = 1 above, this is called the biharmonic operator.

Page 35: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimnensional Limit

In one-dimension, if

L = − d

ds

(w(s)

d

ds

), 0 < s < 1,

then L−1 is trace class.

In two-dimensions, if

L = − ∂

∂s

(w(s, t)

∂s

)− ∂

∂t

(w(s, t)

∂t

), 0 < s, t < 1,

then L−1 is not trace-class.

FIX: in two-dimensions, use L def= L2, which is trace class; note

that if w = w = 1 above, this is called the biharmonic operator.

Page 36: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

An Alternative: Second-Order GMRFsFor a 2D signal, suppose

xi−1,j − 2xij + xi+1,j ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j−1 − 2xij + xi,j+1 ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence, the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

n∑i,j=1

wij(xi−1,j − 2xij + xi+1,j)2

×exp

−δ2

n∑i,j=1

wij(xi,j−1 − 2xij + xi,j+1)2

= δn/2 exp

(−δ

2xT (LThΛLh + LTv ΛLv)x

),

• Lv = L⊗ I, Lh = I⊗ L, L = 1D discrete neg-Laplacian;

• Λ = diag(vec(wij√n

ij=1))

Page 37: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

An Alternative: Second-Order GMRFsFor a 2D signal, suppose

xi−1,j − 2xij + xi+1,j ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j−1 − 2xij + xi,j+1 ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence, the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

n∑i,j=1

wij(xi−1,j − 2xij + xi+1,j)2

×exp

−δ2

n∑i,j=1

wij(xi,j−1 − 2xij + xi,j+1)2

= δn/2 exp

(−δ

2xT (LThΛLh + LTv ΛLv)x

),

• Lv = L⊗ I, Lh = I⊗ L, L = 1D discrete neg-Laplacian;

• Λ = diag(vec(wij√n

ij=1))

Page 38: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

An Alternative: Second-Order GMRFsFor a 2D signal, suppose

xi−1,j − 2xij + xi+1,j ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n

xi,j−1 − 2xij + xi,j+1 ∼ N (0, (wijδ)−1), i, j = 1, . . . ,

√n.

Assuming independence, the density function for x has the form

p(x|δ) ∝ δn/2 exp

−δ2

n∑i,j=1

wij(xi−1,j − 2xij + xi+1,j)2

×exp

−δ2

n∑i,j=1

wij(xi,j−1 − 2xij + xi,j+1)2

= δn/2 exp

(−δ

2xT (LThΛLh + LTv ΛLv)x

),

• Lv = L⊗ I, Lh = I⊗ L, L = 1D discrete neg-Laplacian;

• Λ = diag(vec(wij√n

ij=1))

Page 39: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimensional Limit

Let L = LThΛhLh + LTv ΛvLv, then

limn→∞

c(n)xTLx = 〈x,Lx〉,

where

L = − ∂2

∂s2

(w(s, t)

∂2

∂s2

)− ∂2

∂t2

(w(s, t)

∂2

∂t2

), 0 < s, t < 1,

NOTE: L−1 is trace-class, and hence if

p(x|y, λ, δ) ∝ exp

(−λ

2‖AMx− y‖2 − δ

2〈x,Lx〉

)then µpost(A) =

∫A p(x|y, λ, δ) dx, for L2(Ω), is well-defined.

Page 40: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Infinite Dimensional Limit

Let L = LThΛhLh + LTv ΛvLv, then

limn→∞

c(n)xTLx = 〈x,Lx〉,

where

L = − ∂2

∂s2

(w(s, t)

∂2

∂s2

)− ∂2

∂t2

(w(s, t)

∂2

∂t2

), 0 < s, t < 1,

NOTE: L−1 is trace-class, and hence if

p(x|y, λ, δ) ∝ exp

(−λ

2‖AMx− y‖2 − δ

2〈x,Lx〉

)then µpost(A) =

∫A p(x|y, λ, δ) dx, for L2(Ω), is well-defined.

Page 41: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Higher-Order GMRF, Edge-Preserving Reconstruction

0. Set Λ = I.

1. Define L = LThΛLh + LTv ΛLv, where

2. Computexα = (ATA + αL)−1ATy

using PCG with α obtained using GCV.

3. Set

Λ(xα) = diag

(1√

(Lhxα)2 + (Lvxα)2 + β1

)

where 0 < β 1, and return to Step 1.

Page 42: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Plot after 10 iterations

Page 43: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Hierarchical Bayes: Assume Hyper-Priors on λ and δ

Uncertainty in λ and δ: λ ∼ p(λ) and δ ∼ p(δ). Then

p(x, λ, δ|y) ∝ p(y|x, λ)p(λ) p(x|δ)p(δ),

is the Bayesian posterior

, where

p(y|x, λ) ∝ λm/2 exp

(−λ

2‖Ax− y‖2

),

and we choose a GMRF prior and Gamma hyper-priors:

p(x|δ) ∝ δn/2 exp

(−δ

2xTLx

),

p(λ) ∝ λαλ−1 exp(−βλλ),

p(δ) ∝ δαδ−1 exp(−βδδ),

where αλ = αδ = 1 and βλ = βδ = 10−4.

Page 44: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Hierarchical Bayes: Assume Hyper-Priors on λ and δ

Uncertainty in λ and δ: λ ∼ p(λ) and δ ∼ p(δ). Then

p(x, λ, δ|y) ∝ p(y|x, λ)p(λ) p(x|δ)p(δ),

is the Bayesian posterior, where

p(y|x, λ) ∝ λm/2 exp

(−λ

2‖Ax− y‖2

),

and we choose a GMRF prior and Gamma hyper-priors:

p(x|δ) ∝ δn/2 exp

(−δ

2xTLx

),

p(λ) ∝ λαλ−1 exp(−βλλ),

p(δ) ∝ δαδ−1 exp(−βδδ),

where αλ = αδ = 1 and βλ = βδ = 10−4.

Page 45: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Full Posterior Distribution: Linear Case

p(x, λ, δ|y) ∝ the posterior

λm/2+αλ−1δn/2+αδ−1 exp

(−λ

2‖Ax− y‖2 − δ

2xTLx− βλλ− βδδ

).

Sampling versus Computing the MAP Estimator

Page 46: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

The Full Posterior Distribution

The full conditionals have the form

p(λ|x, δ,y) ∝ λm/2+αλ−1 exp

(−(

1

2‖Ax− y‖2 + βλ

);

p(δ|x, λ,y) ∝ δn/2+αδ−1 exp

(−(

1

2xTLx + βδ

);

p(x|y, λ, δ) ∝ exp

(−λ

2‖Ax− y‖2 − δ

2xTLx

).

OBSERVATIONS:

1. p(x|y, λ, δ) is a Gaussian random vector;

2. p(λ, δ|y,x) = p(λ|x, δ,y)p(δ|x, λ,y);

3. and we have the natural blocking: (x, λ, δ) = (x; (λ, δ)).

Page 47: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Hierarchical Gibbs for sampling from p(x, λ, δ|y)

0. Choose x0, and set k = 0;

1. Sample from p(λ, δ|y,xk) via:

a. λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

b. δk+1 ∼ Γ(n/2 + αδ,

12 (xk)TLxk + βδ

);

2. Sample from the Gaussian p(x|y, λk+1, δk+1) via:

xk+1 =(λk+1A

TA + δk+1L)−1 (

λk+1ATy + η

),

where η ∼ N(0, λk+1A

TA + δk+1L).

3. Set k = k + 1 and return to Step 1.

NOTE: Two-stage Gibbs samplers have nice properties, including

(xk, λk, δk)∞k=1

′dist′→ p(x, λ, δ|y).

Page 48: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

A One-Dimensional Example

True Image, Mean, and 95% c.i. Histograms for λ and δ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-20

-10

0

10

20

30

40

50

60

70

MCMC sample meantrue image95% credibility bounds

2 2.5 3 3.5 4 4.5 5 5.5 6 6.50

500

1000

1500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

500

1000

1500

Page 49: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

An example from X-ray Radiography (w/ Luttman)

0 500 1000 1500 2000 25000

200

400

600

800

1000

1200

lineoutMCMC sample mean95% credibility bounds

Page 50: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

A Two-Dimensional Example

Page 51: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Step 2: sample from the Gaussian p(x|y, λ, δ)The conditional density for x|y, λ, δ is

p(x|y, λ, δ) ∝ exp

(−λ

2‖Ax− y‖2 − δ

2xTLx

)= exp

(−1

2

∥∥∥∥[ λ1/2A

(δL)1/2

]x−

[λ1/2y

0

]∥∥∥∥2).

From here on out, we define:

Aλ,δ =

[λ1/2A

(δL)1/2

], and yλ,δ =

[λ1/2y

0

].

so that

p(x|y, λ, δ) = exp

(−1

2‖Aλ,δx− yλ,δ‖2

).

Page 52: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Step 2: sample from the Gaussian p(x|y, λ, δ)The conditional density for x|y, λ, δ is

p(x|y, λ, δ) ∝ exp

(−λ

2‖Ax− y‖2 − δ

2xTLx

)= exp

(−1

2

∥∥∥∥[ λ1/2A

(δL)1/2

]x−

[λ1/2y

0

]∥∥∥∥2).

From here on out, we define:

Aλ,δ =

[λ1/2A

(δL)1/2

], and yλ,δ =

[λ1/2y

0

].

so that

p(x|y, λ, δ) = exp

(−1

2‖Aλ,δx− yλ,δ‖2

).

Page 53: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Step 2: sample from the Gaussian p(x|y, λ, δ)

For large-scale problems, you can use optimization:

x = arg minψ‖Aλ,δψ − (yλ,δ + ε)‖2, ε ∼ N (0, I).

QR-rewrite: if Aλ,δ = QR, with Q ∈ Rm×n, R ∈ Rn×n, then

x = (ATλ,δAλ,δ)

−1ATλ,δ(yλ,δ + ε), ε ∼ N (0, I)

= R−1 QT (yλ,δ + ε)︸ ︷︷ ︸def= v

, ε ∼ N (0, I)

def= F−1 (v) , v ∼ N (QTyλ,δ, I),

where F−1(x) = R−1x.

Page 54: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Step 2: sample from the Gaussian p(x|y, λ, δ)

For large-scale problems, you can use optimization:

x = arg minψ‖Aλ,δψ − (yλ,δ + ε)‖2, ε ∼ N (0, I).

QR-rewrite: if Aλ,δ = QR, with Q ∈ Rm×n, R ∈ Rn×n, then

x = (ATλ,δAλ,δ)

−1ATλ,δ(yλ,δ + ε), ε ∼ N (0, I)

= R−1 QT (yλ,δ + ε)︸ ︷︷ ︸def= v

, ε ∼ N (0, I)

def= F−1 (v) , v ∼ N (QTyλ,δ, I),

where F−1(x) = R−1x.

Page 55: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Step 2: sample from the Gaussian p(x|y, λ, δ)

For large-scale problems, you can use optimization:

x = arg minψ‖Aλ,δψ − (yλ,δ + ε)‖2, ε ∼ N (0, I).

QR-rewrite: if Aλ,δ = QR, with Q ∈ Rm×n, R ∈ Rn×n, then

x = (ATλ,δAλ,δ)

−1ATλ,δ(yλ,δ + ε), ε ∼ N (0, I)

= R−1 QT (yλ,δ + ε)︸ ︷︷ ︸def= v

, ε ∼ N (0, I)

def= F−1 (v) , v ∼ N (QTyλ,δ, I),

where F−1(x) = R−1x.

Page 56: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Proof that x = F−1(v) has the right distribution:

What we know:

• v ∼ N (QTyλ,δ, I) =⇒ pv(v) ∝ exp(−1

2‖v −QTyλ,δ‖2);

• F(x) = Rx.

p(x) =

x=F−1(v) ⇒ p(x)=|det( ddx

F(x))|pv(F(x))︷ ︸︸ ︷(2π)−n/2 |det (R)| exp

(−1

2‖Rx−QTyλ,δ‖2

)= (2π)−n/2

∣∣det(ATλ,δAλ,δ

)∣∣1/2 exp

(−1

2‖Aλ,δx− yλ,δ‖2

)‘dist′= p(x|y, λ, δ).

Page 57: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Proof that x = F−1(v) has the right distribution:

What we know:

• v ∼ N (QTyλ,δ, I) =⇒ pv(v) ∝ exp(−1

2‖v −QTyλ,δ‖2);

• F(x) = Rx.

p(x) =

x=F−1(v) ⇒ p(x)=|det( ddx

F(x))|pv(F(x))︷ ︸︸ ︷(2π)−n/2 |det (R)| exp

(−1

2‖Rx−QTyλ,δ‖2

)= (2π)−n/2

∣∣det(ATλ,δAλ,δ

)∣∣1/2 exp

(−1

2‖Aλ,δx− yλ,δ‖2

)‘dist′= p(x|y, λ, δ).

Page 58: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

MCMC Chain Diagnostics

Question: when has the (x, λ, δ)-chain generated by hierarchicalGibbs converged in distribution to p(x, λ, δ|y)?

Observations that follow from two-stage structure:

1. The (λ, δ)-chain has stationary distribution

p(λ, δ|y)def=

∫xp(x, λ, δ|y)dx.

2. Since p(x, λ, δ|y) ∝ p(x|y, λ, δ)p(λ, δ|y)

2.1 (λ′, δ′) ∼ p(λ, δ|y),2.2 x′ ∼ p(x|y, λ′, δ′),

yields a sample (x′, λ′, δ′) ∼ p(x, λ, δ|y).

Answer: (λ, δ)-chain convergence ⇒ (x, λ, δ)-chain convergence.

Page 59: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

MCMC Chain Diagnostics

Question: when has the (x, λ, δ)-chain generated by hierarchicalGibbs converged in distribution to p(x, λ, δ|y)?

Observations that follow from two-stage structure:

1. The (λ, δ)-chain has stationary distribution

p(λ, δ|y)def=

∫xp(x, λ, δ|y)dx.

2. Since p(x, λ, δ|y) ∝ p(x|y, λ, δ)p(λ, δ|y)

2.1 (λ′, δ′) ∼ p(λ, δ|y),2.2 x′ ∼ p(x|y, λ′, δ′),

yields a sample (x′, λ′, δ′) ∼ p(x, λ, δ|y).

Answer: (λ, δ)-chain convergence ⇒ (x, λ, δ)-chain convergence.

Page 60: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

MCMC Chain Diagnostics

Question: when has the (x, λ, δ)-chain generated by hierarchicalGibbs converged in distribution to p(x, λ, δ|y)?

Observations that follow from two-stage structure:

1. The (λ, δ)-chain has stationary distribution

p(λ, δ|y)def=

∫xp(x, λ, δ|y)dx.

2. Since p(x, λ, δ|y) ∝ p(x|y, λ, δ)p(λ, δ|y)

2.1 (λ′, δ′) ∼ p(λ, δ|y),2.2 x′ ∼ p(x|y, λ′, δ′),

yields a sample (x′, λ′, δ′) ∼ p(x, λ, δ|y).

Answer: (λ, δ)-chain convergence ⇒ (x, λ, δ)-chain convergence.

Page 61: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

MCMC Chain Diagnostics

Question: when has the (x, λ, δ)-chain generated by hierarchicalGibbs converged in distribution to p(x, λ, δ|y)?

Observations that follow from two-stage structure:

1. The (λ, δ)-chain has stationary distribution

p(λ, δ|y)def=

∫xp(x, λ, δ|y)dx.

2. Since p(x, λ, δ|y) ∝ p(x|y, λ, δ)p(λ, δ|y)

2.1 (λ′, δ′) ∼ p(λ, δ|y),2.2 x′ ∼ p(x|y, λ′, δ′),

yields a sample (x′, λ′, δ′) ∼ p(x, λ, δ|y).

Answer: (λ, δ)-chain convergence ⇒ (x, λ, δ)-chain convergence.

Page 62: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Chain Correlation: How correlated is δiKk=1?The autocorrelation function is defined

ρ(k) = C(k)/C(0),

where

C(k) =1

K − |k|

K−|k|∑i=1

(δi − δ)(δi+|k| − δ), where δ =1

K

k∑i=1

δi.

The integrated autocorrelation time is defined

τint =K∑

k=−K

ρ(k),

where K is the smallest integer such that K ≥ 3τint, and

# independent samples in δiKk=1 ≈ K/τint.

Page 63: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Chain Correlation: How correlated is δiKk=1?The autocorrelation function is defined

ρ(k) = C(k)/C(0),

where

C(k) =1

K − |k|

K−|k|∑i=1

(δi − δ)(δi+|k| − δ), where δ =1

K

k∑i=1

δi.

The integrated autocorrelation time is defined

τint =

K∑k=−K

ρ(k),

where K is the smallest integer such that K ≥ 3τint,

and

# independent samples in δiKk=1 ≈ K/τint.

Page 64: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Chain Correlation: How correlated is δiKk=1?The autocorrelation function is defined

ρ(k) = C(k)/C(0),

where

C(k) =1

K − |k|

K−|k|∑i=1

(δi − δ)(δi+|k| − δ), where δ =1

K

k∑i=1

δi.

The integrated autocorrelation time is defined

τint =

K∑k=−K

ρ(k),

where K is the smallest integer such that K ≥ 3τint, and

# independent samples in δiKk=1 ≈ K/τint.

Page 65: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

As n→∞, correlation in λ/δ-chains disappears/increases

(Work with S. Agapiou, O. Papaspiliopoulos, & Andrew Stuart)

n = 50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

10

20

30

λ

MCMC chains for λ, n=50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.01

0.02

0.03

0.04

δ

MCMC chains for δ, n=50

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

λ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 50, for 5000 samples the ESS M/τ ≈ 1274.8

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

δ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 50, for 5000 samples the ESS M/τ ≈ 1448.8

n = 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50002

4

6

8

10

12

λ

MCMC chains for λ, n=100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.02

0.04

0.06

0.08

δ

MCMC chains for δ, n=100

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

λ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 100, for 5000 samples the ESS M/τ ≈ 2702.2

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

δ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 100, for 5000 samples the ESS M/τ ≈ 560.4

Page 66: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

As n→∞, correlation in λ/δ-chains disappears/increases

(Work with S. Agapiou, O. Papaspiliopoulos, & Andrew Stuart)

n = 500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50004

5

6

7

λ

MCMC chains for λ, n=500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.1

0.2

0.3

0.4

δ

MCMC chains for δ, n=5002 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

λ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 500, for 5000 samples the ESS M/τ ≈ 4244.3

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

δ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 500, for 5000 samples the ESS M/τ ≈ 136.7

n = 1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50004.5

5

5.5

6

6.5

λ

MCMC chains for λ, n=1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

0.2

0.4

0.6

0.8

δ

MCMC chains for δ, n=10002 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

λ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 1000, for 5000 samples the ESS M/τ ≈ 4453.5

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

δ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 1000, for 5000 samples the ESS M/τ ≈ 81.3

Page 67: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

To overcome this issue, we use marginalization

First note that

λ

2‖Ax− y‖2 +

δ

2xTLx =

1

2(λ‖y‖2 − µT (λATA + δL)µ︸ ︷︷ ︸

U(λ,δ)

) +

1

2(x− µ)T (λATA + δL)(x− µ),

where µ = (λATA + δL)−1λATy.

Then

p(x, λ, δ|y) ∝ p(λ)p(δ) exp

(−1

2U(λ, δ)

exp

(−1

2(x− µ)T (λATA + δL)(x− µ)

)

Page 68: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

To overcome this issue, we use marginalization

First note that

λ

2‖Ax− y‖2 +

δ

2xTLx =

1

2(λ‖y‖2 − µT (λATA + δL)µ︸ ︷︷ ︸

U(λ,δ)

) +

1

2(x− µ)T (λATA + δL)(x− µ),

where µ = (λATA + δL)−1λATy. Then

p(x, λ, δ|y) ∝ p(λ)p(δ) exp

(−1

2U(λ, δ)

exp

(−1

2(x− µ)T (λATA + δL)(x− µ)

)

Page 69: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

To overcome this issue, we use marginalization

p(λ, δ|y) ∝∫Rnp(x, λ, δ|y)dx

∝ p(λ)p(δ) exp

(−1

2U(λ, δ)

)×∫

Rnexp

(−1

2(x− µ)T (λATA + δL)(x− µ)

)dx︸ ︷︷ ︸

(2π)n/2 det(λATA+δL)−1/2

∝ p(λ)p(δ) exp

−1

2U(λ, δ)− 1

2ln det(λATA + δL)︸ ︷︷ ︸

c(λ,δ)

.

Page 70: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

To overcome this issue, we use marginalization

p(λ, δ|y) ∝∫Rnp(x, λ, δ|y)dx

∝ p(λ)p(δ) exp

(−1

2U(λ, δ)

)×∫

Rnexp

(−1

2(x− µ)T (λATA + δL)(x− µ)

)dx︸ ︷︷ ︸

(2π)n/2 det(λATA+δL)−1/2

∝ p(λ)p(δ) exp

−1

2U(λ, δ)− 1

2ln det(λATA + δL)︸ ︷︷ ︸

c(λ,δ)

.

Page 71: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

To overcome this issue, we use marginalization

Thus we have the marginal density

p(λ, δ|y) ∝ p(λ)p(δ) exp

(−1

2U(λ, δ)− 1

2c(λ, δ)

),

where

U(λ, δ) = yT (λI− λ2A(λATA + δL)−1AT )y

c(λ, δ) = ln det(λATA + δL).

Page 72: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Partially Collapsed Gibbs: Step 1, Reduce Conditioning

Reduce Conditioning in step 2 of the Gibbs Sampler

0. Choose x0, and set k = 0;

1. Sample from p(λ, δ|y,xk) via:

a. λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

b. Old: δk+1 ∼ p(δ|y,xk, λk+1).New: (xk+1, δk+1) ∼ p(x, δ|y, λk+1);

2. Sample from the Gaussian p(x|y, λk+1, δk+1) via:

xk+1 =(λk+1A

TA + δk+1L)−1 (

λk+1ATy + η

),

where η ∼ N(0, λk+1A

TA + δk+1L).

3. Set k = k + 1 and return to Step 1.

NOTE: p(λ|y,x, δ) and p(x, δ|y, λ) are not conditionallyindependent, so the result is not a two-stage Gibbs sampler.

Page 73: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Partially Collapsed Gibbs: Step 2, Collapse/MarginalizeIn step 2, xk+1 is redundant, so we can integrate it out, to obtain

δk+1 ∼ p(δ|y, λk+1)′d′=

∫Rnp(x, δ|y, λk+1)dx

∝ p(δ) exp

(−1

2U(λk+1, δ)−

1

2c(λk+1, δ)

).

The Partially Collapsed Hierarchical Gibbs Sampler

0. Choose x0, and set k = 0;

1. Sample λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

2. Sample δk+1 ∼ p(δ|y, λk+1);

3. Sample from the Gaussian p(x|y, λk+1, δk+1) via:

xk+1 =(λk+1A

TA + δk+1L)−1 (

λk+1ATy + η

),

where η ∼ N(0, λk+1A

TA + δk+1L).

4. Set k = k + 1 and return to Step 1.

Page 74: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Partially Collapsed Gibbs: Step 2, Collapse/MarginalizeIn step 2, xk+1 is redundant, so we can integrate it out, to obtain

δk+1 ∼ p(δ|y, λk+1)′d′=

∫Rnp(x, δ|y, λk+1)dx

∝ p(δ) exp

(−1

2U(λk+1, δ)−

1

2c(λk+1, δ)

).

The Partially Collapsed Hierarchical Gibbs Sampler

0. Choose x0, and set k = 0;

1. Sample λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

2. Sample δk+1 ∼ p(δ|y, λk+1);

3. Sample from the Gaussian p(x|y, λk+1, δk+1) via:

xk+1 =(λk+1A

TA + δk+1L)−1 (

λk+1ATy + η

),

where η ∼ N(0, λk+1A

TA + δk+1L).

4. Set k = k + 1 and return to Step 1.

Page 75: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Chain auto-correlation plots for Partially Collapsed Gibbs

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100004.5

5

5.5

6

6.5

7

λ

MCMC chains for λ, n=1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

0.2

0.4

0.6

0.8

δ

MCMC chains for δ, n=1000

0 2 4 6 8 10 12 14 16 18 20−0.5

0

0.5

1

λ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 1000, for 10000 samples the ESS M/τ ≈ 9160.6

0 2 4 6 8 10 12 14 16 18 20−0.2

0

0.2

0.4

0.6

0.8

δ autocorrelation

Sam

ple

Aut

ocor

rela

tion

Disc n = 1000, for 10000 samples the ESS M/τ ≈ 9348.3

Page 76: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Another option: sample directly from p(λ, δ|y)0. Initialize λ0, δ0, and C0 ∈ R2×2. Set k = 1. Define ktotal.

1. Compute [ln(λ∗)ln(δ∗)

]∼ N

([ln(λk−1)ln(δk−1)

],Ck−1

).

Set [λk, δk]T = [λ∗, δ∗]T with probability

α = min

1,

p(λ∗, δ∗|y)

p(λk−1, δk−1|y)

,

else set [λk, δk]T = [λk−1, δk−1]T .

2. Update the proposal covariance:

Ck = cov

ln(λ0) ln(δ0)

......

ln(λk) ln(δk)

+ εI, 0 < ε 1.

3. If k = ktotal stop, else set k = k + 1 and return to Step 1.

Page 77: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Chain diagnostics for AM applied to p(λ, δ|y)

Page 78: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Computational Bottlekneck

Evaluating

p(λ, δ|y) ∝ p(λ)p(δ) exp

(−1

2U(λ, δ)− 1

2c(λ, δ)

),

requires

U(λ, δ) = yT (λI− λ2A(λATA + δL)−1AT )y

c(λ, δ) = ln det(λATA + δL),

which in turn requires

• computing xMAP = (λATA + δL)−1λATy;

• computing ln det(λATA + δL).

NOTE: For the CT test case, these can only computedapproximately.

Page 79: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Computational Bottlekneck

Evaluating

p(λ, δ|y) ∝ p(λ)p(δ) exp

(−1

2U(λ, δ)− 1

2c(λ, δ)

),

requires

U(λ, δ) = yT (λI− λ2A(λATA + δL)−1AT )y

c(λ, δ) = ln det(λATA + δL),

which in turn requires

• computing xMAP = (λATA + δL)−1λATy;

• computing ln det(λATA + δL).

NOTE: For the CT test case, these can only computedapproximately.

Page 80: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Hierarchical Gibbs for sampling from p(x, λ, δ|y)

0. Choose x0, and set k = 0;

1. Sample from p(λ, δ|xk,y):

0.1 Compute λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

0.2 Compute δk+1 ∼ Γ(n/2 + αδ,

12 (xk)TLxk + βδ

);

2. Sample from p(x|λk+1, δk+1,y): Compute

xk+1 =(λk+1A

TA + δk+1L)−1 (

λk+1ATy + η

),

where η ∼ N(0, λk+1A

TA + δk+1L).

3. Set k = k + 1 and return to Step 1.

NOTE: step 3 can be computationally intractible.

Page 81: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Gradient Scan Gibbs Sampler

Replace step 2 with jk+1 CG iterations applied to

(λk+1ATA + δk+1L)(xk + p) = λk+1A

Ty + η,

where η ∼ N(0, λk+1A

TA + δk+1L). Then define

xk+1 = xk + pjk+1 ,

where pjk+1 is the final CG iterate.

NOTE: if jk = n, this reduces to hierarchical Gibbs.

Page 82: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Gradient Scan Gibbs Sampler

0. Choose x0, and set k = 0.

1. Sample from p(λ, δ|xk,y):

0.1 Compute λk+1 ∼ Γ(m/2 + αλ,

12‖Axk − y‖2 + βλ

);

0.2 Compute δk+1 ∼ Γ(n/2 + αδ,

12 (xk)TLxk + βδ

).

2. Approximately sample from p(x|λk+1, δk+1,y): apply CG to

(λk+1ATA + δk+1L)(xk + p) = λk+1A

Ty + η,

where η ∼ N(0, λk+1A

TA + δk+1L). Define

xk+1 = xk + pjk+1 ,

where pjk+1 is the jthk+1 CG iterate.

3. If k = ktotal stop, otherwise, set k = k + 1 and return toStep 1.

NOTE: the smaller is jk, the more correlated will be the x-chain.

Page 83: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Grad Scan Gibbs Numerical Test: jk = 20, n = 1282.

0 500 1000 1500 2000 250010

5

λ samples

0 500 1000 1500 2000 250010

0

101

δ samples

# of samples

6.6 6.8 7 7.2 7.4 7.60

200

400δ, the prior precision

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

x 105

0

200

400λ, the noise precision

4.5 5 5.5 6

x 10−5

0

200

400α=δ/λ, the regularization parameter

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.14

0.15

0.16

0.17

0.18

0.19

Page 84: Computational Uncertainty Quantification for …pcha/UQ/Talk1.pdfComputational Uncertainty Quanti cation for Inverse Problems: Part 1, Linear Problems John Bardsley University of Montana

Conclusions/Takeaways

• Inverse problems have unique characteristics, making theuse of Bayesian methods for their solution practical,challenging, and interesting.

• GMRFs provide a way of modelling the prior from pixel-levelassumptions. However, not all GMRFs yield a well-definedposterior density in the infinite dimensional limit.

• Placing probability densities on λ and δ yields a hierarchicalposterior density p(x, λ, δ|y).

• We provided MCMC methods, derived from the Gibbssampler, for sampling from the posterior p(x, λ, δ|y).