8
Disponible en ligne sur www.sciencedirect.com IRBM 34 (2013) 244–251 Original article Computer aided diagnostic problem solving: Identification of peripheral nerve disorders R. Kunhimangalam a,, S. Ovallath b , P.K. Joseph a a National Institute of Technology, NIT Calicut (PO), Kozhikode, 673601 Kerala, India b Department of Neurology, Kannur Medical College, Anjarakandy (PO), Kerala, India Received 2 December 2012; received in revised form 6 April 2013; accepted 11 April 2013 Available online 18 May 2013 Abstract Aim. The aim was to design and develop a decision support system with a graphical user interface for the prediction of the case of peripheral nerve disorder and to build a classifier using artificial neural networks that can distinguish between carpal tunnel syndrome, neuropathy and normal peripheral nerve conduction. Materials and methods. The data used were the Nerve Conduction Study data obtained from Kannur Medical College, India. A recurrent neural network and a two-layer feed forward network trained with scaled conjugate gradient back-propagation algorithm were implemented and results were compared. Results. Both the networks provided fast convergence and good performance, accuracy being 98.6% and 97.4% for the recurrent neural network and the feed forward networks respectively, the confusion matrix in each case indicated only a few misclassifications. The developed decision support system also gave accurate results in agreement with the specialist’s diagnosis and was also useful in storing and viewing the results. Discussions. In the field of medicine, programs are being developed that aids in diagnostic decision making by emulating human intelligence such as logical thinking, decision making, learning, etc. The system developed proves useful in combination with other systems in providing diagnostic and predictive medical opinions. It was not meant to replace the specialist, yet it can be used to assist a general practitioner or specialist in diagnosing and predicting patient’s condition. Conclusions. The study proves that artificial neural networks are indeed of value in combination with other systems in providing diagnostic and predictive medical opinions. But the major drawback of these studies, which makes use of the nerve conduction study data are the inherent shortcomings of the interpretation of the results, which include lack of standardization and absence of population-based reference intervals. © 2013 Elsevier Masson SAS. All rights reserved. 1. Introduction Neurological disorders affecting the peripheral nervous sys- tem consists of a spectrum of disorders which include more than 100 peripheral nerve disorders out of which carpal tunnel syndrome (CTS) and symmetrical peripheral neuropathy pre- dominate. The contributions of electrophysiological studies to the understanding and diagnosis of peripheral nerve disorders have been reviewed extensively [1,2]. CTS which is a com- mon peripheral nerve disorder is an entrapment type neuropathy caused as the result of the entrapment of the median nerve Corresponding author. E-mail addresses: [email protected], [email protected] (R. Kunhimangalam). passing through the carpal tunnel [3]. The tests for the diagno- sis include electromyography (EMG) and the nerve conduction study (NCS), wrist X-rays should also be done to rule out other problems such as wrist arthritis. However, NCS remains the gold standard for the confirmation of the diagnosis of CTS [4,5]. Peripheral neuropathy refers to the impairment of the nerves of the peripheral nervous system, commonly induced either by diseases or trauma to the nerve or as secondary-effects of sys- temic illness. Different types of peripheral neuropathy have been described, each with its own characteristic set of symptoms, developmental pattern and medical prognosis. The impaired functions and the symptoms depend on the types of nerves that are damaged viz; the motor, sensory or autonomic. Depending on the patient’s condition may be described as predominantly motor neuropathy, predominantly sensory neuropathy, sensory-motor neuropathy, autonomic neuropathy, etc. The differentiation is 1959-0318/$ see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.irbm.2013.04.003

Computer Aided Diagnostic Problem Solving

Embed Size (px)

DESCRIPTION

medical Imaging

Citation preview

Disponibleenlignesurwww.sciencedirect.comIRBM34 (2013) 244251Original articleComputer aided diagnostic problem solving: Identication ofperipheral nerve disordersR. Kunhimangalama,, S. Ovallathb, P.K. JosephaaNational Institute of Technology, NIT Calicut (PO), Kozhikode, 673601 Kerala, IndiabDepartment of Neurology, Kannur Medical College, Anjarakandy (PO), Kerala, IndiaReceived 2 December 2012; received in revised form 6 April 2013; accepted 11 April 2013Available online 18 May 2013AbstractAim.Theaimwastodesignanddevelopadecisionsupportsystemwithagraphicaluserinterfaceforthepredictionofthecaseofperipheralnervedisorderandtobuildaclassierusingarticialneuralnetworksthatcandistinguishbetweencarpaltunnelsyndrome,neuropathyandnormalperipheralnerveconduction.Materialsandmethods.ThedatausedweretheNerveConductionStudydataobtainedfromKannurMedicalCollege,India.Arecurrentneuralnetworkandatwo-layerfeedforwardnetworktrainedwithscaledconjugate gradientback-propagation algorithmwereimplementedandresultswerecompared.Results.Boththenetworksprovidedfastconvergenceandgoodperformance,accuracybeing98.6%and97.4%fortherecurrentneuralnetworkandthefeedforwardnetworksrespectively,theconfusionmatrixineachcaseindicatedonlyafewmisclassications.Thedevelopeddecisionsupportsystemalsogaveaccurateresultsinagreementwiththespecialistsdiagnosisandwasalsousefulinstoringandviewingtheresults.Discussions.Intheeldofmedicine,programsarebeingdevelopedthataidsindiagnosticdecisionmakingbyemulatinghumanintelligencesuchaslogicalthinking,decisionmaking,learning,etc.Thesystemdevelopedprovesusefulincombinationwithothersystemsinprovidingdiagnosticandpredictivemedicalopinions.Itwasnotmeanttoreplacethespecialist,yetitcanbeusedtoassistageneralpractitionerorspecialistindiagnosingandpredictingpatientscondition.Conclusions.Thestudyprovesthatarticialneuralnetworksareindeedofvalueincombinationwithothersystemsinprovidingdiagnosticandpredictivemedicalopinions.Butthemajordrawbackofthesestudies,whichmakesuseofthenerveconductionstudydataaretheinherentshortcomingsoftheinterpretationoftheresults,whichincludelackofstandardizationandabsenceofpopulation-basedreferenceintervals.2013ElsevierMassonSAS.Allrightsreserved.1.IntroductionNeurologicaldisordersaffectingtheperipheralnervoussys-tem consistsofaspectrumofdisorderswhichincludemorethan 100peripheralnervedisordersoutofwhichcarpaltunnelsyndrome(CTS)andsymmetricalperipheralneuropathypre-dominate.Thecontributionsofelectrophysiologicalstudiestothe understandinganddiagnosisofperipheralnervedisordershave beenreviewedextensively[1,2].CTSwhichis acom-mon peripheralnervedisorderisanentrapmenttypeneuropathycaused astheresultoftheentrapmentofthemediannerveCorresponding author.E-mail addresses: [email protected],[email protected] (R. Kunhimangalam).passingthroughthecarpaltunnel[3]. Thetestsforthediagno-sis includeelectromyography (EMG)andthenerveconductionstudy (NCS),wristX-raysshouldalsobedonetoruleoutotherproblemssuchaswristarthritis.However,NCSremainsthegoldstandard fortheconrmationofthediagnosisofCTS[4,5].Peripheral neuropathyreferstotheimpairmentofthenervesof theperipheralnervoussystem,commonlyinducedeitherbydiseases ortraumatothenerveorassecondary-effectsofsys-temic illness.Differenttypesofperipheralneuropathyhavebeendescribed, eachwithitsowncharacteristicsetofsymptoms,developmental patternandmedicalprognosis.Theimpairedfunctions andthesymptomsdependonthetypesofnervesthatare damagedviz;themotor,sensoryorautonomic.Dependingonthe patientsconditionmaybedescribedas predominantlymotorneuropathy,predominantlysensoryneuropathy,sensory-motorneuropathy,autonomicneuropathy,etc.Thedifferentiationis1959-0318/$ see front matter 2013 Elsevier Masson SAS. All rights reserved.http://dx.doi.org/10.1016/j.irbm.2013.04.003R. Kunhimangalam et al. / IRBM34 (2013) 244251 245bestaccomplishedusingNCSandEMG[6].Thesetestscanconrmthepresenceofneuropathyandalsowhetheritis motor,sensory orbothandalsothepathophysiology, i.e.whetheritisdue todemyelinationoraxonalloss.NCSis acrucialcomponentof theelectrodiagnosticevaluation,whichprovidesvaluablequantitative andqualitativeinsightsintoneuromuscularfunc-tion, particularly,theabilityofelectricalconductionofthemotorand sensorynervesofthehumanbody[79].Itmustbeper-formed withcarefulattentiontothetechniqueandmustbeinterpretedintheclinicalcontext.Mathematicalscienceandengineeringpreceptshavebeenwidelyemployedintheeldof medicine[10].Therehasevolvedanumberoftechniques,which aidinthemedicaldiagnosis,neuralnetworks(NN)beingone amongthem[11].Theyhavebecomewellestablishedasexecutable,multipurpose,robustcomputationalmethodologieswith rmtheoreticbackupandwithstrongpotentialtobeeffec-tive inanydiscipline,especiallymedicine[12].Whateverbethecomputerlanguageortheunderlyingmethodologytheclinicaldecisionsupportsystemsdealswithmedicaldataandis basedonthe knowledgeofmedicinenecessarytointerpretsuchdata.Ingeneral theyareemployedindeterminingthenatureofthedis-ease buttheymayfurtherbeprogrammedto evenformulateanddevelop aplanforreachingadiagnosisoradministeringtherapyappropriateforaspecicdiseaseorpatient[13]. Anycomputerprogram designedtoassistinmakingaclinicaldecisioncanbecalled aclinicaldecisionsupportsystem(CDSS)[13]oramedi-cal decisionsupportsystem[14]. TherearemainlytwotypesofCDSS: thersttypeisknowledgebasedwhichconsistsofthreeparts, theknowledgebase,inferenceengine,andauserinter-face whichformsamechanismforthecommunicationbetweenman andmachine.Theknowledgebasecontainstherulesandassociationsofthecompileddata,whicharemostlyintheformof IF-THENrules.Thesecondtypeisthenonknowledge-basedCDSSs thatdonotuseaknowledgebasebutuseaformofarticial intelligencecalledmachinelearning,whichallowcom-puters tolearnfrompastexperiencesand/orndpatternsinclinical data.Twotypesofnonknowledge-basedsystemsarearticialneuralnetworks(ANN)andgeneticalgorithms.In thispaper,wehavedesignedanddevelopedknowledgebased CDSSusingMATLABwithaGUIwhichconsistsofasimple textorienteddisplayforthepredictionofthecaseofperipheralnervedisorderwhenprovidedwiththeNCSdataof thepatient.Anonknowledge-basedsystem,usingANNin theformofaclassierthatcandistinguishbetweenCTS,neuropathyandnormalperipheralnerveconductionwasalsodeveloped.Forthis,arecurrentneuralnetwork(RNN)andatwo-layer feedforwardnetwork(FFN)trainedwithscaledconjugategradient (SCG)back-propagation algorithmwasimplemented.2.Methods2.1.DescriptionofdatabaseusedinANNclassicationInourstudy,wehaveusedtheelectronicmedicalrecordsof KannurMedicalCollege,KeralaandselectedtheNCSdataof 254patientsoutofwhich90werenormalcases,i.e.thosewho hadnormalNCSvaluesandhadnoelectrophysiologicalevidenceofCTSorneuropathy,100werepatientssufferingfrom CTSandtheremainingwerehavingneuropathicsymp-toms. TheNCSwasperformedusingthestandardtechniqueswith surfaceelectroderecordingonbothhandsofeachsub-ject usingconstantcurrentstimulator.Theethicalcommitteeapproval wasobtained.Thefollowingcriteriawereappliedforidentifying thedataforANNclassication[4]:For CTS medianmotorlatencygreaterthan4.4ms,mediansensorylatency greaterthan3.84ms,medianvelocitieslessthan50 m/s,normalulnarmotorvalues(latency:2.59.39ms,velocity:58.75.1m/s)andnormalulnarsensoryvalues(latency: 2.54.29ms,velocity:54.85.3m/s).For neuropathy ulnarmotorlatencywillbegreaterthan3ms,theulnarsensorylatency willbegreaterthan3.23ms,themedianmotorlatencyand mediansensorylatencysameas theCTScase.Ulnarandmedian velocitiesarelesserthan50m/s.The slowingdownofthenerveconductionvelocity(NCV)and prolongeddistallatenciesnormallysuggeststhereisdam-age tothemyelinwhileareductioninthestrengthofimpulsesis asignofaxonaldegeneration.Slowingofthemotorandsen-sory latenciesofthemediannerveisanindicationofthefocalcompression ofthemediannerveatthewrist,whichisanindi-cation forCTS[4].Theslowingofallnerveconductionsinmore thanonelimbindicatesgeneralizeddiseasednerves,i.e.it indicatesgeneralizedperipheralneuropathy[15,16].Assess-ment oftheperipheralneuropathyusingNCScandirectaphysician towardstheappropriateautoimmunedisorder.Typ-ically, demyelinatingneuropathiesdemonstrateslownerveconductionvelocities(NCV),oftenwithreducedamplitudesofsensory/motornerveconductionandprolongeddistallatencies.By contrast,axonalneuropathiestypicallydemonstratenormalNCVs withlowamplitudesofsensory/motornerveconduc-tion. NeuropathiesmayalsohavemixedEMG/NCSresultsandexhibit featuresofbothdemyelinationandaxonalloss[4].Atypical NCSreportisshowninTable1, whichshowsthedatafor anormalperson.2.2.Developingtheprogramandbuildingthegraphicaluser interface(GUI)fordiagnosticpredictionComputeraidedinterpretationofmedicaldataiswidespreadbut alotofphysicians arereluctantinrelyingonthecomputer,because theadviceis deliveredbyacomputerprogramanditisnever foolproof.Overthelastdecades,awiderangeofcomputersystemshasbeendevelopedintheareaofmedicinefordecisionsupportsystems,theyincludecomputertoolsforpatientspecicconsultationse.g.expertdiagnosticsystemsdesignedtoprovidedifferentialdiagnosisorexpertadvice.Thealgorithmsusedinthese typesofdecisionsupportsystemsvarysubstantiallybutin generalsuchsystemsdependupontheknowledgeandinfor-mationthatarecontainedinthesystem.Suchsystemsshould246 R. Kunhimangalam et al. / IRBM34 (2013) 244251Table 1Values of nerve conduction study of a normal person.Site Latency (ms) Amplitude Distance (mm) Interval (ms) NCV(m/s)Motor Nerve Conduction StudyMedian, LWrist 3.85 9.25 mV 240 3.85 59.5Elbow 7.88 10 mV 4.03Median, RWrist 3.76 8.25 mV 250 3.76 58.2Elbow 8.05 8.5 mV 4.29Ulnar, RWrist 2.68 5.7 mV 220 2.68 57.6Elbow 6.5 6.25 mV 3.82Ulnar, LWrist 2.67 6 mV 225 2.67 55.83Elbow 6.7 6.5 mV 4.03Sensory Nerve Conduction StudyMedian, LWrist 2.88 28.6 V 140 2.88 48.6Median, RWrist 2.75 32.6 V 140 2.75 51Ulnar, RWrist 2.25 25.4 V 120 2.25 53.33Ulnar, LWrist 2.29 20.3 V 120 2.29 52.4NCV: nerve conduction velocity.ideallybeabletokeepupwiththehumandecisionmakingpro-cess. Thedecisionsupportsystemdevelopedconsistsofthreemain parts:theinput,therulesetandtheoutput.Diagnosisofa diseaseisdonebyaspecialistusingasetofrulesandthedesignedsysteminvolvesthecollectionoftheserulesandeval-uation oftherulebaseforagivensetofinputs.Fordevelopingdiagnostic toolforCTSandneuropathy,dataisrequiredthatiscapable ofrepresentingthediseases.Byconsultingthespecial-ist andbyanalysingthedataofthepatients,eightNCSvaluewere nalizedas theinputsfordiagnosisviz.motormedianlatency, motormedianNCV,motorulnarlatency,motorulnarNCV, sensorymedianlatency,sensorymedianNCV,sensoryulnar latencyandsensoryulnarNCV.Theinputis givenontothe graphicaluserinterface,thevaluesarecheckedandcom-pared totherulesetandnallytheoutputisobtainedastheresult. Theaimis todevelopaMATLABGUIsystem,whichmodels thereasoningprocessoftheconsultantsintheparticularmedical scenariounderconsideration.Therule-baseddecisionmakingprogramdevelopedutilisesanapproachwherealltheknowledge,informationandtheconcerneddataiscontainedina grouporsetofrules.TherulebasedevelopedconsistedofIF-THEN-ELSErules,whichwereformulatedusingthesamecriteria appliedforidentifyingthedataforANNclassication.Every rulecontainsmultiplehypotheses andconclusions,whichrepresentthelogical,thoughtprocessesofthespecialists.Thegiven setsofrulesareactivatedwhentheinformationorthedatais inputintotheuserinterface.Theknowledgebasecanbeeasilymodiedorchanged.Theproposedsystemreducesthediagno-sis timeofaphysician andadditionallyincreasestheaccuracyof thediagnosis.Theproposedsystemisnotonlyusedfordiag-nosis, butalsousedtostoreandreadtheresultsofthediagnosisfor futurereference.TheuserhastoentertheNCSvaluesintotheinterfacetogetherwiththepatientdetailsandwhenclickedon theGETRESULTbuttonthediagnosisisoutputbythepro-gram. Theprogramcandistinguishbetweenandgivetheresultas normal,suggestiveofbilateralCTS,suggestiveofleftCTS, suggestiveofrightCTS,predominantlymotorneu-ropathy, predominantlysensoryneuropathy, sensory-motorneuropathy, orautonomicneuropathy. Theprogramhasalsoprovisions forstoringtheresultonaspreadsheetbyclickingon theSAVERESULTbutton.Thisstoreddatacanbeeasilyretrieved forfurtherreferenceas andwhenneeded.Provisionisalso providedintheinterfaceforthedoctororthetechniciantoinclude theircommentsforeachpatientwhichcanalsobestored.Involvementofthedistalpartoftheperipheralnervealoneisincluded inthissoftwareprogram.Theprogramcanbefurtherexpanded toincludetheinvolvementoftheproximalpartofthenerves byincludingvaluesofstimulationattheelbowlevelanderbs pointintheupperlimb.2.3.TrainingofthearticialneuralnetworkANNisamathematical/computationalmodelinspiredbythe structuralandfunctionalaspectsofthebiologicalneuralnetworks.Itconsistsofnodescalledneuronsandweightedcon-nections thattransmitsignalsbetweentheneuronsinaforwardor loopedfashion;theyprocesstheinformationusingacon-nectionistapproachtocomputing.TheFFNcanapproximateaspatially nitefunctionwithalargesetofhiddennodesbyoper-ating ontheinputspace.ThebasicdifferencefoundintheRNNis thattheyoperatenotonlyonaninputspacebutalsoonaninternal statespace,whichrepresentssomeinformationonwhatalready hasbeenprocessedbythenetwork.Thedifferenceintheoperating principleofthetwocanbeunderstoodfromFig.1.R. Kunhimangalam et al. / IRBM34 (2013) 244251 247Fig. 1. (a) A schematic representation showing the difference in the basic principle of operation of the recurrent neural networks and feed forward networks. (b)Feed forward network implementation in MATLAB. (c) Recurrent neural network implementation in MATLAB.InthecaseofRNNeverytimeitreceivesapattern,theunitcomputesits activationjustlikeafeedforwardnetwork.Butits netinputwillcontainatermreectingthestateofthenet-work beforethepatternwasseen.Inthesubsequentpatterns,the hiddenandoutputstateswillbeafunctionofeverythingthenetwork hasseensofar,i.e.thenetworkbehaviourofRNNisbased onitshistory[17].Consideratwo-layerednetwork,i.e.a networkwithtwolayersofnodes;aninputlayer,ahiddenorstate layer,andanoutputlayer.Inafeedforwardnetwork,theinput vector,x,is propagated throughaweightlayer,Uandwehave thefollowingEqs.14:yk(t) = f (netk(t)) (1)netk(t) =n

ixi(t) uki+k(2)yj(t) = g

netj(t)

(3)netj(t) =l

kyk(t) wjk+j(4)withthefollowingindexvariables:nfortheinputnodes,kforthe hidden,j fortheoutputnodes,sarethebiasesandf andgare outputfunctions.Wis thesetofweightsintheoutputlayerand yistheoutputvector.Itconsistsofthreemainlayers:theinput layer;whichreceivesdata,i.e.clinicalndings,theoutputlayer whichgivestheresultsandhiddenlayerthatprocessesthedata andarrivesattheconclusion.Thestructureofthenetworkchanges basedontheexternalorinternalinformationthatowsthroughitduringthelearningphase.Attheentranceofeacharticial neuron,whichis thebasicbuildingblockofeveryANNthe inputsareweighted,i.e.everyinputsignalismultipliedwithan individualweight.Inthesucceedingsectionisthesummingfunction thataddstogetheralltheweightedinputsandbias.Atthe exitthesumofpreviouslyweightedinputsandbiasespassesthrough theactivationfunctionalsocalledthetransferfunctionto getthenaloutput.Fig.2showstheANNbasicstructure.In asimpleRNN,theinputvectorissimilarlypropagatedthrough aweightlayer,andisalsocombinedwiththepreviousstate activationthroughanadditionalrecurrentweightlayer,V,[18]andwehaveEqs.5and6.yk(t) = f (netk(t)) (5)netk(t) =n

ixi(t) uki+l

mym(t1) vkm+k(6)wherelisthenumberofstatenodes.Eqs.3and4areappli-cable fortheoutputlayeroftheRNNalso.Thegeneralneuralnetwork designprocessconsistsofthefollowingsteps:thecol-lection ofdata,thecreationofthenetwork,itsconguration,theinitializationoftheweightsandbiases,thetrainingofthenet-work, thevalidationofthenetworkandnallyusingthenetwork[19].MATLABsoftwarepackage(MATLABversion7.9.0withneural networkstoolbox)wasusedforimplementationoftheclassiers usingneuralnetworks.TheNCSdatacollectedwasseparated intoinputsandtargets.Thesignicantfeatureswereidentiedfromthedataandtheyactsastheinputstotheneuralnetwork.Eightinputswereidentiedwhicharemotormedian248 R. Kunhimangalam et al. / IRBM34 (2013) 244251Fig. 2. The basic structure of articial neural networks (ANN).Table 2The attributes of the nerve conduction study datasets.Attribute No. Attribute description Attribute range Mean Standard deviation1 Motor median latency (ms) 29 4.27 1.322 Motor median nerve conduction velocity (m/s) 3065 52.35 8.383 Motor ulnar latency (ms) 29 2.87 0.694 Motor ulnar nerve conduction velocity (m/s) 3065 53.76 8.95 Sensory median latency (ms) 29 3.6 1.256 Sensory median nerve conduction velocity (m/s) 3065 49.8 5.797 Sensory ulnar latency (ms) 29 3.3 0.6338 Sensory ulnar nerve conduction velocity (m/s) 3065 52.76 6.78latency,motormedianNCV,motorulnarlatency,motorulnarNCV, sensorymedianlatency,sensorymedianNCV,sensoryulnar latency,sensoryulnarNCV.Theattributesofthedatasetsare giveninTable2.Thetargetsfortheneuralnetworkwerethelogicalindicesofthe diseasesamples.Thenormalsampleswereidentiedwitha1 00,theCTSwitha010andtheneuropathywith001.Thesamples weredividedintotraining,validationandtestsets.Thetraining setteachesthenetworkandtrainingcontinuesaslongas thenetworkcontinuesimprovingonthevalidationset.Thetrainingstopsautomaticallywhengeneralizationstopsimprov-ing whichisindicatedbyanincreaseintheMeanSquareError(MSE)ofthevalidationsamples.MSEis theaveragesquareddifference betweentheoutputsandtargets,lowervaluesarebet-ter, zeromeansnoerror.TheerrorgoalintrainingwasxedasE