37
Optical Interconnection Networks for Optical Interconnection Networks for Scalable High-performance Parallel Scalable High-performance Parallel Computing Systems Computing Systems Ahmed Louri Department of Electrical and Computer Engineering University of Arizona, Tucson, AZ 85721 [email protected] Optical Interconnects Workshop for High Performance Computing Oak Ridge, Tennessee, November 8-9, 1999

Computing [email protected] Ahmed Louri Computing Systems

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Optical Interconnection Networks forOptical Interconnection Networks forScalable High-performance ParallelScalable High-performance Parallel

Computing SystemsComputing Systems

Ahmed LouriDepartment of Electrical and Computer Engineering

University of Arizona, Tucson, AZ [email protected]

Optical Interconnects Workshop for High PerformanceComputing

Oak Ridge, Tennessee, November 8-9, 1999

Page 2: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Talk OutlineTalk Outline

● Need for Scalable Parallel Computing Systems● Scalability Requirements● Current Architectural Trends for Scalability● Fundamental Problems facing Current Trends● Optics for Scalable Systems● Proposed Optical Interconnection Architectures

for DSMs, and Multicomputers.● Conclusions

Page 3: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Need for Scalable SystemsNeed for Scalable Systems

● Market demands in terms of lower computing costsand protection of customer investment incomputing: scaling up the system to quickly meetbusiness growth is obviously a better way ofprotecting investment: hardware, software, andhuman resources.

● Applications: explosive growth in internet andintranet use.

● The quest for higher performance in many scientificcomputing applications: an urgent need forTeraflops machines!!

● Performance that holds up across machine sizes andproblem sizes for a wide class of users sellscomputers in the long run.

Page 4: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Scalability RequirementsScalability Requirements

● A scalable system should be incrementallyexpanded, delivering linear incrementalperformance with a near linear cost increase,and with minimal system redesign (sizescalability), additionally,

● it should be able to use successive, fasterprocessors with minimal additional costs andredesign (generation scalability).

● On the architecture side, the key designelement is the interconnection network!

Page 5: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Problem StatementProblem Statement● The interconnection network must be able to : (1) increase in

size using few building blocks and with minimum redesign,(2) deliver a bandwidth that grows linearly with the increasein system size, (3) maintain a low or (constant) latency, (4)incur linear cost increase, and (5) readily support the use ofnew faster processors.

● The major problem is the ever-increasing speed of theprocessors themselves and the growing performance gapbetween processor technology and interconnect technology.

— Increased CPU speeds (today in the 600 MHz, tomorrow 1 GHz)

— Increased CPU-level parallelism (multithreading etc.)

— Effectiveness of memory latency-tolerating techniques. Thesetechniques demand much more bandwidth than needed.

● Need for much more bandwidth (both memory andcommunication bandwidths)

Page 6: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Current Architectures for ScalableCurrent Architectures for ScalableParallel Computing SystemsParallel Computing Systems

● SMPs: bus-based symmetric multiprocessors: aglobal physical address space for memory anduniform, symmetric access to the entire memory(small scale systems, 8 - 64 processors)

● DSMs: distributed-shared memory systems:memory physically distributed but logicallyshared. (medium-scale 32 - 512 processors)

● Message-Passing systems: private distributedmemory. (greater than 1000 processors)

Page 7: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Distributed Shared-Memory SystemsDistributed Shared-Memory Systems

● Memory physically distributed but logically shared by allprocessors.

● Communications are via the shared memory only.

● Combines programming advantages of shared-memory withscalability advantages of message passing. Examples: SGIOrigin 2000, Stanford Dash, Sequent, Convex Exemplar, etc.

P2

MemoryDirectory

Interconnection Network

.……..P1

MemoryDirectory

Pn

MemoryDirectory

Page 8: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

No Remote Memory Access (NORMA)No Remote Memory Access (NORMA)Message-Passing ModelMessage-Passing Model

● Interprocessor communication is via message-passingmechanism

● Private memory for each processor (not accessible by any otherprocessor)

—Examples: Intel Hypercube, Intel Paragon, TFLOPS, IBM SP-1/2,etc.

Message Passing (packet) Interconnection Networkpoint-to-point (Mesh, Ring, Cube, Torus), MINs

P1 P2 Pn

LM1 LM2 LMn

N.I1 N.I2 N.In

Page 9: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Fundamental Problems facingFundamental Problems facing DSMs DSMs

● Providing a global shared view on a physicallydistributed memory places a heavy burden onthe interconnection network.

● Bandwidth to remote memory is often non-uniform and substantially degraded by networktraffic.

● Long average latency: latency in accessing localmemory is much shorter than remote accesses.

● Maintaining data consistency (cache coherence)throughout the entire system is very time-consuming.

Page 10: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

An Optical Solution to An Optical Solution to DSMsDSMs

● If a low-latency interconnection network could provide a(1) near-uniform access time, and (2) high-bandwidthaccess to all memories in the system, whether local orremote, the DSM architecture will provide a significantincrease in programmability, scalability and portabilityof shared-memory applications.

● Optical Interconnects can play a pivotal role in such aninterconnection network.

Page 11: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

● Chip power and area increasingly dominated by interconnect drivers, receivers, andpads

● Power dissipation of off-chip line drivers● Signal distortion due to interconnection attenuation that varies with frequency● Signal distortion due to capacitive and inductive crosstalks from signals of

neighboring traces● Wave reflections● Impedance matching problems● High sensitivity to electromagnetic interference (EMI)● Electrical isolation● Bandwidth limits of lines● Clock skew● Bandwidth gap: high disparity between processor bandwidth and memory

bandwidth, and the problem is going to be much worse in future— CPU - Main memory traffic will require 10s of GB/s rate

● Limited speed of off-chip interconnects

Fundamental Problems facing CurrentFundamental Problems facing CurrentInterconnect TechnologyInterconnect Technology

Page 12: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

● Higher interconnection densities (parallelism)

● Higher packing densities of gates on integrated chips

● Fundamentally lower communication energy than electronics

● Greater immunity to EMI

● Less signal distortion

● Easier impedance matching using antireflection coatings

● Higher interconnection bandwidth

● Lower signal and clock skew

● Better electrical isolation

● No frequency-dependent or distance-dependent losses

● Potential to provide interconnects that scale with the operating speed ofperforming logic

Optics for InterconnectOptics for Interconnect

Page 13: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

SOCN for High Performance ParallelSOCN for High Performance ParallelComputing SystemsComputing Systems

● SOCN stands for “Scalable Optical Crossbar-ConnectedInterconnection Networks”.

● A two-level hierarchical network.

● The lowest level consists of clusters of n processorsconnected via local WDM intra-cluster all-opticalcrossbar subnetwork.

● Multiple (c) clusters are connected via similar WDMintra-cluster all-optical crossbar that connects allprocessors in a single cluster to all processors in a remotecluster.

● The inter-cluster crossbar connections can be rearrangedto form various network topologies.

Page 14: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

The SOCN ArchitectureThe SOCN Architecture

Both the intra-cluster and inter-cluster subnetworks are

WDM-based optical crossbar interconnects.

Architecture based on wavelength reuse.

Inter-Cluster Optical Interconnections: (High-Bandwidth, Low-Latency Network)

Cluster1

Cluster2 Clusterm

Intra-cluster optical- Interconnections (High- data rate,

high- connectivity network)

Processor1

Intra--cluster optical

Interconnections (High- data rate,

high- connectivity network)

Intra--cluster optical

Interconnections (High- data rate,

high- connectivity network)

WDM Crossbar Network

Processor2

Processorn

Processor1

Processor2

Processorn

Processor1

Processor2

Processorn

Page 15: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Crossbar NetworksCrossbar Networks

● The SOCN class of networks are based on WDM all-opticalcrossbar networks.

● Benefits of crossbar networks:

—Fully connected.—Minimum potential latency.—Highest potential bisection bandwidth.—Can be used as a basis for multi-stage and hierarchical networks.

● Disadvantages of crossbar networks:

—O(N2) Complexity.—Difficult to implement in electronics.

● N2 wires and switches required.● Rise-time and timing skew become a limitation for large

crossbar interconnects.

● Optics and WDM can be used to implement a crossbar withO(N) complexity.

Page 16: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Example OCExample OC33NN

W D M m u ltip lexedinter-clu ster fib er op ticrossb ar co nn ection s(n channels / fib er)

C luster 1 C lu ster 2

C luster 3 C lu ster 4

C ro ssba r con nectedcluster o f processors(n p ro cessors / cluster)

Inter-cluster optica lcrossbar link s

Intra -clusteroptica l crossbar

T o cluster 1

T o cluster 4

T o cluster 2

V C SE L T ran sm ittersF ixed W avelength O p tica l R eceiversW D M F ib er O p tic C ro ssb ar L ink s

P rocessorP 3,4P 3,3P 3,2P 3,1

Inter-C lu ster F ib er B ased O p tica l C rossba r Interconn ect

C luster 3

Inter-C lu ster F ib er B ased O p tica l C rossba r Interconn ect

Inter-C lu ster F ib er B ased O p tica l C rossba r Interconn ect

Intra -C luster W D M O ptical C rossbar Interconnect

Page 17: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Optical Crossbar-Connected ClusterOptical Crossbar-Connected ClusterNetwork (OCNetwork (OC33N) BenefitsN) Benefits

● Every cluster is connected to every other cluster via asingle send/receive optical fiber pair.

● Each optical fiber pair supports a wavelengthdivision multiplexed fully-connected crossbarinterconnect.

● Full connectivity is provided: every processor in thesystem is directly connected to every other processorwith a relatively simple design.

● Inter-cluster bandwidth and latencies similar tointra-cluster bandwidth and latencies!

● Far fewer connections are required compared to atraditional crossbar.

—Example: A system containing n=16 processors per cluster andc=16 clusters (N=256) requires 120 inter-cluster fiber pairs, whereasa traditional crossbar would require 32,640 interprocessorconnections.

Page 18: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

OCOC33N ScalabilityN Scalability

● The OC3N topology efficiently utilizeswavelength division multiplexing throughout thenetwork, so it could be used to construct relativelylarge (hundreds of processors) fully connectednetworks with a reasonable cost.

● # nodes

● Degree

● Diameter

● # links

● Bisection width

● Avg. Message Dist.

Page 19: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Intra-Cluster WDM Optical CrossbarIntra-Cluster WDM Optical CrossbarApplied Optics, Applied Optics, volvol. 38, no. 29, . 38, no. 29, pppp. 6176 - 6183, Oct. 10, 1999. 6176 - 6183, Oct. 10, 1999

Processor 1 Processor 2 Processor 3

Micro-lens

Fixed - Wavelength Optical Receiver

λ 1

λ 2

λ 3

λ 4

λ 1 -λ n

λ 1 -λ n

λ 1 -λ n

Polymer Waveguides

λ 2

λ 1

λ 4

λ 3

λ 1

λ 4

Concave Diffraction Grating (demultiplexer)

==λ=== 1 - λ

n

λ n

Multiwavelength source: either amultiwavelength VCSEL array where eachVCSEL element emits at a differentwavelength or a Tunable VCSEL(one element)

λ 1 - ==λ n

Memory

Passive Optical Combiner

Multi-wavelengthOptical Line λ 1 - λn

Page 20: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

WDM Optical Crossbar ImplementationWDM Optical Crossbar Implementation

● Each processor contains a single integrated tunableVCSEL or a VCSEL array, and one optical receiver.

● Each VCSEL is coupled into a PC board integratedpolymer waveguide.

● The waveguides from all processors in a cluster arerouted to a polymer waveguide based optical binarytree combiner.

● The combined optical signal is routed to a free-space diffraction grating based opticaldemultiplexer.

● The demultiplexed optical signals are routed backto the appropriate processors.

Page 21: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Polymer Waveguide ImplementationPolymer Waveguide Implementation

Processor 1

Standard PC board Processor integrated receiver array

Polymer Microlens Processor integrated VCSEL array

Polymer waveguides (to optical combiners)

(1 intra-cluster, D inter-cluster)

Reflective 90o bend

Processor 2

Polymer waveguides (from demultiplexers)

(1 intra-cluster, D inter-cluster)

Intra-Cluster Grating Based Demultiplexer

Inter-Cluster Grating Based Demultiplexer

Polymer wavegiude to remote cluster

(coupled to optical fiber)

Polymer wavegiudefrom remote cluster(coupled to optical

fiber)

Polymer wavegiude from local processors

Polymer wavegiude to local processors

Page 22: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Inter-Cluster WDM Optical CrossbarInter-Cluster WDM Optical Crossbar

● Inter-cluster interconnects utilize wavelength reuseto extend the size of the optical crossbars to supportmore processors than the number of wavelengthsavailable.

● An additional tunable VCSEL and receiver areadded to each processor for each inter-clustercrossbar.

● The inter-cluster crossbars are very similar to theintra-cluster crossbars with the addition of an opticalfiber between the optical combiner an the gratingdemultiplexer. This optical fiber extends thecrossbar to the remote cluster.

Page 23: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Inter-Cluster Crossbar OverviewInter-Cluster Crossbar Overview

Optical Combiner

Grating Demultiplexer

Cluster 2

Tunable VCSEL Transmitters Fixed Wavelength Optical Receivers Integrated Star Coupler/Grating Demultiplexer

Processor1,1

Processor1,2

Processor1,3

Processor1,4

To Other Clusters

Optical Combiner

Grating Demultiplexer

Processor2,1

Processor2,2

Processor2,3

Processor2,4

To Other Clusters

Cluster 1

λ1

λ2

λ3

λ4

Page 24: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Inter-Cluster WDM Optical CrossbarInter-Cluster WDM Optical Crossbar

Multiwavelength optical source

(optical waveguide)

Waveguides to optical receivers

Passive optical combiner

Processor 1

Processor 2

Processor 3

Processor 4

Free-space grating-based demultiplexer

λ1

λ2

α=β=NA

Concave diffraction grating

R

D=dR cosβ

Wn (to Processor n)

W1 (to Processor 1)

Optical Fiber

Cluster X

Processor 4

Processor 3

Processor 2

Processor 1

Cluster Y

All-optical crossbar

Page 25: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Cluster n

Processor 1 Processor 2 Processor 3 Processor 4 Cluster 1

Processor 1 Processor 2 Processor 3 Processor 4

Inter-cluster optical crossbar

Intra-cluster cptical crossbar

Grating-based demultiplexer

Optical combiner

Polymer waveguide - fiber coupling

Integrated Polymer waveguides

Optical fiber

Processor 4

Processor integrated VCSEL array

Polymer microlens

90o bend

Processor integrated detector array

Polymer waveguides

Transmit waveguides (to optical combiner)

Receive waveguides (from demultiplexer)

Possible ImplementationPossible Implementation

Page 26: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Polymer Waveguide ImplementationPolymer Waveguide Implementation

Processor 1

Standard PC board Processor integrated receiver array

Polymer Microlens Processor integrated VCSEL array

Polymer waveguides (to optical combiners)

(1 intra-cluster, D inter-cluster)

Reflective 90o bend

Processor 2

Polymer waveguides (from demultiplexers)

(1 intra-cluster, D inter-cluster)

Intra-Cluster Grating Based Demultiplexer

Inter-Cluster Grating Based Demultiplexer

Polymer wavegiude to remote cluster

(coupled to optical fiber)

Polymer wavegiudefrom remote cluster(coupled to optical

fiber)

Polymer wavegiude from local processors

Polymer wavegiude to local processors

Page 27: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Overview of an OpticalOverview of an OpticalImplementation of SOCNImplementation of SOCN

Inter-cluster Optical Crossbar

Star Coupler

Demultiplexer

P1

Optical Crossbar

P2 P3

P4

P5 P6

Star Coupler

Demultiplexer

P1

Optical Demultiplexer

P2

P3

P4

P5

P6

Optical backplane

Optical waveguides

Node 1

Optical combiner

Optical demultiplexer

Node n

•=

=

=

=•=

=

=

=•

Com

biner

Intra-cluster

Optical Crossbar

(polymer waveguides)

Page 28: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Emerging Optical Technologies whichEmerging Optical Technologies whichmake SOCN a viable optionmake SOCN a viable option

● VCSELs (including tunable ones).—Enable wavelength division multiplexing (WDM).

—Up to ~32nm tuning range around 960nm currently available.

—Tuning speeds in the MHz range.

—Very small (few hundred µµµµm in diameter).

● Polymer waveguides.—Very compact (2-200 µµµµm in diameter).

—Densely packed (10 µµµµm waveguide separation).

—Can be fabricated relatively easily and inexpensively directly on ICor PC board substrates.

—Can be used to fabricate various standard optical components(splitters, combiners, diffraction gratings, couplers, etc.)

Page 29: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Tunable Tunable VCSELsVCSELs

Source: “Micromachined Tunable Vertical Cavity Surface Emitting Lasers,” FredSugihwo, et al., Proceedings of International Electron Device Meetings, 1996.

Page 30: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Existing Optical Parallel Links basedExisting Optical Parallel Links basedon on VCSELs VCSELs and Edge Emitting Lasersand Edge Emitting Lasers

Ref: F. Tooley, “Optically interconnected electronics: challenges and choices,” in Proc. Int’l. Workshopon Massively Parallel Processing Using Optical Interconnections, (Maui Hawaii), pp. 138-145, Oct. 1996

Fiber Detector Emitter Data rate CapacitySPIBOC SM PIN 12 edge 2.5 Gb/s 30 Gb/s

OETC MM MSM 32 VCSEL 500 Mb/s 16 Gb/s

POINT MM - 32 VCSEL 500 Mb/s 16 Gb/s

NTT MM PIN 5 edge 2.8 Gb/s 14 Gb/s

Siemens MM PIN 12 edge 1 Gb/s 12 Gb/s

Fujitsu SM PIN 20 edge 622 Mb/s 12 Gb/s

Optobahn 2 MM PIN 10 edge 1 Gb/s 10 Gb/s

Jitney MM - 20 500 Mb/s 10 Gb/s

POLO MM PIN 10 VCSEL 800 Mb/s 8 Gb/s

Optobus II MM PIN 10 VCSEL 800 Mb/s 8 Gb/s

P-VixeLink MM MSM 12 VCSEL 625 Mb/s 7.5 Gb/s

NEC MM - 6 edge 1.1 Gb/s 6.6 Gb/s

ARPA TRP SM - 4 edge 1.1 Gb/s 4.4 Gb/s

Oki MM - 12 edge 311 Mb/s 3.7 Gb/s

Hitachi SM PIN 12 edge 250 Mb/s 3 Gb/s

Page 31: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Architectural AlternativesArchitectural Alternatives

● One of the advantages of a hierarchical networkarchitecture is that the various topological layers typicallycan be interchanged without effecting the other layers.

● The lowest level of the SOCN is a fully connectedcrossbar.

● The second (and highest) level can be interchanged withvarious alternative topologies as long as the degree of thetopology is less than or equal to the cluster node degree.

—Crossbar—Hypercube—Torus—Tree—Ring

Page 32: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Optical Hypercube-Connected ClusterOptical Hypercube-Connected ClusterNetwork (OHCNetwork (OHC22N)N)

● Processors within a cluster are connected via alocal intra-cluster WDM optical crossbar.

● Clusters are connected via inter-cluster WDMoptical links.

● Each processor in a cluster has full connectivityto all processors in directly connected clusters.

● The inter-cluster crossbar connecting clustersare arranged in a hypercube configuration.

Page 33: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Example OHCExample OHC22N (N = 32 processors)N (N = 32 processors)

WDM multiplexedinter-cluster fiberoptic crossbarconnections(n channels / fiber)

ProcessorWDM Fiber Optic Crossbar Links

Crossbar connectedcluster of processors(n processors / cluster)

Cluster 1 (001) Cluster 3 (011)

Cluster 0 (000) Cluster 2 (010)

intra-cluster optical crossbar

inter-cluster optical crossbar

Cluster 5 (101) Cluster 7 (111)

Cluster 6 (110)Cluster 4 (100)

Page 34: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

OHCOHC22N ScalabilityN Scalability

● The OHC2N does not impose a fully connectedtopology, but efficient use of WDM allowsconstruction of very large-scale (thousands ofprocessors) networks at a reasonable cost.

● # nodes

● Degree

● Diameter

● # links

● Bisection width

● Avg. Message Dist.

Page 35: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

Hardware Cost ScalabilityHardware Cost Scalability

● A major advantage of a SOCN architecture isthe reduced hardware part count compared tomore traditional network topologies.

OC3N OHC2N

VCSEL’s (tunable)/processor

O(c) O(log2(c))

Detectors / processor O(c) O(log2(c))Waveguides / processor O(c) O(log2(c))Demultiplexers / cluster O(c) O(log2(c))* c = # clusters = N/n

Page 36: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

OCOC33N and OHCN and OHC22N Scalability RangesN Scalability Ranges

● An OC3N fully connected crossbar topology couldcost-effectively scale to hundreds of processors.

—Example: n = 16, c = 16, N = n x c = 256 processors. Eachprocessor has 16 tunable VCSEL’s and optical receivers, andthe total number of inter-cluster links is 120. A traditionalcrossbar would require (N2-N)/2 = 32,640 links.

● An OHC2N hypercube connected topology couldcost-effectively scale to thousands of processors.

—Example: n = 16, L = 9 (inter-cluster links / cluster), N = 8192processors. Each processor has 10 tunable VCSEL’s andoptical receivers, the diameter is 10, and the total number ofinter-cluster links is 2304. A traditional hypercube wouldhave a diameter and degree of 13 and 53,248 inter-processorlinks would be required.

Page 37: Computing louri@ece.arizona.edu Ahmed Louri Computing Systems

ConclusionsConclusions● In order to reduce costs and provide the highest performance

possible, high performance parallel computers must utilizestate-of-the-art off-the-shelf processors along with scalablenetwork topologies.

● These processors are requiring much more bandwidth tooperate at full speed.

● Current metal interconnections may not be able to provide therequired bandwidth in the future.

● Optics can provide the required bandwidth and connectivity.

● The proposed SOCN class provides high bandwidth, lowlatency scalable interconnection networks with much reducedhardware part count compared to current conventionalnetworks.

● Three optical interconnects technologies (free-space,waveguide, fiber) are combined where they are mostappropriate.