78
max planck institut informatik Computing Shortest Non-Trivial Cycles on Orientable Surfaces of Bounded Genus in Almost Linear Time Martin Kutz Max-Planck Institut für Informatik Saarbrücken, Germany Martin Kutz: Shortest non-trivial cycles on surfaces – p. 1

ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Computing Shortest Non-Trivial Cycleson Orientable Surfaces of Bounded Genus

in Almost Linear Time

Martin KutzMax-Planck Institut für Informatik

Saarbrücken, Germany

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 1

Page 2: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Computing Shortest Non-Trivial Cycleson Orientable Surfaces of Bounded Genus

in Almost Linear Time

Martin KutzMax-Planck Institut für Informatik

Saarbrücken, Germany

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 1

Page 3: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 4: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 5: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 6: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 7: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 8: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encodingof embedding

(e.g., edge-face incidences,or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 2

Page 9: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

A cycle on a surface M is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 3

Page 10: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

A cycle on a surface M is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 3

Page 11: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

A cycle on a surface M is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 3

Page 12: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

equivalent

Two cycles on a surface M are equivalentif one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 4

Page 13: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

equivalentcontractible= trivial

Two cycles on a surface M are equivalentif one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 4

Page 14: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

contractible= trivial

non-contractible

Two cycles on a surface M are equivalentif one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 4

Page 15: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

contractible= trivial

non-contractible but separating

Two cycles on a surface M are equivalentif one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 4

Page 16: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Non-Trivial Cycles

contractible= trivial

non-contractible but separatingnon-separating

Two cycles on a surface M are equivalentif one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 4

Page 17: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Result

Theorem. [K, SoCG 2006]

On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Why short cycles?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 5

Page 18: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Result

Theorem. [K, SoCG 2006]

On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Why short cycles?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 5

Page 19: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Why Short Cycles?

Cutting along non-trivial cycles makes surfacetopologically simpler

want to do this with short cycles.

Short non-trivial cycles are primitives in other algorithms:

cutting a surface into a disk[Erickson & Har-Peled, SoCG 2002]

tightening paths and cycles[Colin de Verdiére & Erickson, SODA 2006]

shortest splitting cycles[Chambers et al., SoCG 2006]

Computing short non-trivial cycles turned out to bea core problem in computational topology.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 6

Page 20: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Why Short Cycles?

Cutting along non-trivial cycles makes surfacetopologically simpler

want to do this with short cycles.

Short non-trivial cycles are primitives in other algorithms:

cutting a surface into a disk[Erickson & Har-Peled, SoCG 2002]

tightening paths and cycles[Colin de Verdiére & Erickson, SODA 2006]

shortest splitting cycles[Chambers et al., SoCG 2006]

Computing short non-trivial cycles turned out to bea core problem in computational topology.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 6

Page 21: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Why Short Cycles?

Cutting along non-trivial cycles makes surfacetopologically simpler

want to do this with short cycles.

Short non-trivial cycles are primitives in other algorithms:

cutting a surface into a disk[Erickson & Har-Peled, SoCG 2002]

tightening paths and cycles[Colin de Verdiére & Erickson, SODA 2006]

shortest splitting cycles[Chambers et al., SoCG 2006]

Computing short non-trivial cycles turned out to bea core problem in computational topology.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 6

Page 22: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Why Short Cycles?

Cutting along non-trivial cycles makes surfacetopologically simpler

want to do this with short cycles.

Short non-trivial cycles are primitives in other algorithms:

cutting a surface into a disk[Erickson & Har-Peled, SoCG 2002]

tightening paths and cycles[Colin de Verdiére & Erickson, SODA 2006]

shortest splitting cycles[Chambers et al., SoCG 2006]

Computing short non-trivial cycles turned out to bea core problem in computational topology.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 6

Page 23: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 24: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 25: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 26: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 27: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 28: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cyclethrough a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave fronthits itself non-trivially

discover trivialenclosuresby Euler’s formula

n-fold execution yieldsglobally shortest cyclein O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7

Page 29: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Genus of a Surface

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 8

Page 30: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Genus of a Surface

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 8

Page 31: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Genus of a Surface

g = 0 g = 1

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 8

Page 32: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Genus of a Surface

g = 0 g = 1 g = 2

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 8

Page 33: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Improvement

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus,shortest non-contractible cycles can be computed in O(n3/2) time.(O(n3/2 log n) for non-separating cycles)

“most appealing open problem:” almost-linear time possible?

New Result:

On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

(Reminder: exponential dependence on g!genus-independent possible in O(n2 log n) )

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 9

Page 34: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Improvement

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus,shortest non-contractible cycles can be computed in O(n3/2) time.(O(n3/2 log n) for non-separating cycles)

“most appealing open problem:” almost-linear time possible?

New Result:

On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

(Reminder: exponential dependence on g!genus-independent possible in O(n2 log n) )

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 9

Page 35: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Improvement

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus,shortest non-contractible cycles can be computed in O(n3/2) time.(O(n3/2 log n) for non-separating cycles)

“most appealing open problem:” almost-linear time possible?

New Result:

On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

(Reminder: exponential dependence on g!genus-independent possible in O(n2 log n) )

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 9

Page 36: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 10

Page 37: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)

...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 10

Page 38: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)

find shortest non-separating loop `2 in M `1 from x to x

...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 10

Page 39: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)

find shortest non-separating loop `2 in M `1 from x to x

cut along `2

...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 10

Page 40: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 10

Page 41: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

Such a minimal system of loops

decomposes the surface into a disk!

is minimal (each loop is minimal in its homotopy class)

can be computed in linear time (instead of just O(gn log n))using Eppstein’s tree-cotree decomposition[Erickson & Whittlesey, SODA 2005]

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 11

Page 42: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

Such a minimal system of loops

decomposes the surface into a disk!

is minimal (each loop is minimal in its homotopy class)

can be computed in linear time (instead of just O(gn log n))using Eppstein’s tree-cotree decomposition[Erickson & Whittlesey, SODA 2005]

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 11

Page 43: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools I: Minimal System of Loops

Such a minimal system of loops

decomposes the surface into a disk!

is minimal (each loop is minimal in its homotopy class)

can be computed in linear time (instead of just O(gn log n))using Eppstein’s tree-cotree decomposition[Erickson & Whittlesey, SODA 2005]

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 11

Page 44: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools II

Use system of loops to form universal cover :

fundamental domain F := M⋃

`i,

glue “infinitely many” F-copies along the boundaries `ito form an infinite plane H, so that

non-trivial cycles in M ←→ non-closed paths in H

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 12

Page 45: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools II

Use system of loops to form universal cover :

fundamental domain F := M⋃

`i,

glue “infinitely many” F-copies along the boundaries `ito form an infinite plane H

, so that

non-trivial cycles in M ←→ non-closed paths in H

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 12

Page 46: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools II

Use system of loops to form universal cover :

fundamental domain F := M⋃

`i,

glue “infinitely many” F-copies along the boundaries `ito form an infinite plane H, so that

non-trivial cycles in M ←→ non-closed paths in H

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 12

Page 47: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools II

same pointin M

Use system of loops to form universal cover :

fundamental domain F := M⋃

`i,

glue “infinitely many” F-copies along the boundaries `ito form an infinite plane H, so that

non-trivial cycles in M ←→ non-closed paths in H

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 12

Page 48: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Technical Tools III

Lem. [Cabello & Mohar, ESA 2005] (Crossing Bound )Let `1, . . . , `2g be a minimal system of loops.Then there exists a shortest non-contractible (non-separating) cyclethat crosses each loop `i at most twice.

Proof via 3-Path Condition [Thomassen, JCT(A) 1990]

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 13

Page 49: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths

Crossing bound guarantees a shortest non-trivial cycle through≤ 4g fundamental domains

Idea: test all possible types of such “meta paths”

How to find a shortest cycle in such a meta path?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 14

Page 50: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths

F2F1

F0

F3

Crossing bound guarantees a shortest non-trivial cycle through≤ 4g fundamental domains

Idea: test all possible types of such “meta paths”

How to find a shortest cycle in such a meta path?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 14

Page 51: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths

F2F1

F0

F3

F4

Crossing bound guarantees a shortest non-trivial cycle through≤ 4g fundamental domains

Idea: test all possible types of such “meta paths”

How to find a shortest cycle in such a meta path?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 14

Page 52: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths

F2F1

F0

F3

F4

Crossing bound guarantees a shortest non-trivial cycle through≤ 4g fundamental domains

Idea: test all possible types of such “meta paths”

How to find a shortest cycle in such a meta path?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 14

Page 53: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths — Naive Search

F2F1

F0

F3

F4

For each meta path:

consider n corresponding points pairs u, v

perform shortest-path search for each pair

Total (worst-case) running time: Ω(n2)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 15

Page 54: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths — Naive Search

F2F1

F0

F3

F4u v

For each meta path:

consider n corresponding points pairs u, v

perform shortest-path search for each pair

Total (worst-case) running time: Ω(n2)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 15

Page 55: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths — Naive Search

F2F1

F0

F3

F4u v

For each meta path:

consider n corresponding points pairs u, v

perform shortest-path search for each pair

Total (worst-case) running time: Ω(n2)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 15

Page 56: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Meta Paths — Naive Search

F2F1

F0

F3

F4u v

For each meta path:

consider n corresponding points pairs u, v

perform shortest-path search for each pair

Total (worst-case) running time: Ω(n2)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 15

Page 57: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 16

Page 58: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 16

Page 59: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

s

t

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 16

Page 60: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

s

t

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 16

Page 61: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

s

t

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 16

Page 62: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 17

Page 63: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 17

Page 64: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 17

Page 65: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 17

Page 66: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 17

Page 67: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Conclusion

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Non-orientable manifolds: [Cabello, unpublished / –written]

Open problem: How to avoid the exponential dependence on g?

(Remember: genus-independent in O(n2 log n) )

Maybe trade-off possible between n and g?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 18

Page 68: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Conclusion

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Non-orientable manifolds: [Cabello, unpublished / –written]

Open problem: How to avoid the exponential dependence on g?

(Remember: genus-independent in O(n2 log n) )

Maybe trade-off possible between n and g?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 18

Page 69: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Conclusion

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Non-orientable manifolds: [Cabello, unpublished / –written]

Open problem: How to avoid the exponential dependence on g?

(Remember: genus-independent in O(n2 log n) )

Maybe trade-off possible between n and g?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 18

Page 70: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Conclusion

Theorem. On orientable surfaces of bounded genus,shortest non-contractible and shortest non-separating cyclescan be computed in O(n log n) time.

Non-orientable manifolds: [Cabello, unpublished / –written]

Open problem: How to avoid the exponential dependence on g?

(Remember: genus-independent in O(n2 log n) )

Maybe trade-off possible between n and g?

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 18

Page 71: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Want to cut M (along several paths) to obtain a (topological) disk.

Example: M − system of loops = disk

Def. a cut graph is a collection of paths that cut M into a disk.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 19

Page 72: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Want to cut M (along several paths) to obtain a (topological) disk.

Example: M − system of loops = disk

Def. a cut graph is a collection of paths that cut M into a disk.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 19

Page 73: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Want to cut M (along several paths) to obtain a (topological) disk.

Example: M − system of loops = disk

Def. a cut graph is a collection of paths that cut M into a disk.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 19

Page 74: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Def. a cut graph is a collection of paths that cut M into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002]Computing a minimum cut graph is NP-hard. (requires large genus)But can be O(log2 g)-approximated in O(g2n log n) time.

Question: Fixed-parameter tractable? (in g)Because of similarity to Steiner-tree problem.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 20

Page 75: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Def. a cut graph is a collection of paths that cut M into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002]Computing a minimum cut graph is NP-hard. (requires large genus)

But can be O(log2 g)-approximated in O(g2n log n) time.

Question: Fixed-parameter tractable? (in g)Because of similarity to Steiner-tree problem.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 20

Page 76: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Def. a cut graph is a collection of paths that cut M into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002]Computing a minimum cut graph is NP-hard. (requires large genus)But can be O(log2 g)-approximated in O(g2n log n) time.

Question: Fixed-parameter tractable? (in g)Because of similarity to Steiner-tree problem.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 20

Page 77: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Def. a cut graph is a collection of paths that cut M into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002]Computing a minimum cut graph is NP-hard. (requires large genus)But can be O(log2 g)-approximated in O(g2n log n) time.

Question: Fixed-parameter tractable? (in g)Because of similarity to Steiner-tree problem.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 20

Page 78: ComputingShortestNon-TrivialCycles ...people.mpi-inf.mpg.de/alumni/d1/2009/mkutz/slides/Kutz_SurfCycle_talk.pdfmax planck institut informatik ComputingShortestNon-TrivialCycles onOrientableSurfacesofBoundedGenus

max planck institutinformatik

Outlook: Cut Graphs

Theorem. [K & Steurer, unpublished / –written]Approximating the minimum cut graph up to a constant factor isfixed-parameter tractable (in g).

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 21