12
1/56 Institut de Microelectrònica de Barcelona Escuela de verano de Jaca July 2011 Concepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB, CSIC) [email protected] 2/56 Institut de Microelectrònica de Barcelona Escuela de verano de Jaca July 2011 1 cm 10 cm 100 um 1 mm 1 um 10 um 10 nm 100 nm 1 nm 0,1 nm Gra de sorra Diàmetre cabell humà Bacteries Molècula de DNA Distància interatòmica Oblia Xip Micromotors Circuit integrat Transistor MOS Dispositius quàntics Estructures atomiques Microelectrònica Nanotecnologia 3/56 Institut de Microelectrònica de Barcelona Escuela de verano de Jaca July 2011 Nanotechnology, D. M. Tennant . AIP/Springer, New York, 1999 Nanolithographies Nanolithographies 4/56 Institut de Microelectrònica de Barcelona Escuela de verano de Jaca July 2011 Summary Concept of optical lithography Resists Part ii Associated processes Part ii Miniaturization Limits optical lithography Part i

Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

  • Upload
    buicong

  • View
    242

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

1/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Concepts and principles of optical

lithography

Francesc Pérez-Murano

Institut de Microelectrònica de Barcelona (CNM-IMB, CSIC)

[email protected]

2/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

1 cm

10 cm

100 um

1 mm

1 um

10 um

10 nm

100 nm

1 nm

0,1 nm

Gra de sorra

Diàmetre cabell humà

Bacteries

Molècula de DNA

Distància interatòmica

Oblia

Xip

Micromotors

Circuit integrat

Transistor MOS

Dispositius quàntics

Estructures atomiques

Microelectrònica

Nanotecnologia

3/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Nan

otec

hnol

ogy,

D. M

. Ten

nant

. A

IP/S

prin

ger,

New

Yor

k, 1

999

NanolithographiesNanolithographies

4/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Summary

Concept of optical lithography

Resists

Part ii

Associated processes

Part ii

Miniaturization

Limits optical lithography

Part i

Page 2: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

5/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011Bibliography

Nanoelectronics and Information. Chapter 9. Technology. Rainer Waser. Wiley-VCH 2003

Fundamentals of Microfabrication. Chapter 1. Marc Madou. CRC Press. 1997

Silicon Processing for the VLSI Era. Volume 1-Process Technology. Chapter 12 and 13. S. Wolf and R.N. Tauber. Lattice Press. 1986v

Principles of Lithography. Harry J. levinson. SPIE Press. 2004

Basic Books

Web sites http://www.intel.com/technology/silicon/index.htm http://www.microchemicals.de/products.html

6/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Summary

Concept of optical lithography

Resists

Part ii

Associated processes

Part ii

Miniaturization

Limits optical lithography

Part i

7/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Summary

Concept of optical lithography

Resists

Part ii

Associated processes

Part ii

Miniaturization

Limits optical lithography

Part i

8/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Fabrication using optical lithography

Mask

Resist

Exposition

Development

Etching

Initial substrate

Page 3: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

9/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

silicon substrate

oxide

photoresist

Positive Lithography

Island

Window

Areas exposed to light become photosoluble.

Resulting pattern after the resist is developed.

Shadow on photoresist

Exposed area of photoresist

Chrome island on glass mask

photoresist

silicon substrate

oxide

Ultraviolet Light

Positive Resist Tone

10/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Negative Lithography

Island

silicon substrate

oxide

photoresist

Window

Areas exposed to light become polymerized and sustain the develop chemical

Resulting pattern after the resist is developed.

photoresistoxide

silicon substrate

Ultraviolet Light

Exposed area of photoresist

Shadow on photoresist

Chrome island on glass mask

Negative Resist Tone

11/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Optical lithographyLithography: Image a mask on a wafer

Wavelength of the light sources:Near UV and deep UV

12/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Spectral distribution: Mercury Arc Lamp

i-line (365 nm)

g-line (435 nm)

h-line (405 nm)

Optical source for UV

Page 4: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

13/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Light source

Optical system

MaskPhotoresistSample

Gap

Contact Proximity Projection

Exposition 1:1 1:1 5:1

Optical lithography modes

14/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

UV optical lithography systems

Optical aligners Stepper

15/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Contact printing

R=MFS=(d·

d: Resist thicknessLight wavelenght

d= 1 m; = 435 nm; R=0.66 m

MFS: Minimum feature size

(difraction limited)

16/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Proximity printing

a h

R= MFS (Minimum feature size)

K: Experimental parameter (>1)

Page 5: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

17/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Projection printing

MFS=R = k1λNA

NA: Numerical aperture

k1: technology constant(0.5 – 0.9)

k1= 0,66; = 435 nm; NA= 0.7; R = 0.4 m

18/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Resolution in projection printing

19/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Step-and scan system (stepper)

20/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

1. Surface Preparation2. Photoresist Application3. Soft Bake4. Align & Expose*

5. Develop6. Hard Bake7. Inspection8. Etch9. Resist Strip10. Final Inspection

* Some processes may include a Post-exposure Bake

Ten Basic Steps of Photolithography

Page 6: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

21/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

1. Surface Preparation (HMDS vapor prime)

Dehydration bake in enclosed chamber with exhaust

Clean and dry wafer surface (hydrophobic)

Hexamethyldisilazane (HMDS)

Temp ~ 200 - 250C Time ~ 60 sec.

HMDS

22/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

HEXAMETHYLSILIZANE (HDMS)Dehydration

Adhesion promotion by HDMS

23/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

2. Photoresist Application

Wafer held onto vacuum chuck

Dispense ~5ml of photoresist

Slow spin ~ 500 rpm Ramp up to ~ 3000 -

5000 rpm Quality measures:

time speed thickness uniformity particles & defects vacuum chuck

spindleto vacuum

pump

photoresist dispenser

24/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Resist spinning thickness T depends on: Spin speed Solution concentration Molecular weight (measured by

intrinsic viscosity) In the equation for T, K is a

calibration constant, C the polymer concentration in grams per 100 ml solution, the intrinsic viscosity, and the number of rotations per minute (rpm)

Once the various exponential factors (, and ) have been determined the equation can be used to predict the thickness of the film that can be spun for various molecular weights and solution concentrations of a given polymer and solvent system

2. Photoresist Application

Sample

ResistT

Extra resist at the edges

Page 7: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

25/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

3. Soft Bake

Partial evaporation of photo-resist solvents

Improves adhesion Improves uniformity Improves etch resistance Improves linewidth control Optimizes light absorbance

characteristics of photoresist

26/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

4. Alignment and Exposure

Transfers the mask image to the resist-coated wafer

Activates photo-sensitive components of photoresist

Quality measures: linewidth resolution overlay accuracy particles & defects

UV Light Source

Mask

ResistResistResistResist

27/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Alignment errors (many different types)

Mask aligner equipment Double sided alignment

especially important in micromachines

4. Alignment and Exposure

28/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

4. Alignment and Exposure

Page 8: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

29/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

5. Develop

Soluble areas of photoresist are dissolved by developer chemical

Visible patterns appear on wafer windows islands

Quality measures: line resolution uniformity particles & defects

to vacuum pump

vacuum chuck

spindle

developerdispenser

30/17

Institut de Microelectrònica de Barcelona

CLEAN ROOM TRAINING 2009-2010. Semester II

6. Hard Bake

Evaporate remaining photoresist

Improve adhesion

Higher temperature than soft bake

31/17

Institut de Microelectrònica de Barcelona

CLEAN ROOM TRAINING 2009-2010. Semester II

7. Development Inspection

Optical or SEM metrology Quality issues:

particles defects critical dimensions linewidth resolution overlay accuracy

32/17

Institut de Microelectrònica de Barcelona

CLEAN ROOM TRAINING 2009-2010. Semester II

8. Plasma Etch-Or Add Layer

Selective removal of upper layer of wafer through windows in photoresist: subtractive

Two basic methods: wet acid etch dry plasma etch

Quality measures: defects and particles step height selectivity critical dimensions

Adding materials (additive) Two main techniques:

Sputtering evaporation

PlasmaPlasma

CF4CF4

Page 9: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

33/17

Institut de Microelectrònica de Barcelona

CLEAN ROOM TRAINING 2009-2010. Semester II

9. Photoresist Removal (strip)

No need for photoresist following etch process

Two common methods: wet acid strip dry plasma strip

Followed by wet clean to remove remaining resist and strip byproducts

O2O2

PlasmaPlasma

34/17

Institut de Microelectrònica de Barcelona

CLEAN ROOM TRAINING 2009-2010. Semester II

10. Final Inspection

Photoresist has been completely removed

Pattern on wafer matches mask pattern (positive resist)

Quality issues: defects particles step height critical dimensions

35/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Summary

Concept of optical lithography

Resists

Part ii

Associated processes

Part ii

Miniaturization

Limits optical lithography

Part i

36/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

silicon substrate

oxide

photoresist

Positive Lithography

Island

Window

Areas exposed to light become photosoluble.

Resulting pattern after the resist is developed.

Shadow on photoresist

Exposed area of photoresist

Chrome island on glass mask

photoresist

silicon substrate

oxide

Ultraviolet Light

Positive Resist Tone

Page 10: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

37/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Photoresists

38/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Photoresist profiles Overcut (LIFT-OFF) Vertical Undercut Dose : High

Developer: Low

Dose : Medium

Developer: Moderate

Dose : Low

Developer: Dominant

Photoresist profiles

39/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Optical Resolution

PhotosensitivityRefractive Index

Mechanical/Chemical ViscosityAdhesionEtch resistanceThermal stability

Process related Cleanliness (particle count)

Metal ContentShelf lifeToxicityStability to process variations

Photoresist Material Parameters (requirements)

40/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Positive tone photoresist: DQN

Resin (N) / sensitizer(DQ)

N: phenolic Novolak resin: low molecular weight polymer. Forms the resists films properties. It dissolves in presence of water.

DQ (Photoactive siazoquinone ester) Photosensitive, insoluble in aqueous solution. Prevents the resin to be dissolved

Upon exposure to light, the dizaoquinones photochemically decompose

Page 11: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

41/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Example: AZ 1500 Photoresists

42/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Positive tone photoresist: PMMA

PMMA: poly(methylmethacrylate)

Chain scission under DUV exposition

Also suitable for electron-beam lithography

43/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Example: nano-PMMA

44/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Negative tone photoresist

Resin: Cyclic Synthetic rubber (non radiaton sensitive, strongly soluble in the solvent)

PAC is a bis-arylazide. Upon exposure, it dissociates into nitrene and N2. The nitrene reacts with the rubber molecules so that a cross linking between resin molecules occurs, becoming unsoluble.

Page 12: Concepts and principles of optical Xip lithography - · PDF fileConcepts and principles of optical lithography Francesc Pérez-Murano Institut de Microelectrònica de Barcelona (CNM-IMB,

45/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Example: AZ-N4035

46/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

O

CH2

CH

CH2O

Epoxy based negative photoresistNegative photoresists becomeinsoluble in developing solutionswhen exposed to optical radiation

SU-8 is a commercial name for a fixed formulation. Any variation of thisformulation becomes a very similar resist, but as it is not exactly SU-8, thevariations are called epoxy based resists.

C CH3H3C

CH2

C CH3H3C

CH2

C CH3H3C

CH2

C CH3H3C

O O O

OOOO

CH2 CH2 CH2 CH2

CH2CH2

O

CH2 CH2

CH CH CH CH

CHCH CH CH

CH2 CH2 CH2 CH2

CH2CH2CH2CH2

O O O O

O O O O

• On exposure the PAG generates a strong acid

• Protons attack oxygen on some epoxides

• Crosslinking occurs during PEB resulting in an insoluble very dense polymer network

47/56

Institut de Microelectrònica de Barcelona

Escuela de verano de Jaca July 2011

Example: SU-8