8
Conceptual design of Conceptual design of superconducting correctors for superconducting correctors for Hi-Lumi Project Hi-Lumi Project F. Toral - CIEMAT CIEMAT, Jan. 28th, 2013

Conceptual design of superconducting correctors for Hi- Lumi Project

  • Upload
    renata

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Conceptual design of superconducting correctors for Hi- Lumi Project. F. Toral - CIEMAT. CIEMAT, Jan. 28th, 2013. Conceptual design: superferric. Due to the moderate requirement on magnet strength, a superferric design is feasible. The superferric layout has three important advantages: - PowerPoint PPT Presentation

Citation preview

Page 1: Conceptual design of superconducting correctors for Hi- Lumi  Project

Conceptual design of superconducting Conceptual design of superconducting correctors for Hi-Lumi Projectcorrectors for Hi-Lumi Project

F. Toral - CIEMAT

CIEMAT, Jan. 28th, 2013

Page 2: Conceptual design of superconducting correctors for Hi- Lumi  Project

Conceptual design: superferric

2

• Due to the moderate requirement on magnet strength, a superferric design is feasible.• The superferric layout has three important advantages:

1) The coils are placed beyond the aperture diameter and wires are concentrated in a slot, compared to the broad extension of a cos-theta type coil. Both features yield higher radiation resistance.

2) The fabrication complexity and cost is lower, because coils are flat and besides the wire positioning tolerance is relaxed.

3) It is very well suited for short magnets with broad aperture.

1.5 T option Total length (m) 3,03

        WP3 proposal Superferric option WP2 requirements

    Order Aperture Int Strenght at 50 mm Int strength Length Strenght Pole field Int Strenght at 50 mm ratio

    (adim) (mm) (T m) (T/m^(n-2)) (m) (T/m^(n-1)) (T) (T m)  

MCQSX Skew 2 150 1,00 20,0 1,000 20 1,500 1,00 1,00

MCSX Normal 3 150 0,06 24,0 0,090 267 1,500 0,06 1,00

MCSSX Skew 3 150 0,06 24,0 0,090 267 1,500 0,06 1,00

MCOX Normal 4 150 0,04 320,0 0,090 3556 1,500 0,04 1,00

MCOSX Skew 4 150 0,04 320,0 0,090 3556 1,500 0,04 1,00

MCDX Normal 5 150 0,03 4266,7 0,090 47407 1,500 0,04 0,67

MCDSX Skew 5 150 0,03 4266,7 0,090 47407 1,500 0,02 1,33

MCTX Normal 6 150 0,08 252839,5 0,400 632099 1,500 0,12 0,66

MCTSX Skew 6 150 0,02 56888,9 0,090 632099 1,500 0,02 0,89

Page 3: Conceptual design of superconducting correctors for Hi- Lumi  Project

Conceptual design: superferric

3

Vacuum impregnated coils

Laminated ARMCO iron yoke

Alignment by stainless steelkeys

Radiation resistance: Polyimide insulated NbTi

wire CTD 422B: a blend of

cyanate ester and epoxy resin

Stainless steel coil spacers Duratron 2300 PEI

connection plate and ancillary pieces

Insulating sleeves made of polyurethane and glass fiber

Page 4: Conceptual design of superconducting correctors for Hi- Lumi  Project

4

Conceptual design: superferric

Page 5: Conceptual design of superconducting correctors for Hi- Lumi  Project

5

Conceptual design: superferric

Page 6: Conceptual design of superconducting correctors for Hi- Lumi  Project

6

First magnetic calculations

Roxie simulation

Total length

(m) 2,958

          Superferric option    WP2

requirements

    Order ApertureInt Strenght at 50

mmInt

strength Mech length StrengthPole field 2-

D Saturation Coil lengthCoil straight

length Block currentNumber of

turns CurrentWire bare diameter L

Int Strenght at 50 mm

required/given

    (mm) (T m)

(T/m^(n-

2)) (m)

(T/m^(n-

1)) (T) (adim) (m) (m) (A) (A) (mm) (H) (T m)  

MCQSX Skew 2 150 1,014   0,914   1,75 1,04 0,896 0,864 53000 346 153,2 0,7 1,99 1,00 1,01

MCSX Normal 3 150 0,060   0,136   1,25 1,04 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00

MCSSX Skew 3 150 0,060   0,136   1,25 1,04 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00

MCOX Normal 4 150 0,040   0,140   1,25 1,02 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00

MCOSX Skew 4 150 0,040   0,140   1,25 1,02 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00

MCDX Normal 5 150 0,040   0,170   1,40 1,05 0,150 0,126 17400 165 105,5 0,5 0,138 0,04 1,00

MCDSX Skew 5 150 0,040   0,170   1,40 1,05 0,150 0,126 17400 165 105,5 0,5 0,138 0,02 2,00

MCTX Normal 6 150 0,119   0,608   1,65 1,05 0,588 0,564 16600 165 100,6 0,5 0,6 0,12 1,00

MCTSX Skew 6 150 0,020   0,144   1,40 1,04 0,124 0,100 14000 165 84,8 0,5 0,111 0,02 1,02

• Full 3-D simulation has been performed using Roxie.• It is not an optimal solution, it is just a proof of principle.• The separation between mechanical lengths is 40 mm. Connections are made in 20 mm of longitudinal length. Overall length is 2.958 m.• A nonlinearity of the transfer function up to 5% is assumed as non problematic.

Page 7: Conceptual design of superconducting correctors for Hi- Lumi  Project

7

First magnetic calculations: octupole

• The fringe field goes beyond the mechanical length of the magnet.• No significant cross-talk between the magnets is expected, but must be checked.

Page 8: Conceptual design of superconducting correctors for Hi- Lumi  Project

Conclusions

8

A baseline design of superferric magnets complies with the specifications.

Some open points are still pending: Cross-talk between adjacent magnets. Maximum allowable non-linearity of the transfer

function. Nominal current (that is, available power supplies

and leads).

The framework for this Collaboration needs to be defined.