Concrete Masonry 09

  • Upload
    anjkkk

  • View
    231

  • Download
    0

Embed Size (px)

Citation preview

  • 8/9/2019 Concrete Masonry 09

    1/213

    Concrete & Masonry

    Prof Dave Hughes

    Taught by lectures, tutorials, lab,

    CALCRETE & design sessions

    Assessed by Class test multiple choice week

    6/7 (30%)2 hour exam - design exercises

    (70%)

  • 8/9/2019 Concrete Masonry 09

    2/213

    Left school when 16 with 7 OLevels

  • 8/9/2019 Concrete Masonry 09

    3/213

    Left school when 16 with 7 OLevels

    Farnborough Technical College OND Engineering (1971)

  • 8/9/2019 Concrete Masonry 09

    4/213

    Left school when 16 with 7 OLevels

    Farnborough Technical College OND Engineering (1971)

    Portsmouth Polytechnic BSc (Hons)

  • 8/9/2019 Concrete Masonry 09

    5/213

    Left school when 16 with 7 OLevels

    Farnborough Technical College OND Engineering (1971)

    Portsmouth Polytechnic BSc (Hons) (1975)

    Surrey University PhD (1982)

  • 8/9/2019 Concrete Masonry 09

    6/213

    Left school when 16 with 7 OLevels

    Farnborough Technical College OND Engineering (1971)

    Portsmouth Polytechnic BSc (Hons) (1975)

    Surrey University PhD (1982)

    Bradford University (1985)First Associate Dean (Learning & Teaching)

    Mortars conservation and new build

  • 8/9/2019 Concrete Masonry 09

    7/213

  • 8/9/2019 Concrete Masonry 09

    8/213

  • 8/9/2019 Concrete Masonry 09

    9/213

  • 8/9/2019 Concrete Masonry 09

    10/213

  • 8/9/2019 Concrete Masonry 09

    11/213

  • 8/9/2019 Concrete Masonry 09

    12/213

  • 8/9/2019 Concrete Masonry 09

    13/213

  • 8/9/2019 Concrete Masonry 09

    14/213

    Introduction

    Tofamiliarise you with concrete and mortar

  • 8/9/2019 Concrete Masonry 09

    15/213

  • 8/9/2019 Concrete Masonry 09

    16/213

    What are concrete & mortar?

    Composite of

    Aggregate

    Binder

  • 8/9/2019 Concrete Masonry 09

    17/213

    What are concrete & mortar?

    Composite of

    Aggregate

    Binder

    Gravel

    Crushed Rock

    Expanded Clay

    Sintered PFA

    Blast Furnace Slag

    Steel Shot

    GlassSea shells

    Recycled concrete

  • 8/9/2019 Concrete Masonry 09

    18/213

    What are concrete & mortar?

    Composite of

    Aggregate

    Binder

    Portland Cement

    Calcium Aluminate Cement

    B-CSA-F CementHydraulic Lime

    Air Lime

    Water

    PFA

    GGBSSilica Fume

  • 8/9/2019 Concrete Masonry 09

    19/213

    What is concrete?

    0

    10

    20

    30

    40

    50

    % by

    Volume

    CoarseAggFine Agg

    Binde

    rWater

    Voids

  • 8/9/2019 Concrete Masonry 09

    20/213

    What is mortar?

    % byVolume

    0

    10

    20

    30

    40

    50

    60

    FineAgg

    Binder Water Voids

  • 8/9/2019 Concrete Masonry 09

    21/213

    What are the attractions of concrete?

    In-situ or Pre-cast

    Two states

    Range of finishes

    High compressive strength

    Can be durable

  • 8/9/2019 Concrete Masonry 09

    22/213

    What the down-sides of concrete?

    Cement can be guaranteed but not concrete

    Low tensile strength & toughness

    Can lack durability

    Natural Hydraulic Lime is variable between

    and within source

    Lime mortars are more flexible

  • 8/9/2019 Concrete Masonry 09

    23/213

    So what are the differences betweengood concrete and bad concrete?

    Application of know-how since theingredients are the same

  • 8/9/2019 Concrete Masonry 09

    24/213

    So what are the differences betweengood concrete and bad concrete?

    Application of know-how since theingredients are the same

    CEMENT & LIME, COMPOSITION,COMPACTION, CURING, COVER, CARE

  • 8/9/2019 Concrete Masonry 09

    25/213

    Testing of concrete & mortar

    Compressive strength

    Workability

    but durability is more often the key factor

    a function of permeability and composition

    and very rarely tested for

  • 8/9/2019 Concrete Masonry 09

    26/213

    Layout of the rest of the module

    Ingredients

    Fresh concrete

    Hardened concrete - mechanical

    Hardened concrete - permeation

    Hardened concrete - durability

    Mix design

    Mortars

    Masonry units

    Design exercises

  • 8/9/2019 Concrete Masonry 09

    27/213

    Cements and Limes

    To present specifications for hydraulic cements

    and hydraulic limes

    To discuss their hydration and the formation of

    microstructure

  • 8/9/2019 Concrete Masonry 09

    28/213

    Terminology of Cements and Limes

    SiO2 S

    Al2O

    3A

    CaO C

    Fe2O3 F

    SO3 S

    H20 H

  • 8/9/2019 Concrete Masonry 09

    29/213

    Cements

    Portland cement -

    Tri Calcium Silicate C3S

    Di Calcium Silicate C2S

    Tri Calcium Aluminate C3A

    Tetra Calcium Aluminoferrite C4AF

  • 8/9/2019 Concrete Masonry 09

    30/213

    History of Cements and Limes

    0

    10

    20

    30

    40

    50

    60

    1900 1920 1940 1960 1980 2000

    C3

    S

    C2

    S

  • 8/9/2019 Concrete Masonry 09

    31/213

    Manufacture of Portland Cement

    Quarrying

    Limestone

    Clay/Shale

    Grinding &

    Blending

    H2O CO2 Clinker

    Pre-heat 850oC 1400oC

    Add Gypsum

    Grinding

  • 8/9/2019 Concrete Masonry 09

    32/213

    Manufacture of Lime

    Quarrying

    Limestone

    Crushing850oC

    1000oC

    CO2 Reaction

    Slaking

  • 8/9/2019 Concrete Masonry 09

    33/213

    Lime, Portland Cement & Pozzolanas%age by wt

    NHL PC GGBS PFA CSF

    S 15 21 37 48 92

    A 1 7 11 26 1

    F 1 3 1 10 1

    C 60 66 40 2 0Alk 1 1 1 4 3

    CH C3S AS glass AS glass S glass

    CaCO3 C2S

    C2S C3A

    C2AS C4AF

  • 8/9/2019 Concrete Masonry 09

    34/213

    Cement & BS EN 197-1:2000Composition

    CEM I Portland cement

    CEM II Portland-composite cement

    CEM III Blast furnace cement

    CEM IV Pozzolanic cement

    CEM V Composite cement

  • 8/9/2019 Concrete Masonry 09

    35/213

    Cement & BS EN 197-1:2000

    CEM I Portland cement

    95 - 100% clinker

  • 8/9/2019 Concrete Masonry 09

    36/213

    Cement & BS EN 197-1:2000

    CEM II Portland-composite cement

    65 - 94% clinker plus

    6 - 35% GGBS, PFA, limestone dust

    6 - 10% CSF

    6 - 35% mix of any or all

  • 8/9/2019 Concrete Masonry 09

    37/213

    Cement & BS EN 197-1:2000

    CEM III Blast furnace cement

    5 - 64% clinker plus

    36 - 95% GGBS

  • 8/9/2019 Concrete Masonry 09

    38/213

    Cement & BS EN 197-1:2000

    CEM IV Pozzolanic cement

    45 - 89% clinker plus

    11 - 55% CSF + PFA

  • 8/9/2019 Concrete Masonry 09

    39/213

    Cement & BS EN 197-1:2000

    CEM V Composite cement

    20 - 64% clinker plus

    18 - 50% GGBS + 18 - 50% PFA

  • 8/9/2019 Concrete Masonry 09

    40/213

    Cement & BS EN 197-1:2000Strength

    Strength Compressive Strength (MPa) Initial Set

    Class Early strength Standard strength (Mins)

    2 days7 days 28 days32.5 N 16 32.5 52.5 75

    32.5 R 1042.5 N 10 42.5 62.5

    6042.5 R 2052.5 N 20 52.5 45

  • 8/9/2019 Concrete Masonry 09

    41/213

    Lime & BS EN 459-1:2010

    NHL - from a single source of argillaceous or

    siliceous limestone with no additions

    HL - from a combination of unspecified sources,may contain PC, GGBS, CSF, natural

    pozzolana

    FL same as HL but must specify contents

  • 8/9/2019 Concrete Masonry 09

    42/213

    Lime & BS EN 459-1:2001Strength

    Strength Strength (MPa)

    Class 7 days 28 days

    NHL/FL 1 0.5 - 3

    NHL/HL/FL 2 2 - 7

    NHL/HL/FL 3.5 3.5 - 10

    NHL/HL/FL 5 2 5 - 15

    All limes to be sound 2 mmSetting in 1 hour 14 days!!!!!!!!!!!!!

  • 8/9/2019 Concrete Masonry 09

    43/213

  • 8/9/2019 Concrete Masonry 09

    44/213

    Basic hydration

  • 8/9/2019 Concrete Masonry 09

    45/213

    Basic hydration

    C3A + H > C3AH6C3A + H + C H2> C6A 3H32S

    _S_

  • 8/9/2019 Concrete Masonry 09

    46/213

    Basic hydration

    C3A + H + C H2> C6A 3H32

    C3S + H > CSH + CH

    S_

    S_

  • 8/9/2019 Concrete Masonry 09

    47/213

    Basic hydration

    C6A 3H32 > C4A H18

    C3A + H > C4AH19C4A H18 & C4AH19 known as AFm

    S_

    S_

    S_

  • 8/9/2019 Concrete Masonry 09

    48/213

    Basic hydration

  • 8/9/2019 Concrete Masonry 09

    49/213

    Slower long term reactions

    C2S + H > CSH + CH

    CH + S > CSH (pozzolanic reaction)

  • 8/9/2019 Concrete Masonry 09

    50/213

    Physical Structure Development

    Water

    Vapour

    CapillaryAdsorbed

    Interlayer

    Combined

  • 8/9/2019 Concrete Masonry 09

    51/213

    Pore Structure

    1 - 5 mm Entrapped air

    100 m - 1 mm Entrained air

    0.01 m - 15 m Capillary voids

    < 0.01 m Interlayer or gel voids

  • 8/9/2019 Concrete Masonry 09

    52/213

    Pore Structure Development

  • 8/9/2019 Concrete Masonry 09

    53/213

    Pore Structure Development

  • 8/9/2019 Concrete Masonry 09

    54/213

    Pore Structure Development

    1 10 100 1000

    Porosity

    Pore size (nm)

    1 d PFA

    1 d OPC

    6 m OPC

    6 m PFA

  • 8/9/2019 Concrete Masonry 09

    55/213

    Types of PC

    LHPC

    SRPC

    White

    RHPC - (CEM 1R)

  • 8/9/2019 Concrete Masonry 09

    56/213

    Types of PC

    LHPC Low C3S, high C2S

    SRPC 3.5% C3A

    White No or trace C4AF

    RHPC - (CEM 1R) High C3S or high SSA

  • 8/9/2019 Concrete Masonry 09

    57/213

    CALCRETE

    Read all of section on cements

  • 8/9/2019 Concrete Masonry 09

    58/213

    Aggregates

    To identify key properties as they affect the

    properties of concrete

    To describe methods of their determination

  • 8/9/2019 Concrete Masonry 09

    59/213

    Types of aggregates by density

    Heavyweight

    (4000 - 8500 kg/m3)

    Normal

    (2300 - 2500 kg/m3)

    Lightweight

    (350 - 1800 kg/m3)

  • 8/9/2019 Concrete Masonry 09

    60/213

    Types of aggregates by density

    Heavyweight

    Normal

    Lightweight

    Magnetite

    Iron shot

    Lead shot

  • 8/9/2019 Concrete Masonry 09

    61/213

    Types of aggregates by density

    Heavyweight

    Normal

    Lightweight

    Natural Crushed rock

    Sand & gravel

    Artificial Air cooled slag

    Broken brick

  • 8/9/2019 Concrete Masonry 09

    62/213

    Types of aggregates by density

    Heavyweight

    Normal

    Lightweight

    Natural Pumice

    Expanded

    clay or shale

    Artificial Furnace clinker

    Foamed slag

    Sintered PFA

  • 8/9/2019 Concrete Masonry 09

    63/213

    Strength

    Concrete 30 - 80 MPa

    Aggregate 70 - 350 MPa

  • 8/9/2019 Concrete Masonry 09

    64/213

    Factors affecting workability of

    concrete

    Water content

    Aggregate type and grading

    Mix proportions

    Cement fineness

    Admixtures

    Oven dry

  • 8/9/2019 Concrete Masonry 09

    65/213

    Porosity

    Air dry

    Saturatedsurface dry

    Moist

    Absorptionor porosity

    Free

    moisture

    content

    Total

    moisture

    content

  • 8/9/2019 Concrete Masonry 09

    66/213

    Aggregate Type

    Shape

    Rounded

    IrregularAngular

    Flaky

    ElongatedFlaky and elongated

  • 8/9/2019 Concrete Masonry 09

    67/213

    Aggregate Type

    Texture

    Glassy

    SmoothGranular

    Rough

    CrystallineHoneycombed

  • 8/9/2019 Concrete Masonry 09

    68/213

    Aggregate Grading

    Maximum size

    Continuous grading

  • 8/9/2019 Concrete Masonry 09

    69/213

    Aggregate Grading

    Sieve Size

    % age

    passing

    Continuous

    Gap

  • 8/9/2019 Concrete Masonry 09

    70/213

    Sieve Analysis

    Sieve Wt ret % ret Cum % ret Cum % pass

    5.00 0 0 0 100

    2.36 32 16 16 84

    1.18 40 20 36 640.60 42 21 57 43

    0.30 46 23 80 20

    0.15 32 16 96 4

    Pan 8 4 100 0Total 200

  • 8/9/2019 Concrete Masonry 09

    71/213

    BS classification - Fine aggregate

    Sieve Overall C M F

    5.00 89 - 100

    2.36 60 - 100 60 - 100 65 - 100 80 - 100

    1.18 30 - 100 30 - 90 45 - 100 70 - 100

    0.60 15 - 100 15 - 54 25 - 80 55 - 100

    0.30 5 - 70 5 - 40 5 - 48 5 - 70

    0.15 0 - 15*

    * 20% for crushed rock sands

  • 8/9/2019 Concrete Masonry 09

    72/213

    0

    20

    40

    60

    80

    100

    150 300 600 1.18 2.36 5

    BS classification - Fine

  • 8/9/2019 Concrete Masonry 09

    73/213

    0

    20

    40

    60

    80

    100

    150 300 600 1.18 2.36 5

    BS classification - Medium

  • 8/9/2019 Concrete Masonry 09

    74/213

    BS classification - Coarse

    0

    20

    40

    60

    80

    100

    150 300 600 1.18 2.36 5

  • 8/9/2019 Concrete Masonry 09

    75/213

    BS classification - Coarse aggregate

    Sieve 20 mm SS 10 mm SS

    37.5 100

    20.0 85 - 100

    14.0 100

    10.0 0 - 25 85 - 100

    5.0 0 - 5 0 - 25

    2.36 0 - 5

  • 8/9/2019 Concrete Masonry 09

    76/213

    Impurities

    Chlorides

    Clay

    Organic matter

    Unsound particles

  • 8/9/2019 Concrete Masonry 09

    77/213

    CALCRETE

    Read aggregate section for winning and

    processing and deleterious materials

    Revision0.18

  • 8/9/2019 Concrete Masonry 09

    78/213

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.0010.010.11101001000

    Mean Pore Diameter (m)

    CumulativePoreVolume(ml/gm)

    A

    B

    C F h

  • 8/9/2019 Concrete Masonry 09

    79/213

    Concrete - Fresh state

    To identify the factors which control properties

    of concrete in the fresh state

    To be able to modify those properties by use ofadmixtures

    To be able to perform standard workability tests

    K ti

  • 8/9/2019 Concrete Masonry 09

    80/213

    Key properties

    Fluidity

    Compactability

    Cohesiveness

    Workability is the amount of internal work

    required to achieve full compaction

    Workability

    R i t t fl

  • 8/9/2019 Concrete Masonry 09

    81/213

    Resistance to flow

    Friction & Interference Water lubricated

    C it i f b t k bilit t t

  • 8/9/2019 Concrete Masonry 09

    82/213

    Criteria for robust workability tests

    Simple equipment

    Easily & quickly performed

    Appropriate for range of workability sought

    Repeatable

    Sl

  • 8/9/2019 Concrete Masonry 09

    83/213

    Slump

    Truncated cone Three equal layers

    Rod each layer 25 times Scrape off the surface

    300 mm

    200 mm

    Sl

  • 8/9/2019 Concrete Masonry 09

    84/213

    Slump

    slump cone

    rod

    concrete

    Slump

  • 8/9/2019 Concrete Masonry 09

    85/213

    Slump

    Slump

    Ruler

    Slump

  • 8/9/2019 Concrete Masonry 09

    86/213

    Slump

    Normal range of slump 50 - 100 mm

    Medium workability only

    Compacting Factor

  • 8/9/2019 Concrete Masonry 09

    87/213

    Compacting Factor

    Two cones Drop through into cylinder

    Weigh W1 Fully compact and fill up

    Weigh W2

    Compacting Factor

  • 8/9/2019 Concrete Masonry 09

    88/213

    Compacting Factor

    CF = W1 / W2

    Normal range 0.70 - 0.95

    Low workability with zero

    slump

    VB

  • 8/9/2019 Concrete Masonry 09

    89/213

    VB

    Slump in cylinder

    Apply standard vibration

    Normal range 4 -35 seconds

    Very Low workability

    V i b

    r a

    t i o

    n

    Flow Table

  • 8/9/2019 Concrete Masonry 09

    90/213

    Flow Table

    For mortars

    Compact in 2 layers

    15 jolts, 1 per second

    Typically 17 cm though no

    standard

    Flow

    Key factors

  • 8/9/2019 Concrete Masonry 09

    91/213

    Key factors

    Free water content (FWC)

    Aggregate & cement fineness (grading)

    Aggregate shape and textureAggregate moisture state

    Proportions of fine to coarse aggregate

    Presence of PFA or CSFTemperature and time

    Key factors

  • 8/9/2019 Concrete Masonry 09

    92/213

    Key factors

    Presence of PFA or CSF

    Admixtures

  • 8/9/2019 Concrete Masonry 09

    93/213

    Admixtures

    Plasticiser

    Super-plasticiser

    Retarder

    Accelerator

    Choice of workability

  • 8/9/2019 Concrete Masonry 09

    94/213

    Choice of workability

    Level Slump CF Use

    V Low 0.78 Roads heavy vibration

    Low 25 -50 0.85 Roads light vibration

    Medium 75 Mass & rc construction

    High 125 Piling and dense steel

    V High Self-levelling concrete

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    95/213

    Practical considerations

    Bleeding

  • 8/9/2019 Concrete Masonry 09

    96/213

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    97/213

    Practical considerations

    Bleeding

    Plastic settlement

    Plastic shrinkage

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    98/213

    Practical considerations

    Bleeding

    Plastic settlement

    Plastic shrinkage

    Curing

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    99/213

    Practical considerations

    Curing

    Degree of hydration Efficiency of curing

    Strength Permeability Degree of hydration

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    100/213

    act ca co s de at o s

    Bleeding

    Plastic settlement

    Plastic shrinkage

    Curing

    Thermal cracking

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    101/213

    Thermal cracking

    Practical considerations

  • 8/9/2019 Concrete Masonry 09

    102/213

    Thermal cracking

    Hardened concrete - mechanical

  • 8/9/2019 Concrete Masonry 09

    103/213

    To describe the factors affecting strength

    To be able to undertake standard strength tests

    To describe the factors affecting moisture relatedmovements

    Concrete - Strength

  • 8/9/2019 Concrete Masonry 09

    104/213

    g

    See CALCRETE for detaiMost specified by compressive strength

    100 mm cubes, steel moulds, compacted in

    2 layers, 20o

    C water cure, 28 days, standardloading rate

    Some by indirect tension (flexure or split cylinder)

  • 8/9/2019 Concrete Masonry 09

    105/213

    Labcrete - RealcreteA li d t

  • 8/9/2019 Concrete Masonry 09

    106/213

    curing

    shape

    Failure cones

    of restraint

    Applied stress

    Induced stress

  • 8/9/2019 Concrete Masonry 09

    107/213

  • 8/9/2019 Concrete Masonry 09

    108/213

    Factors affecting strength

  • 8/9/2019 Concrete Masonry 09

    109/213

    Intrinsic

    Production related Compaction

    External environment

    Properties of materials

  • 8/9/2019 Concrete Masonry 09

    110/213

    Cement

    Aggregates

    Water

    Cement -

  • 8/9/2019 Concrete Masonry 09

    111/213

    fineness

    Properties of materials

  • 8/9/2019 Concrete Masonry 09

    112/213

    Cement

    Aggregates

    Water

    Mix proportions

  • 8/9/2019 Concrete Masonry 09

    113/213

    Water/Cement ratio

    Coarse/fine aggregate ratio

    Water/Cement ratio

  • 8/9/2019 Concrete Masonry 09

    114/213

    Strength

    w/c ratio

  • 8/9/2019 Concrete Masonry 09

    115/213

    Age70

    80

  • 8/9/2019 Concrete Masonry 09

    116/213

    0

    10

    20

    30

    40

    50

    60

    1 10 100 1000

    Age

    Strength

    High

    Low

    Pozz

    Compaction

  • 8/9/2019 Concrete Masonry 09

    117/213

    1% voids reduces strength by some 5%

    Vital to compact until air no longer present butdont over-vibrate and segregate mix

    Deformation in concrete

  • 8/9/2019 Concrete Masonry 09

    118/213

    Short term

    Long term

    Applied stress

    Environmental factors

    Deformation in Concrete

  • 8/9/2019 Concrete Masonry 09

    119/213

    Function of Stiffness

    Shrinkage

    Creep

    Elastic behaviourTangent

  • 8/9/2019 Concrete Masonry 09

    120/213

    Stress

    Strain

    Initialtangent

    g

    Secant

    Principally related to

    strength

    Deformation in Concrete

  • 8/9/2019 Concrete Masonry 09

    121/213

    Function of Stiffness

    Shrinkage

    Creep

  • 8/9/2019 Concrete Masonry 09

    122/213

    Deformation in Concrete

  • 8/9/2019 Concrete Masonry 09

    123/213

    Function of Stiffness

    Shrinkage

    Creep

    Factors affecting creep

  • 8/9/2019 Concrete Masonry 09

    124/213

    Same as for shrinkage plus

    Initial moisture content

    Applied stressStorage temperature

    Typical values 0 - 1400

    CALCRETE

  • 8/9/2019 Concrete Masonry 09

    125/213

    Hardened Concrete for revision and exercises

    Hardened concrete - permeation

  • 8/9/2019 Concrete Masonry 09

    126/213

    To differentiate between diffusion and

    permeability

    To relate these to microstructure

    Permeation

  • 8/9/2019 Concrete Masonry 09

    127/213

    Permeability is the ease of flow of a liquid as aresult of a pressure difference (eg flow through

    dam)

    Diffusion is the ease of flow of a species as a

    result of a concentration difference (eg sulphatesflowing from groundwater)

    Sorptivity is the uptake of water by capilliary

    action in unsaturated concrete or mortar

  • 8/9/2019 Concrete Masonry 09

    128/213

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    129/213

    Porosity

    Pore size distribution

    Inter-connectivity of poresTortuosity

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    130/213

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    131/213

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    132/213

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    133/213

    Factors affecting permeation

  • 8/9/2019 Concrete Masonry 09

    134/213

    CALCRETE

  • 8/9/2019 Concrete Masonry 09

    135/213

    See Durability for an alternative explanation

    So what are the factors that affect

  • 8/9/2019 Concrete Masonry 09

    136/213

    Porosity

    Pore size distribution

    Inter-connectivity of pores

    w/c ratio

  • 8/9/2019 Concrete Masonry 09

    137/213

    Age

  • 8/9/2019 Concrete Masonry 09

    138/213

  • 8/9/2019 Concrete Masonry 09

    139/213

    Covercrete and Heartcrete

  • 8/9/2019 Concrete Masonry 09

    140/213

    H

    C

    Covercrete and Heartcrete

  • 8/9/2019 Concrete Masonry 09

    141/213

    H

    C

    Reinforcing

    steel Aggressive

    agents

    CALCRETE

  • 8/9/2019 Concrete Masonry 09

    142/213

    Read Durability - Permeability and Pore Structure

    Hardened concrete - durability

  • 8/9/2019 Concrete Masonry 09

    143/213

    To recognise some of the major durability

    problems facing concrete

    To identify means of combating them by referenc

    to appropriate microstructures

  • 8/9/2019 Concrete Masonry 09

    144/213

    Protection of reinforcement

  • 8/9/2019 Concrete Masonry 09

    145/213

    Correct cover

    High quality covercrete

    High alkalinity

  • 8/9/2019 Concrete Masonry 09

    146/213

    Carbonation

    D th

  • 8/9/2019 Concrete Masonry 09

    147/213

    Depth

    Period of exposure

    Curing, cement

    content, rh

    w/c, CO2, temp

  • 8/9/2019 Concrete Masonry 09

    148/213

    Chloride corrosion

  • 8/9/2019 Concrete Masonry 09

    149/213

    Marine aggregates

    De-icing salt

    Sea sprayCaCl2 - accelerator

    Chloride corrosion

  • 8/9/2019 Concrete Masonry 09

    150/213

    Marine aggregates

    De-icing salt

    Sea spray

    CaCl2 - accelerator

    Chlorides

    Free in solution

    Physically absorbedChemically bound

    Chloride corrosion

    Cl-/OH- >0.6Fe

    ++

    +2Cl

    -

    = FeCl2

  • 8/9/2019 Concrete Masonry 09

    151/213

    Cl2, O2H2O

    Metal

    Fe++

    Fe

    Anode

    OH--

    Cathode

    Cl-Fe +2Cl = FeCl2FeCl2 + 2H2O = Fe(OH)2 +2HC

    2e

    Corrosion control

  • 8/9/2019 Concrete Masonry 09

    152/213

    Permeation properties

    Cover

    Chloride binding capacityBinder content

    Binder type

    Curing

    Sulphate attack

  • 8/9/2019 Concrete Masonry 09

    153/213

    AFm + CH + + H > C6A 3H32

    Na2SO4 + CH + H > C H2 + 2NaOHMgSO4 + CH + H > C H2 + Mg(OH)2

    MgSO4 + CSH + H > C H2 + Mg(OH)2 + SH

    S_

    S_

    S

    _

    S_

    S

    _

    Solutions

  • 8/9/2019 Concrete Masonry 09

    154/213

    Low C3A

    Permeation properties

    CH binding (PFA, GGBS, CSF)

    Frost attack

  • 8/9/2019 Concrete Masonry 09

    155/213

    Frost attack

  • 8/9/2019 Concrete Masonry 09

    156/213

    Hydraulic pressure

    Osmotic pressure

    Ice

    Water

    Solutions

  • 8/9/2019 Concrete Masonry 09

    157/213

    Drainage

    Permeation

    Air entrainment

    Air entrainment

  • 8/9/2019 Concrete Masonry 09

    158/213

    Air entrainment

  • 8/9/2019 Concrete Masonry 09

    159/213

    Alkali Silica Reaction (ASR)

    Hi h lk li l l

  • 8/9/2019 Concrete Masonry 09

    160/213

    High alkali levels

    Reactive silica

    Water

    Alkali Silica Reaction (ASR)

    High alkali levels NaOH KOH Ca(OH)

  • 8/9/2019 Concrete Masonry 09

    161/213

    High alkali levels

    Reactive silica

    Water

    NaOH, KOH, Ca(OH)2

    Na2O equivalent > 0.6%

    = Na2O + 0.658 K20

    Alkali Silica Reaction (ASR)

    High alkali levels Amorphous silica eg opal

  • 8/9/2019 Concrete Masonry 09

    162/213

    High alkali levels

    Reactive silica

    Water

    Amorphous silica, eg opal,

    volcanic glass

    Cherts, siliceous limestone,flint

    Alkali Silica Reaction (ASR)

    High alkali levels

  • 8/9/2019 Concrete Masonry 09

    163/213

    High alkali levels

    Reactive silica

    Water > 75% relative humidity

    Temperature

    Alkali Silica Reaction (ASR)

    W t

  • 8/9/2019 Concrete Masonry 09

    164/213

    Alkali

    Water

    Gel + water =

    expansion

    S

    AS gel

    ASR cracking

  • 8/9/2019 Concrete Masonry 09

    165/213

    Pop-out Map cracking

    Solutions

    Non reactive aggregates

  • 8/9/2019 Concrete Masonry 09

    166/213

    Non reactive aggregates

    Low alkali cement

    Use of PFA, GGBS, PFA

    Remove water

  • 8/9/2019 Concrete Masonry 09

    167/213

    Masonry

  • 8/9/2019 Concrete Masonry 09

    168/213

    Masonry

    Prof Dave Hughes

    Brick types

    Clay

    C l i Sili t

  • 8/9/2019 Concrete Masonry 09

    169/213

    Calcium Silicate

    Concrete

  • 8/9/2019 Concrete Masonry 09

    170/213

    Frost

  • 8/9/2019 Concrete Masonry 09

    171/213

    Soluble salts

  • 8/9/2019 Concrete Masonry 09

    172/213

    Soluble salts

  • 8/9/2019 Concrete Masonry 09

    173/213

  • 8/9/2019 Concrete Masonry 09

    174/213

    Water threat

  • 8/9/2019 Concrete Masonry 09

    175/213

    Water threat

  • 8/9/2019 Concrete Masonry 09

    176/213

    Walls

  • 8/9/2019 Concrete Masonry 09

    177/213

    Freestanding wal

  • 8/9/2019 Concrete Masonry 09

    178/213

    Retaining wal

  • 8/9/2019 Concrete Masonry 09

    179/213

    Weepholes in Austria

  • 8/9/2019 Concrete Masonry 09

    180/213

    Reinforced walls

  • 8/9/2019 Concrete Masonry 09

    181/213

    Reinforced walls

  • 8/9/2019 Concrete Masonry 09

    182/213

    Movement joints

  • 8/9/2019 Concrete Masonry 09

    183/213

    Movement joints

  • 8/9/2019 Concrete Masonry 09

    184/213

    Movement joints

  • 8/9/2019 Concrete Masonry 09

    185/213

    Movement joints

  • 8/9/2019 Concrete Masonry 09

    186/213

    Durability of masonry

    Design

  • 8/9/2019 Concrete Masonry 09

    187/213

    Design

    Material specification

    BS EN 771-1

    Clay

    Density

    1000 k / 3 (LD) f t t d

  • 8/9/2019 Concrete Masonry 09

    188/213

    1000 kg/m3 (HD) for un-protected

    masonry

  • 8/9/2019 Concrete Masonry 09

    189/213

    BS EN 771-1

    Clay

    Durability Frost

  • 8/9/2019 Concrete Masonry 09

    190/213

    Exposure

    F0 Passive

    F1 Moderate

    F2 Severe

    BS EN 771-2

    Calcium Silicate

    Strength

  • 8/9/2019 Concrete Masonry 09

    191/213

    7, 7.5, 10, 15, 20 50, 60, 75

  • 8/9/2019 Concrete Masonry 09

    192/213

    Sands

    Principal quality factors

    Average particle size

  • 8/9/2019 Concrete Masonry 09

    193/213

    Range of sizes

    Shape

    Impurities, particularly clay

    Sands

    Impurities

  • 8/9/2019 Concrete Masonry 09

    194/213

    Annex D of BS EN 13139:2002

    Concrete vs Mortar sands

    60

    80

    100

    g

  • 8/9/2019 Concrete Masonry 09

    195/213

    0

    20

    40

    0.1 1 10

    Sieve Size (mm)

    %passin

    Premise of mix design

    Voids between aggregate particles are

    filled with binder

  • 8/9/2019 Concrete Masonry 09

    196/213

  • 8/9/2019 Concrete Masonry 09

    197/213

    By way of example

    Unrendered external wall, high

    saturation

  • 8/9/2019 Concrete Masonry 09

    198/213

    1: 3 to 4 if using PC:sand mortar

    For a finer sand tend towards 1:3 rather than 1:4

    to achieve desired workability, strength and

    durability

    New advances in silo mortar

    Low energy for sustainability

    Bi d h

  • 8/9/2019 Concrete Masonry 09

    199/213

    Binder phase

    Sand drying

    New advances in silo mortar

    Binder phase

    P tl d t i hi h b di d

  • 8/9/2019 Concrete Masonry 09

    200/213

    Portland cement is high embodied energy

    Hydraulic lime is high embodied energy

    New advances in silo mortar

    Sand drying

    Kil i ffi i t

  • 8/9/2019 Concrete Masonry 09

    201/213

    Kilns are inefficient

    Lime has potential

    CaO + H20 Ca(OH)2

    New advances in silo mortar

    So what binder could be added to

    Ca(OH)2 which is low energy?

  • 8/9/2019 Concrete Masonry 09

    202/213

    ggbs

    Context - strength

    50

    60

    70

    80

    P

    Bradford research

    M12?

  • 8/9/2019 Concrete Masonry 09

    203/213

    0

    10

    20

    30

    40

    50

    0.5 1 2 3 4 5 6

    Sand:binder ratio

    Strength(MP

    NHL

    OPC

    1:2

    1:3

    M12?

    Context - strength

    NHL

    FL

    10

    15

    PNHL

    Bradford research

  • 8/9/2019 Concrete Masonry 09

    204/213

    0

    5

    0.5 1 2 3 4 5 6

    Sand:binder ratio

    Strength(M

    NHL

    OPC

    1:2

    1:3

    Context - sorptivity

    2.0

    2.5

    3.0

    /min0.5)

    NHL

    NHL

    FL

    Bradford research

  • 8/9/2019 Concrete Masonry 09

    205/213

    0.0

    0.5

    1.0

    1.5

    0.5 1 2 3 4 5 6

    Sand:binder ratio

    Sor

    ptivity(mm NHL

    OPC

    1:2

    1:3

    Context - wvp

    2.0E-11

    2.5E-11

    3.0E-11

    Pa-

    1)

    NHL

    NHL

    FL

    Bradford research

  • 8/9/2019 Concrete Masonry 09

    206/213

    0.0E+00

    5.0E-12

    1.0E-11

    1.5E-11

    0.5 1 2 3 4 5 6

    Sand:binder ratio

    WV

    P(kgm-

    2s

    -1 NHL

    OPC

    1:2

    1:3

  • 8/9/2019 Concrete Masonry 09

    207/213

    Realcrete in mortars?

    Bricks

    Differing capacity to absorb water

  • 8/9/2019 Concrete Masonry 09

    208/213

    Mortars

    Differing capacity to retain water

    Realcrete in mortars?

    1840

    1850

    1860

    1870

    1880

    1890

    ensity(kg/m3)

  • 8/9/2019 Concrete Masonry 09

    209/213

    1800

    1810

    1820

    1830

    1840

    0 1 2 3 4 5 6 7 8 9 10

    Root time (min0.5

    )

    ODDe

    Realcrete in mortars?

    25%

    30%

    orosity

  • 8/9/2019 Concrete Masonry 09

    210/213

    15%

    20%

    0 1 2 3 4 5 6 7 8 9 1

    Root time (min0.5

    )

    Po

    Realcrete in mortars?Comp Strength

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Mortar

    S ti it

  • 8/9/2019 Concrete Masonry 09

    211/213

    0 0.5 1 1.5 2 2.5

    Sorp of Substrate

    Sorptivity

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 0.5 1 1.5 2

    Sorp of Substrate

    SorpofMortar

    Substrate Comp strength

    (MPa)

    Flex strength

    (MPa)

    Steel 4.7 1.3

    Realcrete in mortars?

  • 8/9/2019 Concrete Masonry 09

    212/213

    Steel 4.7 1.3

    OD Ibstock 8.1 2.5

    OD Blue 5.6 2.1Sat Ibstock 4.6 1.4

    Sat Blue 4.4 1.6

    Binder NHL 3.5

    The End of knowledge acquisition

    From next week design sessions to

    d l d t di f d i d

  • 8/9/2019 Concrete Masonry 09

    213/213

    develop understanding of design and

    application of knowledge