1
D R d -∇ · (k (x)p(x)) = f (x), D p(x)= g D (x), Γ D -k (x)p(x)n = g N (x), Γ D D p : D R k (x)p(x): D R d k : D R k p p kpk H 1 (D) 1+ C 2 p inf xD k (x) (kf k L 2 (D) + kg D k H 1 (D) + kg N k H 1 (D) ) Z P ( sup xD Z (x) z ) KAz 2 ! v φ z σ , φ(z ) := 1 2π R z e - s 2 σ ds. k (x)= T (Z (x)) T (z ) Re -ρ|z | h 0 <h< 2 R, ρ > 0 Z (x) x D kpk H 1 (D) L n (Ω) n N p h =2 n< 1 2σ 2 ρ Z Z (x)= N X i=1 S i g (x, X i ), g L 1 (R d × R d ) L (R d × R d ) N {X i } iN {S i } iN p k (x)= T (Z (x)) Z (x),x D R T (z ) K (1 + |z |) -q K> 0 q N ν nq +2 n N R R\{0} |s| (nq +2) (s) < kpk H 1 (D) L n (Ω) T (z ) Re -ρ|z | h 0 <h 1 R, ρ > 0 ˜ νM ˜ ν (θ )= M S 1 (θ ) := E[e -θS ] θ R kpk H 1 (D) L n (Ω) L n Z KL (x, w)= μ(x)+ X i=1 p λ i e i (x) ˆ Z i (w), k k ˙ p k t k H 1 (D) C (C 2 p + 1) · sup xD | ˙ T (Z k 1 (x)+ tZ k 2 (x))|·|Z k 2 (x)| (inf xD |T (Z k 1 (x)+ tZ k 2 (x))|) 2 + sup xD | ˙ T (Z k 1 (x)+ tZ k 2 (x))|·|Z k 2 (x)|·kg k H 1 (D) C · (inf xD |T (Z k 1 (x)+ tZ k 2 (x))|) , ˙ p k t k (x)= T (Z k 1 (x)+ tZ k 2 (x)) Z k 1 (x)= k i=1 λ i e i (x) ˆ Z i (w) Z k 2 (x)= i=k+1 λ i e i (x) ˆ Z i (w) k (x)= T (Z (x)) T T (z ) e -ρ|z | h | ˙ T (z )|≤ f (|z |)e ρ|z | h ρ> 0 0 <h< 2 f (z ) p p k t E[kp - p k t k n H 1 (D) ] 0, k →∞, n N k (x)= T (Z (x)) p p k t T T (z ) K (1 + |z |) -q K> 0 q N ν 2n(m +2q )+2 n, m N | ˙ T (z )|≤ f (|z |) f (z ) m T T (z ) e -ρ|z | h | ˙ T (z )|≤ f (|z |)e ρ|z | h ρ> 0 0 <h 1 f (z ) νM ν (θ )= M S 1 (θ ) := E[e -θS ] θ R E[kp - p k t k n H 1 (D) ] 0, k →∞, n N

conductivitygivenbyLévyrandom elds€¦ · Integrabilityandapproximationofsolutionsto owequationswith conductivitygivenbyLévyrandom elds Marco Reese [email protected] Introduction

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: conductivitygivenbyLévyrandom elds€¦ · Integrabilityandapproximationofsolutionsto owequationswith conductivitygivenbyLévyrandom elds Marco Reese reese@uni-wuppertal.de Introduction

Integrability and approximation of solutions to ow equations withconductivity given by Lévy randomelds

Marco [email protected]

Introduction

Darcy's ow equation models the transport of pollu-tants in groundwater and oil recovery processes throughconductive mediums (e.g. sand). This equation onD ⊂ Rd is given by

−∇ · (k(x)∇p(x)) = f(x), in D

p(x) = gD(x), on ΓD

−k(x)∇p(x)n = gN (x), on ΓD

where D is a Lipschitz domain, p : D → R is called the

potential (or the pressure) and the volumetric ow is de-

scribed by an vector eld k(x)∇p(x) : D → Rd where

k : D → R denotes the conductivity of the medium.

The randomness originate from the unknown properties

of the conductive medium. Therefore we modeled the

coecient function k as a transformed random eld and

investigated the solution p on its integrability and ap-

proximability.

Gaussian eld

Smoothed compound Poisson noise

Integrability

We investigated the integrability of the Sobolev norm of the weak solution p by using the following estimation whichcan be derived with help from the trace theorem and the Poincaré-inequality out of the weak form of Darcy's owequation

‖p‖H1(D) ≤1 + C2

p

infx∈D k(x)(‖f‖L2(D) + ‖gD‖H1(D) + ‖gN‖H1(D))

1) For conductivity's given as a Gaussian Field we additionaly used the following estimation from Talagrand whichunder certain assumptions estimates the extreme values of an Gaussian Field Z.

P ( supx∈D

Z(x) ≥ z) ≤(KAz√vσ2

)vφ( zσ

), (1)

where φ(z) := 1√2π

∫∞z e−

s2

σ ds. The result of this approach is given by:

Result 1 Let k(x) = T (Z(x)) with T (z) ≥ Re−ρ|z|h, for 0 < h < 2 and R, ρ > 0. Assume that Z(x), x ∈ D

is an continuous Gaussian process and suppose that (1) holds. Then ‖p‖H1(D) ∈ Ln(Ω) for all n ∈ N, wherep is the weak solution to Darcy's ow equation.

Note that if h = 2 the integrability still holds for n < 12σ2ρ

.

2) A smoothed compound Poison noise Z is given by

Z(x) =

N∑i=1

Sig(x,Xi),

where g ∈ L1(Rd × Rd) ∩ L∞(Rd × Rd), N is Poisson distributed and Xii∈N, Sii∈N are both families ofi.i.d. random variables.

For a conductivity given by such a random eld, the a-priori estimation of the sobolev norm we stated aboveand the Markov inequality suces to obtain the integrability and we have the following statement:

Result 2 Let p be the weak solution to Darcy's ow equation with transformed conductivity and let k(x) =T (Z(x)), where Z(x), x ∈ D ⊂ R is an smoothed compound Poisson noise.

(i) If T (z) ≥ K(1 + |z|)−q, for some K > 0 and xed q ∈ N, and ν has nite moment of order nq + 2 forn ∈ N, i.e.

∫R\0|s|

(nq+2) dν(s) <∞. Then ‖p‖H1(D) ∈ Ln(Ω).

(ii) If T (z) ≥ Re−ρ|z|h , for 0 < h ≤ 1, R, ρ > 0 and the two sided Laplace transform of ν Mν(θ) = MS1 (θ) :=E[e−θS ] exists for all θ ∈ R. Then ‖p‖H1(D) ∈ Ln(Ω).

Approximation

We used the Karhunen-Loéve expansion for random eld to obtain approximated solutions which converge in the Ln

norm. With this expansion which is given by

ZKL(x,w) = µ(x) +∞∑i=1

√λiei(x)Zi(w),

we approximated the random coecient function k. For the solution of the resulting PDE we derived:

‖pkt ‖H1(D) ≤ C(C2p + 1) ·

( supx∈D|T (Zk1 (x) + tZk2 (x))| · |Zk2 (x)|(infx∈D|T (Zk1 (x) + tZk2 (x))|)2

+supx∈D|T (Zk1 (x) + tZk2 (x))| · |Zk2 (x)| · ‖g‖H1(D)

C · (infx∈D|T (Zk1 (x) + tZk2 (x))|)

),

where pkt denotes the solution to Darcy's ow equation with conductivity k(x) = T (Zk1 (x) + tZk2 (x)) and Zk1 (x) =∑ki=1

√λiei(x)Zi(w), Zk2 (x) =

∑∞i=k+1

√λiei(x)Zi(w). With this estimation we obtained the following results:

Result 3 Let k(x) = T (Z(x)) be a transformed Gaussian random eld which fullls the conditions of the Karhunen-

Loéve expansion and the conditions of (1). Assume that T is continuous dierentiable with T (z) ≥ e−ρ|z|h

and

|T (z)| ≤ f(|z|)eρ|z|h , where ρ > 0, 0 < h < 2 and f(z) is an monotonic increasing polynomial. Let p be the weaksolution and pkt the approximated weak solution. Then

E[‖p− pkt ‖nH1(D)]→ 0, as k →∞,

for all n ∈ N.

Result 4 Let k(x) = T (Z(x)) be a transformed smoothed compound Poisson noise. Let p be the weak solution andpkt the approximated weak solution. Assume that one of the following assumptions holds:

(i) T is continuous dierentiable with T (z) ≥ K(1 + |z|)−q, for some K > 0 and xed q ∈ N, and ν has nitemoments of order 2n(m + 2q) + 2 for n,m ∈ N. And |T (z)| ≤ f(|z|), where f(z) is an monotonic increasingpolynomial of order m.

(ii) T is continuous dierentiable with T (z) ≥ e−ρ|z|hand |T (z)| ≤ f(|z|)eρ|z|h , where ρ > 0, 0 < h ≤ 1 and f(z)

is an monotonic increasing polynomial. Furthermore, the two sided Laplace transform of ν Mν(θ) = MS1 (θ) :=E[e−θS ] exists for all θ ∈ R.

Then

E[‖p− pkt ‖nH1(D)]→ 0, as k →∞,

for all n ∈ N.