3
Volume 36B, number 1 PHYSICS LETTERS 9 August 1971 CONFIGURATION MIXING AND MYSTERIOUS SECOND ZERO STATES J. M. IRVINE Department of Theoretical Physics, University of Manchester, UK Received 4 June 1971 A simple schematic model is used to highlight the difficulty of obtaining a low lying excited state in doubly closed shell nuclei having the same quantum numbers as the ground state in a nuclear shell- model configuration mixing calculation. Many even-even nuclei exhibit a low lying ex- cited state having the same quantum numbers as the ground state, i.e., T = 0, J = 0, 7r = +. Such 'mysterious second zero states' are difficult to explain in terms of the simple shell-model, par- ticularly in the case of closed shell nuclei. The suggestion has been made [1] and generally ac- cepted [2], that the structure of such states is dominated by multiparticle-multihole configura- tions, e.g., the 6.04 MeV state in 160 is thought to be principally a four particle-four hole state. Microscopic models of the second zero state based upon the Bloch-Horowitz procedure [3] and Brueckner-Hartree-Fock calculations [4] fail to obtain such states low enough in energy. Shell- model calculations succeed in explaining these states only if the matrix elements and single particle energies are treated as £itting parame- ters [5]. The values of the parameters required to fit the observed excitation spectra are not consistent with the usual shell-model assump- tions. As is usual in shell-model calculations, any failure to explain the data has been attrib- uted to the use of a too restricted configuration space• We now seek to investigate this assertion through the use of a simple schematic model. We shall consider a configuration space con- taining a closed shell state, n two particle-two hole states and rn four particle-four hole states. We shall take the unperturbed energies to be zero for the closed shell configuration, 2hw for each of the two particle-two hole configurations and 4t&o for each of the four particle-four hole configurations. We shall restrict ourselves to two-body interactions so that there can be no matrix elements between the closed shell state and any of the four particle-four hole states. For the purposes of this schematic calculation we shall use averaged matrix elements <closed shell IV] 2p - 2h} = A (la) (2p - 2h Iv[ 2p - 2h} = B (Ib) (2p -2h IV] 4p -4h} =A (lc) <4p - 4h IV} 4p - 4h} = C (ld) Thus we obtain the energy matrix illustrated in fig. 1. -E A A A 2 fiw -E B A B 2/~¢6 - E A B B A 0 A o A 0 A DI A 0 0 O 0 B A A A A B A A A 2fi[O - E A A A A 4hco-E C C A C 4 hco-E C A C C 4h w -E C Fig. 1. 4h w -E 21

Configuration mixing and mysterious second zero states

Embed Size (px)

Citation preview

Page 1: Configuration mixing and mysterious second zero states

Volume 36B, number 1 P H Y S I C S L E T T E R S 9 August 1971

C O N F I G U R A T I O N M I X I N G A N D M Y S T E R I O U S S E C O N D Z E R O S T A T E S

J . M. IRVINE D e p a r t m e n t o f The or e t i c a l P h y s i c s , Un iver s i t y o f M a n c h e s t e r , UK

Received 4 June 1971

A s imple schemat ic model is used to highlight the difficulty of obtaining a low lying excited s tate in doubly closed shel l nuclei having the same quantum numbers as the ground state in a nuclear she l l - model configuration mixing calculation.

M a n y e v e n - e v e n n u c l e i e x h i b i t a low ly ing e x - c i t e d s t a t e h a v i n g the s a m e q u a n t u m n u m b e r s a s the g r o u n d s t a t e , i . e . , T = 0, J = 0, 7r = +. Such ' m y s t e r i o u s s e c o n d z e r o s t a t e s ' a r e d i f f i c u l t to e x p l a i n in t e r m s of the s i m p l e s h e l l - m o d e l , p a r - t i c u l a r l y in the c a s e of c l o s e d s h e l l n u c l e i . T he s u g g e s t i o n h a s b e e n m a d e [1] and g e n e r a l l y a c - c e p t e d [2], t h a t the s t r u c t u r e of s u c h s t a t e s i s d o m i n a t e d by m u l t i p a r t i c l e - m u l t i h o l e c o n f i g u r a - t i o n s , e . g . , t he 6.04 M e V s t a t e in 1 6 0 i s t hough t to be p r i n c i p a l l y a f o u r p a r t i c l e - f o u r ho le s t a t e . M i c r o s c o p i c m o d e l s of the s e c o n d z e r o s t a t e b a s e d upon the B l o c h - H o r o w i t z p r o c e d u r e [3] and B r u e c k n e r - H a r t r e e - F o c k c a l c u l a t i o n s [4] f a i l to o b t a i n s u c h s t a t e s low enough in e n e r g y . S h e l l - m o d e l c a l c u l a t i o n s s u c c e e d in e x p l a i n i n g t h e s e s t a t e s only if the m a t r i x e l e m e n t s and s i n g l e p a r t i c l e e n e r g i e s a r e t r e a t e d a s £ i t t ing p a r a m e - t e r s [5]. T h e v a l u e s of the p a r a m e t e r s r e q u i r e d to f i t t he o b s e r v e d e x c i t a t i o n s p e c t r a a r e no t c o n s i s t e n t wi th the u s u a l s h e l l - m o d e l a s s u m p - t i o n s . A s i s u s u a l in s h e l l - m o d e l c a l c u l a t i o n s , any f a i l u r e to e x p l a i n the d a t a h a s b e e n a t t r i b - u t ed to the u s e of a too r e s t r i c t e d c o n f i g u r a t i o n

s p a c e • We now s e e k to i n v e s t i g a t e t h i s a s s e r t i o n t h r o u g h the u s e of a s i m p l e s c h e m a t i c m o d e l .

We s h a l l c o n s i d e r a c o n f i g u r a t i o n s p a c e c o n - t a i n i n g a c l o s e d s h e l l s t a t e , n two p a r t i c l e - t w o ho l e s t a t e s and rn f o u r p a r t i c l e - f o u r ho le s t a t e s . We s h a l l t ake the u n p e r t u r b e d e n e r g i e s to b e z e r o f o r the c l o s e d s h e l l c o n f i g u r a t i o n , 2hw f o r e a c h of the two p a r t i c l e - t w o ho le c o n f i g u r a t i o n s a n d 4t&o f o r e a c h of the f o u r p a r t i c l e - f o u r ho le c o n f i g u r a t i o n s . We s h a l l r e s t r i c t o u r s e l v e s to t w o - b o d y i n t e r a c t i o n s so t h a t t h e r e can be no m a t r i x e l e m e n t s b e t w e e n the c l o s e d s h e l l s t a t e and any of the f o u r p a r t i c l e - f o u r ho le s t a t e s . F o r the p u r p o s e s of t h i s s c h e m a t i c c a l c u l a t i o n we s h a l l u s e a v e r a g e d m a t r i x e l e m e n t s

<closed s h e l l IV] 2p - 2h} = A ( l a )

(2p - 2h I v [ 2p - 2h} = B (Ib)

(2p - 2 h IV] 4p - 4 h } = A ( l c )

<4p - 4h IV} 4p - 4h} = C ( ld)

T h u s we o b t a i n the e n e r g y m a t r i x i l l u s t r a t e d in f ig. 1.

- E A A A 2 fiw -E B A B 2/~¢6 -E A B B

A 0 A o A 0 A

DI

A 0 0 O 0 B A A A A B A A A

2fi[O - E A A A A 4hco-E C C A C 4 hco-E C A C C 4h w -E

C

Fig. 1.

4h w -E

21

Page 2: Configuration mixing and mysterious second zero states

Volume 36B, number 1 P H Y S I C S L E T T E R S 9 August 1971

It may be argued that this is an extremely oversimplified model of the energy matrix, however, we are looking for collective coherent effects which will produce the mysterious second zero. These effects are at a maximum in our model and the model sets upper bounds on the collectivity. A little consideration makes it clear that the probability of obtaining a myste- rious second zero state will be lower if the ' real ' energy matrix is employed.

We a r e l ook ing f o r c o n d i t i o n s on ~'~, m , A , B and C w h i c h wi l l p r o d u c e a low ly ing e x c i t e d

1 s t a t e a t ~ 2 ~w r e l a t i v e to the i n t e r a c t i n g g r o u n d s t a t e . T h e d e t e r m i n a n t of the m a t r i x in f ig. 1 f a c t o r i s e s and h a s (n - 1) r o o t s a t an e n e r g y

E 5 = 2]~w- B . (2)

T h e r e a r e (m - 1) r o o t s at an e n e r g y

E 4 = 4]/w - C. (3)

And the t h r e e r e m a i n i n g r o o t s a r e the s o l u t i o n s of the cub ic e q u a t i o n

E 3 - { 6 h w + ( n - 1 ) B + ( m - 1 ) C } E 2

+ {(2~w + ( n - 1) B ) ( 4 ~ w + (m - 1 )C)

- n ( m + l )A2} E + nA2(41~iw + ( m - 1 ) C ) = 0 . (4)

T h e g r o u n d s t a t e is c l e a r l y d e p r e s s e d b e l o w z e r o u n l e s s

4 ~ w + ( m - 1 ) C ~ - 0 < 2h-w+ ( n - l ) B (5)

C o n s i d e r i n g two n e i g h b o u r i n g m a j o r o s c i l l a t o r s h e l l s m i s a l w a y s c o n s i d e r a b l y l a r g e r t han n, T h e n fo r no r e a s o n a b l e v a l u e s of B and C [6-8] i s the c o n d i t i o n (5) s a t i s f i e d . We s h a l l t h e r e f o r e a s s u m e tha t the g r o u n d s t a t e a l w a y s l i e s b e l o w the u n p e r t u r b e d c l o s e d s h e l l c o n f i g u r a t i o n . It f o l l o w s t ha t f o r no r e a s o n a b l e v a l u e s of B and C can the s o l u t i o n s (2) or (3) p r o v i d e us w i th an e x p l a n a t i o n of the m y s t e r i o u s s e c o n d z e r o s t a t e .

We s e e k an e x p l a n a t i o n fo r the s e c o n d z e r o s t a t e s in the s o l u t i o n s of eq. (4). F i r s t l e t us o m i t the 4 p - 4 h s t a t e s , i . e . , m = 0 . ( m - l ) = 0 and c o n s i d e r t h r e e c a s e s :

(i) A = 0: A low ly ing s t a t e a p p e a r s a t ½~w p r o - v ided

( n - 1 ) B ~ - } ~ w (6)

(ii: IAI ~ IBI : No low ly ing s t a t e a p p e a r s u n - l e s s

n ~ 60 (7)

(i i i) IAI ~ 2 [ B i : No low ly ing s t a t e a p p e a r s u n - l e s s

n ~ 250 (8)

The c o n d i t i o n (6) i s j u s t p o s s i b l e f o r r e a l i s t i c i n t e r a c t i o n s and r e a l i s t i c v a l u e s of n p r o v i d e d a l l 2 p - 2 h s t a t e s b e t w e e n two m a j o r o s c i l l a t o r s h e l l s a r e i nc luded . H o w e v e r , any r e a l i s t i c i n t e r a c t i o n g i v e s IAI >~ iBl and the c o n d i t i o n s (7) and (8) t hen y i e ld u n r e a l i s t i c v a l u e s of n , i . e . , in 1 6 0 t h e r e a r e a t m o s t 40 2 p - 2 h s t a t e s of the c o r r e c t s y m m e t r y .

F o r r e a l i s t i c i n t e r a c t i o n s [6 -8 ] , we f ind 1 1 ~ e . g . ~ IA! ~ 21B I ~ 41C I and ( -B/ t iw) '~ to too

the strength of the pairing interaction is usually taken to be ~ 20/A [9] and the oscillator size parameter yields //¢o L 40A-1/3 [I0] these are consistent with B/'l~w ~ -½A-2/3 where A is the m a s s n u m b e r . A s s u m i n g IA[ ~ ~ ~w, B - ~ / ~ w and C = - ~ ~w and n = 40 c o r r e S ) o n d i n g

,£o

1 6 0 t h e n we f ind t h a t the gap b e t w e e n the l o w e s t s t a t e and the f i r s t e x c i t e d s t a t e i s an i n c r e a s i n g f u n c t i o n of m. Wi th m = 1 i t i s p o s s i b l e to h a v e

3 a gap ~ 4 gw bu t t h i s i n c r e a s e s v e r y r a p i d l y a s m i n c r e a s e s . S ince t h e r e a r e c l e a r l y m a n y f o u r p a r t i c l e - f o u r ho le c o n f i g u r a t i o n s ( the s i n - g le d e f o r m e d 4 p - 4 h s t a t e i s , of c o u r s e , a m i x - t u r e of m a n y s h e l l - m o d e l 4 p - 4 h c o n f i g u r a t i o n s ) we r e a c h the c o n c l u s i o n t h a t t h e r e a r e no s e n s i - b l e v a l u e s of the p a r a m e t e r s n, m, A, B and C

1 f o r w h i c h the f i r s t e x c i t e d s t a t e i s a t ~ 5 ~¢o w i t h i n t h i s c o n f i g u r a t i o n s p a c e .

Our s c h e m a t i c m o d e l d o e s no t a l l ow us to s ay v e r y m u c h a b o u t s p u r i o u s c e n t r e of m a s s m o t i o n . H o w e v e r , i t i s we l l known tha t if one d i a g o n a l i s e s in the s p a c e of the two p a r t i c l e - two ho le s t a t e s t h e r e i s a s i n g l e c o l l e c t i v e l y d e - p r e s s e d s t a t e and t ha t t h i s s t a t e i s a l m o s t e n - t i r e l y s p u r i o u s [11] and the only c a n d i d a t e f o r a low ly ing s e c o n d z e r o s t a t e in o u r s c h e m a t i c m o d e l i s a s i n g l e c o l l e c t i v e l y d e p r e s s e d s t a t e a r i s i n g f r o m the 2 p - 2 h s p a c e (e .g . , eq. (6)).

T h e c o n c l u s i o n t h a t we would d r a w f r o m o u r s c h e m a t i c m o d e l i s t ha t the low ly ing s e c o n d z e r o s t a t e s c a n n o t be d e s c r i b e d as s h e l l - m o d e l s t a t e s w i th in the c o n f i g u r a t i o n s p a c e w h i c h we h a v e d e s c r i b e d and t h a t they a r e m u c h m o r e l i ke ly to f ind t h e i r o p t i m u m d e s c r i p t i o n as m o - l e c u l a r s t a t e s in the a l p h a c l u s t e r m o d e l ( s ee [12]) r e q u i r i n g f o r t h e i r m i c r o s c o p i c d e s c r i p t i o n an e v e n l a r g e r c o n f i g u r a t i o n s p a c e .

R e f e r e n c e s [1] G. E. Brown, Compt. Rend. Congr. Intern. de

Phys. Nucl6aire, Vo[. 1, Centre National de la Recherche Seientifique, Pa r i s , 1964); T. EngeIand, Nucl. Phys. 72 (1965) 68.

[2] W. H. Bass ich is and G. Ripka, Phys. Le t te r s 15 (1965) 320;

22

Page 3: Configuration mixing and mysterious second zero states

Volume 36B, number 1 PHYSICS LETTERS 9 August 1971

P. F e d e r m a n and I. T a l m i , P h y s . L e t t e r s 15 (1965) [8] 165; G. B e n s o n and J . M . I rv ine , P r o c . P h y s . Soc, 89 [91 (1966) 249; G . E . B r o w n and A . M . G r e e n , Nucl. P h y s . 75 (1966) [10] 401.

[3] C. Bloch and J. Horowi tz , Nucl . P h y s . 8 (1958) 91. [11] [4] B .H . Brandow. Rev. Mod. P h y s . 39 (1967) 771. [51 A . P . Zucke r . B . B u c k a n d J . B. M c G r o r y . P h y s . [12]

Rev. L e t t e r s 21 (1968) 39. [6] J . P . El l io t t et a l . . Nuel. P h y s . A121 (1968) 241. [7] J . M . I rv ine and V . F . E . Puekne l l . Nucl . P h y s .

A159 (1970) 513.

T . T . S . Kuo and G . E . Brown. Nucl. P h y s . 85 (1966) 40; A l l 4 (1968} 241. L. S. K i s s l i n g e r and R. A. So rensen , Rev. Mod. P h y s . 35 (1963) 853. R. Hof s t ad t e r , F. B u m i l l e r and M . R . Yea r i an . Rev. Mod. P h y s . 30 {1958) 482. P . J . E l l i s and L. Zamick , Ann. of P h y s . 55 (1969) 61. D. M. Br ink . The a l p h a - p a r t i c l e mode l of l ight nuc le i , In te rn . School of P h y s i c s ' E n r i c o F e r m i ' , C o u r s e XXXVI.

23