19
Confinement and heating studies on the National Spherical Torus Experiment (NSTX) E.J. Synakowski Princeton Plasma Physics Laboratory Princeton, New Jersey USA for the NSTX Research Team NOVA PHOTONICS, INC. PHOTONICS, INC. 12th International Toki Conference and the 3rd General Scientific Assembly of the Asia Plasma & Fusion Association December 11 - 14, 2001

Confinement and heating studies on NOVA

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Confinement and heating studies on NOVA

Confinement and heating studies onthe National Spherical Torus

Experiment (NSTX)E.J. Synakowski

Princeton Plasma Physics Laboratory

Princeton, New Jersey USAfor the NSTX Research Team

NOVA PHOTONICS, INC.PHOTONICS, INC.

12th International Toki Conference and the 3rd GeneralScientific Assembly of the Asia Plasma & Fusion Association

December 11 - 14, 2001

Page 2: Confinement and heating studies on NOVA

NSTX is beginning to access science specificto high beta and low aspect ratio

• Overview of operating scenarios, tools

• Neutral beam heating & transport

• Electron heating & transport

• The edge

Change the aspectratio: what physicschanges?

Page 3: Confinement and heating studies on NOVA

00.20.40.60.8

11.21.41.6

0

5

1 0

1 5

2 0

2 5

3 0

0 0.05 0.1 0.15 0.2 0.25 0.3

Ip

be

ta-t (%

)Time (s)

106387

Ip

βT

PNB

Toroidal beta (%

); power (M

W)

L mode

NSTX operational capabilities increasing, and allowconfinement studies to begin

0 0.3 0.6

2

4

2

4

0

Time (s)

Ip(x10)

HHFW (MW)

Loop voltage

MA

, MW

Vol

ts

Baseline (Achieved)

Major Radius 0.85 m

Minor Radius 0.68 m

Elongation ≤ 2.2 (2.5)

Triangularity ≤ 0.6 (0.7)

Plasma Current 1 MA (1.4 MA)

Toroidal Field 0.6 T (≤0.45 T)

Heating and CD 5 MW NBI (5 MW) 6 MW HHFW (6 MW) 0.5 MA CHI (0.4 MA)

Pulse Length ≤ 5 sec (0.5 sec)

Page 4: Confinement and heating studies on NOVA

Local transport studies focus on favorable global trends

0

20

40

60

80

0 20 40 60 80

maximum stored energy

pre-mhd

τ

x2

x1

τ E89P

Eme

asu

red

(ms)

(ms)

x2 x1

L mode

Kaye; Sabbagh (Columbia)

Thermaltransport

Core transportphysics

Heating

Theory ofinstabilities

Impurity ionparticle

transport

NBI: Ion thermal energy higher than expectedwith neoclassical ions

NBI & HHFW: Electron channel dominates

NSTX

Heating puzzle with NBI

NBI: kθρi >> 1 dominant kθρi < 1 stable or

suppressed

Close to neoclassicalwhen measured

Page 5: Confinement and heating studies on NOVA

• NBI: 80 kV, deuterium

• HHFW: 30 MHz, 12 strap antenna

• MPTS: Te(R,t), Ne(R,t) 10 ch., 60 Hz

• CHERS: Ti(R,t),Vφ(R,t) 16 ch., 20 ms

• EFIT: Equilibrium

• TRANSP: Transport Analysis

• GS2: Gyrokinetic Analysis

CHERSBackgroundSightlines

CHERSSightlines

Viewing Beam

BeamTrajectory

ThomsonScattering

NEUTRAL BEAMINJECTION

HHFWAntenna

NSTX Systems, Diagnostics, Analysis ToolsEnable Study of Local Transport

Page 6: Confinement and heating studies on NOVA

Neutral beam heating yields high iontemperatures in high current plasmas

L mode1.2 MA, 0.33 T4.8 MW NBI

• Ti >Te

• Ti broad

• Edge Vφpedestal

• Large Vφ: co-directed NBI

Ti Te

NeV φ

RADIUS (m)TIM

E (s)

0.9 1.6 0

0.25

3

2

0

1

RADIUS (m)TIM

E (s)

0.9 1.6 0

0.25

3

2

0

1

RADIUS (m)TIM

E (s)

0.9 1.6 0

0.25

6

4

0

2

RADIUS (m)TIM

E (s)

0.9 1.6 0

0.25

250

0

1019m-3km/s

106382

R. Bell, B.LeBlanc

Page 7: Confinement and heating studies on NOVA

0.0 0.1 0.2 0.3

IP (MA)

0.0 0.1 0.2 0.3TIME (s)

0

1

0

5 PNB (MW)

20 40 60 80 100 120 140 160

RADIUS (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Te

(keV

), T

i (ke

V)

106382

Te

Ti

Ion Thermal Confinement Better Than Electrons

1/3 PNB

2/3 PNB

βT ~23%

• Ti > Te

• Classical PNB 2:1electrons:ions

• Peaked NB deposition

Page 8: Confinement and heating studies on NOVA

Power Balance Points To Puzzles

Power Source/Sink ELECTRONS (MW) IONS (MW) NET (MW)

OHMIC Heating 1.2 0 1.2

BEAM Heating 2.77 1.42 4.19

i-e Coupling 2.73 -2.73 0

dW/dt 0.11 -0.54 -0.43

Other* -0.66 0.26 -0.4

NET POWER IN 6.15 MW -1.59 MW 4.56 MW

“Misplaced Heating” < -1.59 MW >1.59 MW 0.0 MW

NET POWER OUT < 4.56 MW > 0.0 MW 4.56 MW

*Beam Thermalization, Rotation, Radiation, Convection

More Power Out of Ions Than In!

Need Extra Ion Heating to Balance Power

TRANSP 106382A01 @ 0.25 s

Page 9: Confinement and heating studies on NOVA

Present state of analysis of thermal transportin NBI points to new physics

• Ti consistently larger than Te , despite expected largefraction of electron heating by beams⇒ electron conduction is the dominant loss channel

• Power balance makes sense if

– χi is exceptionally low

– Ions get more heat from fast ions than expected classically

• Diagnostic validation ongoing

• Non-classical effects in heating and Qie being explored

Page 10: Confinement and heating studies on NOVA

Astrophysics and observed MHD may hold one clueto the power balance puzzle

• Theory of stochastic waveheating of corona developed (White)

• Application of theory to SThas begun

• Vbeam > VAlfven key

Gates, Gorelenkov, White

Fredrickson

Time (sec)

103932/103936

0.0 0.40.2

0.1 0.2 0.3

0.2

0.4

0.5

0.3

2.5

0.0

0.5

1.0

1.5

2.0

0

6

4

2 TF

TF

n eL

(1015

cm

2 )F

requ

ency

(M

Hz)

ne

Tes

la

• Being investigated: Compressional Alfven Eigenmodes

• Modes excited by fast ions; waves transfer energy to thermal ions

However, initial study suggests:low Ebeam ⇒ no CAE modes observed,but ion stored energy is still too high

Page 11: Confinement and heating studies on NOVA

• After neon puff, almostno neon penetrates thecore until MHD eventnear 260 ms

• Modelling suggestscore diffusivity < 1 m2/s,near neoclassicaltheory

Low ion particle transport consistent withlow ion thermal transport

D. Stutman

USXRmeasurements ofHe-, H-like neon lines

Signals fromdifference of

similar plasmaswtih and without

neon puff

Page 12: Confinement and heating studies on NOVA

Theory: short wavelength modes may dominatetransport, long wavelength modes may be suppressed

C. Bourdelle (PPPL), W. Dorland (U. MD)

=0.31

ExBs____________

Growth rates, (Short λ)

(Long λ)

• Long λ, low k (ITG, TEM): growth rate < ExB shear rate

– Large λ associated with ionthermal transport

– Low aspect ratio: Analysissuggests ∇β strongly stabilizing

• Low λ, high k (ETG):growth rates large

– Responsible for electron thermaltransport?

– Non-linear simulations begun toestimate possible fluxes

Page 13: Confinement and heating studies on NOVA

0.00 0.10 0.20 0.30 0.40

IP (MA)

0.00 0.10 0.20 0.30 0.40TIME (s)

0

1

0

5 PNB, PRF (MW)

20 40 60 80 100 120 140 160

RADIUS (cm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te

(keV

), T

i(keV

)

106194

TeTi

0.00 0.10 0.20 0.30 0.40

IP (MA)

0.00 0.10 0.20 0.30 0.40

TIME (s)

0

1

0

5 PNB, PRF (MW)

20 40 60 80 100 120 140 160

RADIUS (cm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te

(keV

), T

i (ke

V)

105822

Te

Ti

High Harmonic Fast Wave (HHFW) Heats Electrons

Ne(0) = 4.0 ∞ 1019 m-3

Ip = 760 kANe(0) = 1.5 ∞ 1019 m-3

Ip = 380 kA

Ti

Ti

Te Te

PRFPRF

• Te > Ti with auxiliary power to electrons

Page 14: Confinement and heating studies on NOVA

• Power deposition: HPRT raytracing code

• χi ~ 2-2.5 χi NC , χe >> χi

106194 0.19 s

• ETG unstable

• Low kθ modes ITG +TEM

γ

γ

ρi

ρi

Electron Loss Channel Also Dominant withHHFW Heating

Page 15: Confinement and heating studies on NOVA

H mode: Maingi, Bush (ORNL); LeBlanc

Visible light, false color

Fast camera: Maqueda (LANL)

Pth ~ 850 kW with NBI~10x greater than ITER-pby2: stronger poloidal damping at low A?

Signatures of bifurcations to H mode are seenin several diagnostics

Page 16: Confinement and heating studies on NOVA

• Helium puffed; emissionviewed along a field line

• He0 emission observedwith a fast-framing, digital,visible camera– 1000 frames/sec, 10 µs

exposure each frame

Imaging of edge reveals qualitativedifferences in H- and L-mode turbulence

Los AlamosLos AlamosNATIONAL LABORATORYNATIONAL LABORATORY

Maqueda, LANL; Zweben

pol.

rad.

• BOUT code: turbulencemodeling

– 2-fluid,3D Braginskiiequation code

Xu, LLNL

Page 17: Confinement and heating studies on NOVA

HHFW-driven H modes found

• LSN

• Lower current (350 - 500 kA)

• He and D

• ELMy, ELM-free

• _βp = 1 observed– Large bootstrap?– Large dip in surface voltage

Starting scenario for future CD work?

IpHHFWpower

Loopvoltage

βp

Page 18: Confinement and heating studies on NOVA

Studies of underlying physics of high beta STtransport has begun

• Kinetic profiles are enabling initial local transport analysis

• NBI: Ti > Te, despite prediction that 2/3 PNBI goes to electrons– Electrons are the dominant loss channel– Ion heating not understood– Low particle transport correlated with low ion thermal confinement– ExB shear suppression of low k modes seen in analysis at high beta– Exploring role of ETG

• HHFW: Te > Ti– Electrons are the dominant loss channel

– Reductions in χe with strong central Te peaking

– Possible role of Te/Ti in determining χe to be investigated

Page 19: Confinement and heating studies on NOVA

Summary (2)• L-H transitions observed with NBI and HHFW

– Turbulent structures observed in L mode state; modellingunderway

– Pth ~ 850 kW for NBI; ≈ similar-sized tokamaks, >> scaling• Role of strong poloidal damping at low aspect ratio?

• Near-term transport goals and plans– Understand ion heating– Turbulence measurements to be extended into core– Scans of beta: is beta or ∇β favorable for transport?

• Long-term goals– Establish a physics-based understanding of the underlying

causes of ST transport trends• Comparison with moderate-aspect-ratio trends will reveal new

physics relevant to all