23
Conics

Conic Sections

Embed Size (px)

Citation preview

Page 1: Conic Sections

Conics

Page 2: Conic Sections

Conic sections are plane curves that can be formed by cutting a double right circular cone with a plane at various angles.

DEFINITION

Page 3: Conic Sections

DOUBLE RIGHT CIRCULAR CONE

A circle is formed when the plane intersects one cone and is perpendicular to the axis

AXIS

Page 4: Conic Sections

An ellipse is formed when the plane intersects one cone and is NOT perpendicular to the axis.

Page 5: Conic Sections

A parabola is formed when the plane intersects one cone and is parallel to the edge of the cone.

Page 6: Conic Sections

A hyperbola is formed when the plane intersects both cones.

Page 7: Conic Sections

DEGENERATE CONIC

Page 8: Conic Sections

In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2.

It can be defined as the locus of points whose distances are in a fixed ratio to some point, called a focus, and some line, called a directrix.

Page 9: Conic Sections

GENERAL EQUATION OF CONICS

π‘¨π’™πŸ+π‘©π’™π’š+π‘ͺπ’šπŸ+𝑫𝒙+π‘¬π’š+𝑭=𝟎

π‘©πŸβˆ’πŸ’ 𝑨π‘ͺ<πŸŽπ‘©πŸβˆ’πŸ’ 𝑨π‘ͺ=πŸŽπ‘©πŸβˆ’πŸ’ 𝑨π‘ͺ>𝟎

Ellipse

Parabola

Hyperbol

a

DISCRIMINANT

Page 10: Conic Sections

Parabola: A = 0 or C = 0 Circle: A = C Ellipse: A = B, but both have the

same sign Hyperbola: A and C have Different

signs

Page 11: Conic Sections

The parabola is a set of points which are equidistant from a fixed point (the focus) and the fixed line (the directrix).

The Parabola

Page 12: Conic Sections

PROPERTIES

The line through the focus perpendicular to the directrix is called the axis of symmetry or simply the axis of the curve.

The point where the axis intersects the curve is the vertex of the parabola. The vertex (denoted by V) is a point midway between the focus and directrix.

Page 13: Conic Sections

The undirected distance from V to F is a positive number denoted by |a|.

The line through F perpendicular to the axis is called the latus rectum whose length is |4a|. The endpoints are and. This determines how the wide the parabola opens.

The line parallel to the latus rectum is called the directrix.

Page 14: Conic Sections

𝑷 (𝒙 , π’š )

Axis of Symmetry

DirectrixLatus Rectum \4a\

VertexFocus

π‘³πŸ

π‘³πŸ

|a|

Page 15: Conic Sections

TYPES OF PARABOLA

Page 16: Conic Sections

π’†π’’π’–π’‚π’•π’Šπ’π’ :π’š 𝟐=πŸ’π’‚π’™π’π’‘π’†π’π’Šπ’π’ˆ :𝒕𝒐𝒕𝒉𝒆 π’“π’Šπ’ˆπ’‰π’•π’‚π’™π’Šπ’” :𝒙 𝑽 (𝟎 ,𝟎)

𝑭 (𝒂 ,𝟎)π‘³πŸ(𝒂 ,βˆ’πŸπ’‚)π‘³πŸ(𝒂 ,πŸπ’‚)

𝑫 : 𝒙=βˆ’π’‚

TYPE 1

Page 17: Conic Sections

π’†π’’π’–π’‚π’•π’Šπ’π’ :π’š 𝟐=βˆ’πŸ’π’‚π’™π’π’‘π’†π’π’Šπ’π’ˆ :𝒕𝒐𝒕𝒉𝒆 π’π’†π’‡π’•π’‚π’™π’Šπ’” :𝒙 𝑽 (𝟎 ,𝟎)

𝑭 (βˆ’π’‚ ,𝟎)π‘³πŸ(βˆ’π’‚ ,βˆ’πŸπ’‚)π‘³πŸ(βˆ’π’‚ ,πŸπ’‚)

𝑫 : 𝒙=𝒂

TYPE 2

2L

)2,( aa

Page 18: Conic Sections

π’†π’’π’–π’‚π’•π’Šπ’π’ :π’™πŸ=πŸ’π’‚π’šπ’π’‘π’†π’π’Šπ’π’ˆ :π’–π’‘π’˜π’‚π’“π’…π’‚π’™π’Šπ’” :π’š 𝑽 (𝟎 ,𝟎)

𝑭 (𝟎 ,𝒂) π‘³πŸ(βˆ’πŸπ’‚ ,𝒂)π‘³πŸ(πŸπ’‚ ,𝒂)

𝑫 : π’š=βˆ’π’‚

TYPE 3

Page 19: Conic Sections

π’†π’’π’–π’‚π’•π’Šπ’π’ :π’™πŸ=βˆ’πŸ’π’‚π’šπ’π’‘π’†π’π’Šπ’π’ˆ :π’…π’π’˜π’π’˜π’‚π’“π’…π’‚π’™π’Šπ’” :π’š 𝑽 (𝟎 ,𝟎)

𝑭 (𝟎 ,βˆ’π’‚ )π‘³πŸ(πŸπ’‚ ,βˆ’π’‚)π‘³πŸ(βˆ’πŸπ’‚ ,βˆ’π’‚)

𝑫 : π’š=𝒂

TYPE 4

Page 20: Conic Sections

Sample Problem

1.Locate the coordinates of the vertex (V), focus (F), endpoints of the latus rectum (), the equation of the directrix, and sketch the graph of .

Page 21: Conic Sections

solution1. takes the form 2. the parabola opens downward3. Compute the value of 4. so, , or 5. the required coordinates are𝑽 (𝟎 ,𝟎)𝑭 (𝟎 ,βˆ’π’‚)=𝑭 (𝟎 ,βˆ’πŸ)

π‘³πŸ (πŸπ’‚ ,βˆ’π’‚ )=π‘³πŸ(πŸ’ ,βˆ’πŸ)π‘³πŸ (βˆ’πŸπ’‚ ,βˆ’π’‚ )=π‘³πŸ(βˆ’πŸ’ ,βˆ’πŸ) 𝑫 : π’š=𝟐

𝑫 : π’š=𝒂

Page 22: Conic Sections

π‘³πŸ(βˆ’πŸ’ ,βˆ’πŸ)

𝒙

π‘³πŸ(πŸ’ ,βˆ’πŸ)

π’š=𝟐

𝑭 (𝟎 ,βˆ’πŸ)

𝑽 (𝟎 ,𝟎)

π’š

| | | | | 1 2 3 4 5

| | | | | -5 -4 -3 -2 -1

|

|

|

1

2

3

|

|

|

-3

-

2

-1

Page 23: Conic Sections

Sketch the graphs and determine the coordinates of V, F, ends of LR, and equation of the directrix.

1. 2. 3.