Conscripts of the Infinite Armada Systemic

Embed Size (px)

Citation preview

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    1/11266 | MAY 2010 | voluMe 7 .ature.cm/rcc

    MolecularPharmacology andChemistry Program,Memorial SloanKettering CancerCenter, 1275 YorkAenue, New York,NY 10021, USA(D. A. Scheber,C. H. Va,F. E. Escrca,M. R. McDevtt).

    Correspondence to:D. A. [email protected]

    Cscrpts f the fte armada: sstemc

    cacer therap us amaterasDavid A. Scheinberg, Carlos H. Villa, Freddy E. Escorcia and Michael R. McDevitt

    Abstract | The ield o clinical nanomaterials is enlarging steadily, with more than a billion US dollars o

    unding allocated to research by US goernment agencies in the past decade. The irst generation o anti-

    cancer agents using noel nanomaterials has successully entered widespread use. Newer nanomaterials

    are garnering increasing interest as potential multiunctional therapeutic agents; these drugs are conerred

    noel properties, by irtue o their size and shape. The new eatures o these agents could potentially allow

    increased cancer selectiity, changes in pharmacokinetics, ampliication o cytotoxic eects, and simultaneous

    imaging capabilities. Ater attachment to cancer target reactie-ligands, which interact with cell-surace

    antigens or receptors, these new constructs can delier cytolytic and imaging payloads. The molecules

    also introduce new challenges or drug deelopment. While nanoscale molecules are o a similar size toproteins, the paradigms or how cells, tissues and organs o the body react to the non-biological materials

    are not well understood, because most cellular and metabolic processes hae eoled to deal with globular,

    enzyme degradable molecules. We discuss examples o dierent materials to illustrate interesting principles

    or deelopment and uture applications o these nanomaterial medicines with emphasis on the possible

    pharmacologic and saety hurdles or accomplishing therapeutic goals.

    Scheinberg, D. A. et al. Nat. Rev. Clin. Oncol. 7, 266276 (2010); published online 30 March 2010; doi:10.1038/nrclinonc.2010.38

    Introduction

    I his 1959 ctr, Thrs pty of room at th bottom,hich is crditd ith iitiatig itrst i aotchoogy,Richard Fyma discssd th probm of maipat-ig ad cotroig thigs o a sma sca, icdig

    pacig th mchaica srgo isid th bood ssto obsr, rport, ad prform th srgry.1 I th fid ofaomdici ar o sccssfy approachig so-tios to this chag (Figr 1). May crrt systmicthraptic approachs to cacr ack spcificity ad mostof th actios of ths agts caot b cotrod foo-ig ijctio. Som sotios may b fod i th abiityto crat try itigt drgs.2,3

    Ati-cacr agts that tiiz o matrias to atrpharmacokitics (PK), sch as msifid drgs ad ipo-soma costrcts, ar arady i dopmt or approdby th FDA (Sppmtary Tabs 1 ad 2) ad may ofths agts ha b xtsiy rid. Th first of a

    gratio of compx, aosca, mtifctioa mdi-cis ha arady b dsigd or ar i hma s.Ths icd th gird targtab toxis that bid tocacr cs, tr thir cytopasm ad dir a zymcapab of shttig do ribosoma sythsis,4 mtistptargtig stratgis to hac ad cotro th rat of

    drg diry to a tmor;5 zyms targtd by igadsto cs, hich th act o pro-drg sbstrats to cortthm o-sit to th acti agt,6 a ao-c that sq-tiay dirs diffrt drgs to th tmor7 or targtab

    atomic aogrators.8 Othr r mtifctioaaomatria-basd agts i dopmt ha rachdhma tstig (Sppmtary Tab 1).

    Hr, rstrict th scop of or discssio to a ra-tiy sma sgmt of th o, systmicay admiistrdaomatria-basd cacr drgs, icdig poymrs,ddrimrs, carbo aotbs, ad arios mtaic ado-mtaic ao-partics, i ordr to istrat crtaiitrstig fatrs that mak aomatria-basd agtsboth appaig ad probmatic (Boxs 1 ad 2). Thsproprtis, icd siz, shap, charg, srfac pattr-ig, poydisprsity, mtiacy ad mticompotstrctrs, biocompatibiity ad biochmica stabiity.913

    D to spac cosidratios, i ot discss ariosao-partic or iposoma drg formatios or ocayimpatab dics or dpots or dtctio systms1418 orgird cs, irss, aptamrs or cotid agts,1921fsio protis, or atibodydrg cojgats,4 hichdo dispay may of th abo proprtis ad ha bxtsiy rid shr.

    Th appa of aomatria-basd drgs i cacr isbasd o to factors. Firsty, th abiity to cotro thsythsis of th agts i a mafactrig procss tomak mtifctioa ad mtiat mocs, orto atr PK, aoig chags i potcy ad safty, ithstrctrs arragd i distict srfac pattrs xposd

    Cmpet terests

    D. A. Scheinberg declares associations with the ollowingcompany: Encyse Biosciences Inc. M. R. McDeitt declaresassociations with the ollowing company: ActiniumPharmaceuticals. See the article online or ull details o therelationships. The other authors declare no competing interests.

    REvIEWS

    20 Macmillan Publishers Limited. All rights reserved10

    mailto:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    2/11nATuRe RevIewS|CliniCAl onCology vOluMe 7 | MAY 2010 | 267

    to th iromt. I cacr cs, th dirs siga-ig ad rcptor chags that occr proid targts thatmight b tmpats for mtiat ad mtifctioatargtig igads ad cargo. Scody, th sizs (p tosra hdrd aomtrs i o of th dimsios)ad shaps (hoo sphrs, og rods, stars, tc.) of thmocs, hich ar qit distict from traditioasma moc or proti-basd drgs, yid ry argsrfac to om ratios or th possibiity of cotai-mt for arios cargo (Figr 2). For xamp, a siga carbo aotb (i hich ry atom is a srfaccarbo atom) ith a om simiar to a typica argproti (for xamp, 100150 kDa), i ha mor tha15 tims th srfac ara aaiab for igad attachmtor c itractios tha a arg proti. Bcas of tho-bioogica sorcs of som matrias, ad th dis-tict sizs, acis ad shaps, th pharmacoogy, schas carac ad biodgradatio, toxicoogy ad possibsafty of ths agts i patits might b ry diffr-t from crrt drgs; i ordr for som of th agtsto b sf, it is iky that biocompatib coatigs ad

    igads i b a part of thir strctr. ufortaty,gaps i crrt kodg abot aomatria bioogy,toxicoogy ad pharmacoogy, hich ha d to fars ofpossib toxic ffcts ad iromta damag, haarady pt socita, thica ad poitica costraits othir sccssf appicatio.2224 I this rgard, iattmpt to addrss th crrt bfits ad hrds ofths agts ad ftr dirctios for ths kyisss, spciay thos rat to cacr thrapy.

    Mtip xamps of aopartics ha mrgdas cadidats for drgs or ha rachd FDA approa(Sppmtary Tabs 1 ad 2). Ths icd thosith itrisic mdicay sf proprtis to ao robst

    xtra imagig2527 or promot tmor thrmoysis2831(for xamp, qatm dots, siica aopartics, godaopartics, carbo aotbs), or hich ha o-coat ad coat modificatios ith capsatioof thraptic agts (for xamp, iposoms, ddrim-rs, [co]poymrs). Mor dtais ca b fod i rctartics.11,12,14,15,17,3236

    Interaction with cells and tissues

    Th siz, shap, ad pattrs of protis prstd tocs ar importat factors i thir rcptor bidig adth sigaig procsss thy cotro. As th physica scaof aomatrias is of th sam ordr as irss, protis,

    oigocic acids ad macromocar car machi-ry (Figr 2), o might xpct thy aso i ha dis-ticti ad highy ariab itractios ith cs adtisss dpdt o thir siz, shap, srfac pattr-ig, ad charg.37 Ths itractios i ha a ro iboth th bficia ad pottiay toxic ffcts of thsdrgs. Th grat appa of aomatrias as cacr drgsis th abiity to cotro ths proprtis, ths improigspcificity toards maigat cs ad PK proprtis.

    Size

    eary stdis ad modig ioig microsca adaosca matrias focsd o th ffct of mocar

    Key points

    Therapeutic uses o noel materials hae become widespread; many newer

    nanoparticles hae emerged as candidates or drugs, each with distinctiechemical and biological compositions, and dierse in vivo behaiors

    Newer nanomaterials are garnering increasing interest as potential

    multiunctional therapeutic agents, which by irtue o their size, geometric

    patterning and shape are conerred noel properties

    The synthesis o nanomaterials allows multiunctional and multialent molecules to be generated, which may enhance potency, therapeutic index or selectiity

    The arious sizes and shapes o nanomaterials yield ery large surace to

    olume ratios or the possibility o containment or arious cargo

    The accumulation o nanoparticles in tumors, termed the enhanced

    permeability and retention eect was initially described oer two decades ago,

    and has been successully applied to nanoparticles

    The unusual properties o nanomaterials pose challenges to understanding

    their pharmacokinetics as dierent components will hae dierent eatures that

    aect their distributions, clearance and catabolism

    ight ad siz o th bioogic bhaiors of mics,iposoms, ad poymrs.17,32 Most orgaic aopartics

    (sch as poymric partics) ha traditioay bsythsizd sig msio-basd sythtic tchiqsthat ao for capsatio of arios drgs, hiiorgaic aopartics (sch as mtaic partics) aroft prodcd throgh cotrod catio.38 whiths tchiqs ao partic sizs to b cotrod,r sythtic tchiqs ad improd charactriza-tio throgh dyamic ight scattrig, ctro micro-scopy, ad atomic forc microscopy, ha attmptdto proid mor prcis cotro or aosca sizs,ad ha aod diatio of th bioogica ffctsof aomtr sca chags. For th sam matria, sizchags as sma as a f aomtrs ca ad to sigifi-

    cat diffrcs i car ptak, toxic ffcts, ad fatithi th c.3943 For xamp, gird partics ofsizs 4060 m r ab to maximay bid ad idcrcptor-mdiatd docytic procsss, hi smarpartics had a impaird abiity to idc mmbrarcptor crossikig.40 Siz aso pays a importatro i dirctig th fat of partics i th atig pr-stig cs of th imm systm.44,45 Ora, iitiastdis sggst that adjstab sizs cod offr a masto dirct diffrt aomatrias ito diffrt carpathays, maximiz affiity of appdd igads, mod-at ptak ito maigat cs, ad miimiz adrsffcts toards orma cs.40,46,47 Siz aso affcts PK

    ad ra carac.48,49 Cosistt ith this, ra fi-tratio ad ospcific ptak by th rticodothiasystm (ReS) has b sho to b dpdt opartic siz.5055

    Shape

    Simiar to th stdy of aomatria siz ffcts, thstdy of aomatria shaps bga ith poymrs thatdmostratd th sigificat impact of th moc-ar architctr of ths matrias o pharmacoogyad fctio.56 As ith impromt i partic sizcotro, tchoogy for cotro of shap has rapidy pro-grssd.13,5759 Th adacmt i sythtic tchiqs

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    3/11268 | MAY 2010 | voluMe 7 .ature.cm/rcc

    for o-sphrica partics has sho that partic shap

    sigificaty impacts th car ad tiss itractiosof aomatrias. whi a arity of shaps (iptica,sphrica, ad discoid) of mod poystyr particsca idc docytosis, docytosis of shaps that aro-sphrica ar highy dpdt o th oca shapat th itrfac of th c ith th aomatria or thtagtia ag that th aomatria shap maks ithth c.39,60,61 Ths stdis ha prdictd that hsphrica partics bid or rod-ik partics aig pr-pdicar to th car mmbra as apposd to aig-ig para to th srfac, thr is gratr propsity forcar ptak.62,63 Mor rcty, orm-ik partics ofhigh aspct ratio (that is, high gth to idth ratio) r

    sho to ihibit phagocytosis, ad cod oy b gfdh cs itractd spcificay at partic ds.64 Bycotrast, stdis of partics ith diamtrs >100 mith aryig aspct ratios (p to thr) fod that highraspct ratios rstd i icrasd ptak by phagocyticcs.42 Itrstigy, carbo aotbs, hich hasay arg aspct ratios (501,000:1) bt ar of rysma diamtrs (12 m) ha highy rapid ad fficitcar ptak. Sra mchaisms ha b dscribdfor ths obsratios.30,63,65,66 Istigators ha fodthat fiamtos mics had circatio tims abot10-fod ogr tha thir sphrica cotrparts.67 By co-trast, circatio tims of carbo aotbs of a simiar

    fiamtos shap bt smar diamtr (

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    4/11nATuRe RevIewS|CliniCAl onCology vOluMe 7 | MAY 2010 | 269

    atrd biodistribtio profis.76 Idd, a commo strat-gy to aoid ReS ptak of aomatrias is to itrodctra, hydrophiic poythy gyco chais (pgya-tio) to rdc opsoizatio.77 usrprisigy, srfaccharg or zta pottia (th ctrica pottia at thhydrodyamic sippig pa of a partic) is aso aimportat factor ifcig th bioogic bhaior ofaomatrias.78 It sms that gati or tra sr-facs cod b prfrab to aoid ospcific carptak.79,80 Frthrmor, for aomatrias that ar fi-trd by th kidy, charg pays a major ro i tbarrabsorptio, ith positi charg adig to icrasdrttio i th ra cortx.81

    Cancer targeting

    A importat goa i aomdici is to combi sraof th spcia fatrs of th matrias to impro thagts thraptic idx. Th simpst ay to achithis is by combiig th fctios of targtig, oft ithspcific igads, ad kiig ith a cytotoxic arhad,ith both fctios associatd ith th aomatria

    hic (Tab 1 ad Box 3). This might b achid iaacti targtig ith spcific igads (atibodis, pp-tids, tc.), passi targtig that taks adatag ofphysica itractios bt th agts ad th tmormicroiromt (bood fo, ymphatic draiag, tc),or mor compx itractios ith mocs at th tmorsit that might sr to actiat or ras th thrapticmoity (pptidass, pH, tc). Acti (or igad dirctd)targtig impros rati tmor ocaizatio; if thtargt is itraizd it i aso ao fficit caraccmatio of th agt at spcific sits, hich cafrthr icras fficacy.82 effcti cacr thrapis thatar scti for th xprssd targt ar o rotiy

    achid ith moocoa atibodis spcific to atigsorxprssd i cacr cs.83 A arg rag of othr tar-gtig moitis has o bcom aaiab ragig frommacromocar bioogics to sythtic sma mocs(Tab 1).8487 Most acti targtig approachs i ao-mdici dircty appd o of ths targtig igadsto a aopartic scaffod.

    Types of tumor-associated targets

    To dat, hmatopoitic cacr targts (Tab 1)ha yidd th most ciicay sccssf targtigapproachs,83 i part b cas ths maigacis arradiy accssib d to thir itraascar disprsio

    ad ar oft mor ssiti to chmothrapy ad radio-thrapy. By cotrast, th diry of aopartics to soidtmors is mor chagig d to th poor ptratio ofth ratiy arg aosca partics throgh th itr-stitia tmor microiromt, dspit th fact maysoid tmor atigs dmostrat grat sctiity forcacr cs. O sotio to this probm is th s oftargts ithi th tmor ascatr icdig asctss-associatd markrs or a arity of itgris.88Targtig th ss has th pharmacoogic adatag ofimmdiat diry for hmatopoitic cacrs, ad asoth bfit that th tmor sss ar drid from thhost ad ar ths gticay stab (ad ths iky to

    bcom drg rsistat). Moror, tmor sss dispay amor iform atig profi ths aoig a sig agtto targt a arg arity of tmor typs. I som cass, tar-gtig of th tmor ascatr has rstd i rmodigof th sss to mak thm mor-ffcti trasportrs ofth thraptic agt ad of oxyg, hich might i trmak th tmors mor radiossiti.88,89

    a

    c

    d

    b

    DendrimerDoxorubicin Carbon nanotube 1nm

    Quantum dot

    Iron oxideparticle

    mAb-modiedcarbon nanotube

    Dendrimer

    Doxorubicin

    mAb-modied carbon nanotubeIron oxide particle

    Quantum dot

    Liposome

    E. coli

    Bacteriophage

    Dendrimer

    Doxorubicin

    mAb-modied carbon nanotubeRed blood cell

    Iron oxide particle

    Quantum dot

    Liposome

    E. coli

    Bacteriophage

    Dendrimer

    Doxorubicin

    10nm

    100nm

    1,000nm

    Figure 2 | Representation o nanomaterials with comparison to biologics, drawnto scale.

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    5/11270 | MAY 2010 | voluMe 7 .ature.cm/rcc

    Th accmatio of aopartics i tmors, trmdth hacd prmabiity ad rttio ffct (ePR)90,91as iitiay dscribd or to dcads ago, ad hasb sccssfy appid to aopartics. Approdagts icd r-gird cotioa thrapticsthat tak adatag of ePR to impro th thraptic

    idx78 (Sppmtary Tabs 1 ad 2). Som of tharist ao-mdicis, sch as Abraxa or Doxi,ar o macromocar rformatios of pacitaxad doxorbici, rspctiy. ePR dpds poth aky, disorgaizd, ad tortos atr of tmoro-ascatr, hich aos for scti rttio ofpartics i th rag of 60 to 500 m d to thir pro-psity to ak ot of th ascar spac mor radiytha thy ca prmat back ito th circatio Thsffcts occr as a rst of th dficit ymphatic drai-ag of th tmor iromt, bt th ffct may ot bfy rprodcd i physioogic mods sch as i tras-gic mos tmors, orthotopic mods, or timaty i

    hmas, spciay i o ascarizd mtastass.9294

    no mtifctioa agts ar big dopdsch that passi targtig dirs th acti agt arth srfac of th cacr c ad a scod t, schas th ras of cargo for diffsio ad try ito th c,foos. whi th ePR ffct cod impro th thra-ptic idx of aosca partics by improig ratiaccmatio i soid tmors, th most sccssf ao-mdicis for cacr i iky sti d to s a actitargtig approach i cojctio ith this approach toimpro tmor-to-orma tiss ratios. Frthr impro-mts i thraptic idx ca th b achid by com-biig th patform ith a cytotoxic agt appropriat forth particar cacr big targtd, or a oigocotidscti for a particar actiatd g prodct ithith c. whi ach of th forms of targtig ar ot trycacr spcific, o cod propos agts that proidsqtia icrass i cacr sctiity, first by ePR orascar targtig, scod by igad dirctd diry,ad fiay by c pathay-scti cargo.

    PK, manufacturing and regulatory issuesTh sa proprtis of th proposd aomatrias,as as thir mtiacy ad mtifctioaity poschags to drstadig thir PK bcas diffrtcompots i ha diffrt fatrs that affct thdistribtio, carac ad cataboism of aomatrias.Typica PK stdis xami th absorptio, distribtio,mtaboism, ad xcrtio (ADMe) of a drg. Thsfor factors ad th admiistrd dos dtrmi thcoctratio of a drg at its sits of actio, ad ths,th itsity of its ffcts as a fctio of tim. Aftrprototyp aomatrias ar modifid ith diffrtcargos, thir ADMe profi might chag, rqir-

    ig itrati tstig to dtrmi th profis.Mtip stps of sythsis ad prificatio ad a thor-ogh physicochmica charactrizatio food by thdtrmiatio of th PK ad th aatio of torabiity(toxicity ad immogicity) by th host i rqirdopmta stps. For may of th matrias,both a dtaid physicochmica dscriptio ad PK datai aimas or hmas ar imitd ad i b xpctdto ary sigificaty amog diffrt matrias ad thcompositio of th strctrs.

    Hydrodyamic diamtr ad positi charg i graar irsy ratd to gomrar fitratio rat.54 Forxamp, Kobayashi ad Brchbi50 sd MRI to dmo-

    strat that aryig th siz or hydrophobicity of o-targtig Gd-abd ddrimr costrcts atrd throt of ra ad ir xcrtio, rspctiy. Simiary,o-targtd, radioabd qatm dots that r modi-fid ith mta-io chats ad a 600 Dato poythygyco (PeG) moity r rapidy card from th boodad accmatd i th ir ithi a f mits.95,96Simiary, th partic sizs of aopartic C-dots fromCor uirsity ha b td for chags i fitra-tio, or carbo aotb charg proprtis r atrdto mak dramatic chags i thir PK.68,69,9799

    Typicay a siz ct off of abot 6 m is s for fitra-tio of gobar matrias. Itrstigy, hor, mch

    Table 1 | Ligands or actie cancer targeting

    Tpe Mw

    (kDa)

    Dameter

    (m)

    Features

    Monoclonal antibodies

    Whole antibodies 150 1520 High afnity, dialent, many clinicallyapproed examples, contains biologicallyactie constant (Fc) region, long circulation

    Engineered fragments (monovalent)

    ScF 25 35 Lowered afnity, rapid clearance romcirculation, renal retention, reducedstability, reduced immunogenicity

    Fab 50 510 Can be produced genetically orenzymatically by cleaage o monoclonalantibodies

    Nanobody 15 23 Smallest antigen-binding ragment, singledomain, can bind cryptic epitopes

    Engineered fragments (divalent)

    F(ab)2

    100 1015 Improed afnity, can be engineered to aariety o sizes and arrangements oprotein domains

    Diabodies 5080 510 Mono-specifc or bi-specifc dimer o ScF

    Minibodies 80 10 Can be produced genetically

    Aptamers

    RNA 1030 23 Rapid clearance, automated chemicalsynthesis, susceptible to nucleaseswithout chemical modifcation

    DNA 1030 23 Rapid clearance, automated chemicalsynthesis, susceptible to nucleaseswithout chemical modifcation

    Receptor ligands

    Peptides 0.510 variable Facile synthesis and modifcation, dierselibraries and screening technologies,susceptible to peptidases, renal retention

    Whole proteins 30150 variable Produced using recombinant DNA

    technologies, can be biologically actie,susceptible to proteases

    Small molecules 0.11.0 0.52.0 Chemical synthesis, simple modifcationand coupling chemistries, can bebiologically actie, highly ariable afnities

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    6/11nATuRe RevIewS|CliniCAl onCology vOluMe 7 | MAY 2010 | 271

    argr carbo aotbs ith high aspct ratios ar stifitrd.68,69 Partic charg aso affcts tota body car-ac, mdiatd oft by itractios ith srm protisad cs, as has b obsrd ith Q-dots.53 Kodgof th physicochmica paramtrs ad thir itractiosca ao dsig of partics, for xamp Q-dots, ithigad mbrs ad sizs that prmit ra carac.100

    Th atr of th igads ad thir attachmts, adtyps of cargo i ao itrstig approachs to drgdsig. For xamp, th itact agt may accmatat th tmor sit by th ePR ffct, hi its atibodyigad may sctiy bid th tmor c. A arg parti-cat patform may b trappd i th ir ad xcrtdhi th rasd cargo might b card ia th kidy;ach of ths procsss may procd at diffrt rats.As a cosqc of this compxity, stdis of th PKof th itact partic as as th compots, cargoad mtaboits may b rqird. A adatag to thsagts might b that cargos ca b dsigd for triggrdras dr arios coditios, sch as thos that xistisid th targt c. For xamp, pH, rdox, protas-

    ssiti or stras-ssiti ikrs or crossikrs thatdgrad or tim or that oos dr car codi-tios ca triggr ras of th cargo. Cytotoxicity, thr-for, cod b focsd dircty o th cacr c. Oapproach that might orcom th so diffsio adcarac of crtai aomatria patforms is to smti-stp pr-targtig approachs i hich th sormatria is admiistrd first, copd ith a iqigad (for xamp, aidi) food atr by a rapidydiffsig ad carig, sma-moc cytotoxic agtcopd ith a scod igad spcificay ab to bid toth first igad ith high affiity (for xamp, bioti).

    Dopig a aomatria-basd drg i b a

    compx procss (Figr 3). It is aticipatd that mayof th aotchoogy prodcts that i b rgatdby th FDA i spa th rgatory bodaris btpharmacticas, mdica dics, ad bioogics. As acosqc, ths prodcts may b rgatd as com-biatio prodcts. I part, th FDA attmpts to srthat drgs, drg diry systms, mdica dics, adaccis that rach th markt ar saf ad ffcti. ThFDA rgats prodcts, ot tchoogy.101 Thrfor,this distictio i dtrmi th stag at hich th FDArgats a procss to mafactr ad markt oaomatria-basd drgs. Bcas may of th agts may bha simiar to dics ad ha aggr-

    gat arg srfac aras ad mtiat moitis thatar xposd to th bood stram, thy may b xpctdto ha simiar ffcts as othr f-sca mdicayimpatd dics (for xamp grafts, cathtrs or as)sch as i th promotio of hmoysis, thrombosis, adpatt aggrgatio, hich i d to b stdid.102 Thmti-compot fatrs of ths agts might makth approa procss compicatd ad possiby ogrtha for traditioa drgs, for hich mor is ko.

    Ky qstios for aomatria dopmt i baddrssd by th s of aima mods, th otcoms ofhich may ot trasat for hma s, ad ti-maty i hma sbjcts.93,103If possib, ths PK xpri-

    mts ca b prformd i both aimas ad hmassig cassic tracr mthodoogy104 i hich a pr ad-charactrizd prodct, trac-abd ith a stabmoity shod ot atr th ora PK profi. Imagigof th agts i most iky b mpoyd icrasigyto proid ra-tim, ho-body biodistribtios of thtracrs, ths aoig far gratr dtai as to th possibcarac ad toxic ffcts to b xpctd, tha ca bachid ith simp bood masrmts.

    As toxicoogica risks aris from th ss ofo aomatrias ad thir arid compositios,

    charactrizatio tsts i b cssary. I pri-cip, charactrizatio of th ADMe of th agt i brqird as sa. Th spcific fatrs of aomatria-basd agts (arg siz, rati to sma-mocdrgs, mtip compot atr, poy-disprsity) i,hor, rqir o ad additioa mthods of stdyad stadards.105 Th arg siz of aomatrias cab s dircty ith tchiqs sch as trasmissioctro microscopy (TeM) ad atomic forc micro-scopy (AFM), hich oft brigs isight ito thir shap,poydisprsity ad aggrgatio. Itrisic fatrs of thmatrias prmit dirct masrmt in vitro ad in vivosch as by forscc i th Q-dots or rama spctro-

    scopy ith carbo aotbs, or by rgy disprsiX-ray. Radio-tracig (s imagig modaitis sctio) isaso hpf for assssig th proprtis of ths agtsin vivo. larg, mtiat partics or thir appddigads ar possiby immogic, i part, d to thirpoor sobiity ad bcas thy ar oft opsoizdith atig-prstig cs ad trappd i orgassch as th ir, sp ad bo marro. O th othrhad, th imm systm is dsigd to rcogiz bio-ogica pptids ad carbohydrats ith spcific rcp-tors. Ths, aomatrias may ot b rcogizd by thsprocsss bcas of thir chmica mak-p. I additioto improd aaytica mthodoogis, thr is a car

    Box 3 | Examples o cancer-associated targets

    Hematc ates

    B cells: CD19, CD20, CD21, CD22, CD23

    T cells: CD4, CD25, CD30

    Myeloid precursors: CD33, CD66

    Sd tumr ates

    Colon: Integrins, A33 glycoprotein, Tag72, epithelial

    cell adhesion molecule (EpCAM)

    Breast: HER2/neu, Lewis-Y, carcinoembryonic antigen

    (CEA)

    Prostate: Prostate-speciic membrane antigen (PSMA),

    prostate stem-cell antigen (PSCA)

    Other: GD2 ganglioside (glioblastoma), MUC1 mucin-

    like glycoprotein (pancreatic cancer), olate receptor

    (FR), epidermal growth actor receptor (EGFR),

    transerrin receptor (TR)

    Vascuar ates

    vascular endothelial cadherin (vE-cadherin), ascular

    endothelial growth actor receptor (vEGFR), integrins

    (such as alpha-v-beta-3)

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    7/11272 | MAY 2010 | voluMe 7 .ature.cm/rcc

    d to dis a ratioa paradigm to charactriz ao-matrias in vitro ad in vivo.105 Mtip compots i

    d to ha ach compot aayzd sparaty adaso assssd as a fia prodct. O sotio to th com-pxity of aatig th pharmacoogy of th matriasfor rgatory ri may b to s compots that bythmss ar arady -charactrizd i hmas ithko toxic ffct profis. Imagig th agts in vivo, iparticar by PeT, hich ca proid ra-tim coc-tratios of th drgs i tisss, i aso aid i dscribigth PK ad pottia for toxic ffcts i gratr dtai.eary trias that mpoy biopsis of targt tisss ca asoproid iaab iformatio o oca PK, spciay ifsd i cojctio ith f body imagig.

    Toxic effects of nanomaterial drugsudrstadig ad prdictig th toxicitis of ao-matria agts i hmas is compicatd by thir mti-compot atr, o strctrs ad poydisprsity.Som of th toxic ffcts of ths mti-compotdrgs i b attribtab to th idiida compots.Hor, additioa toxic ffcts may aris bcas th PK proprtis of th matrias dscribd abo mayrst i xpctd itractios ith targt ad o-targt tisss as as ith th orgas iod i car-ac. Prdictios basd o micro-sca partics (schas ihad partics, asbstos, cs, bactria or irss)or from sb-aosca mocs (sch as typica

    pharmactica drgs) or from aosca agts (sch asprotis) may ot b graizab to th aomatria-basd agts discssd hr bcas of arg diffrcsi th ay cs rspod to ths o agts. As a co-sqc, thr may b chags i th magitd, qaityad tiss ocatio of toxic ffcts compard ith thorigia drgs. For xamp, th ack of biodgradatioof som compots cod ad to og-trm ifam-matory probms. Idd, cosidrab discssio hassd abot th possib iromta ad coogicacosqcs of idsprad aomatria ss.106,107

    whi thr has b cosidrab dbat abot thpossib toxicitis of aomatria-basd drgs, it shodb otd that drgs sd i cacr patits ha typicayhad o thraptic idics. Patits ha b iig totorat sigificat risks of morbidity ad mortaity drigboth th ciica dopmt of th agts ad aftrmarktig approa. Data do ot sggst that aomat-ria drgs ar mor toxic tha thir compots (somof hich ar -ko cytotoxic agts) ad i maycass th agts ar dsigd to rdr th cytotoxic agt

    ss toxic by atrig its diry ad carac. Thrfor,i th dopmt of ths agts, it sms raso-ab to st th thrshod for torabiity ad thrapticidx to o highr tha that sd for ati-cacr agtsi crrt s. I additio, for th cacr appicatiosaddrssd hr, qatitis of ijctd matrias ar ikyto b qit sma (mg) so th arg-sca mafactrigisss that may b s ith ss of ths matrias i thctroics or fabricatio idstris ar ss trobsom.Frthrmor, som of th compots of ths agts(iposoms, atibodis, chmothrapy drgs, particatabmi, PeG, spr paramagtic iro oxid, poyactic-co-gtamic acid) ha b idy stdid i hmas

    for may yars ad ha b approd by th FDA assaf ad ffcti.

    Th possib toxic ffcts of carbo aotbs hab th sbjct of mch spcatio, d to thir pro-fod chmica stabiity, hich might cofr a og ifin vivo if ths agts ar ot card. Moror th highaspct ratio (gth:idth) of carbo aotbs haspromptd som rsarchrs to compar thm to asbs-tos.46 As xpctd from ihaatio stdis, isobra carbo aotbs ca cas ariab amots ofifammatio (as masrd by cytoki ras, rac-ti oxyg spcis atios, compmt actiatio,car morphoogy chags) h ihad or addd

    to c ctrs.108115 Th rac of ths fidigs tocacr appicatios is ot car; cacr drgs od bformatd as sob, itraos forms, hich do otsm to sho systmic toxicity.68,69,98,116118 Importaty,hi isob micro-sca mti-a tbs (ithsizs argr tha cod b igstd by macrophags adths mchaisticay simiar to asbstos) casd ifam-matio, aosca matria casd o ifammatio,xdat or graomas, i isob form.46 Hc,at th aosca, ths mocs sm to bha i asimiar mar to protis, hich ar of a simiar siz.I additio, a stdy has sho carbo aotbs tob biodgradab.119

    Matching of appropriate targetingligand and cargo to the biology,

    biochemistry and expected PK and PD

    Construction and testing of purity,solubility, stability, specicityand potency in model in vitro

    Scale-up, ADME testingPreparation of IND

    Pilot or phase I imaging and therapeutictrials in humans with target neoplasm

    Biodistribution andimaging in animal

    models in vivo

    Pharmacologic andtherapeutic evaluation

    in animal models in vivo

    Identication and characterization of thetarget molecule, cell and tumor system

    including biology and biochemistry

    Matching of appropriate nanomaterialvehicle to the biology, biochemistry

    and expected PK and PD

    Use of intrinsicproperties oftrace labels

    Evaluate hemodialysis,thrombogenicity,platelet aggregation,

    immunogenicity

    Analysis by TEM, DLS,AFM, EDX

    Develop novelanalytical methods;establish standards

    Figure 3 | Some proposed steps in the deelopment o a nanomaterial anti-canceragent. Abbreiations: ADME, absorption, distribution, metabolism and excretion;AFM, atomic orce microscope; DLS, dynamic light scattering; EDX, energydispersie X-ray; IND, inestigational new drug application; TEM, transmissionelectron microscopy.

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    8/11

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    9/11274 | MAY 2010 | voluMe 7 .ature.cm/rcc

    highr potcy ad th possibiity of simtaosimagig ad thrapy, ko as thraostics. Thr ararady agts capab of mtip fctios sch as tar-gtig ad arhad diry, da arhad diry, orimagig ad thrapy i trias. Som of th hrds forftr agts ad ays to so pottia probms arsho i Tab 2. utimaty, isio atray aai-ab biomatrias combid ith sythtic strctrs tocrat mtifctioa agts, hich ar girdto ha dfid diffsio, biodgradatio ad caracrats, immoogic iisibiity, ad cotrod actios.

    Review criteria

    Articles included in the Reiew were chosen ater an

    exhaustie search on the PubMed, Google Scholar and

    Science Direct databases or ull-text papers published

    in English without a time restriction. The search termsincluded each o the releant nanomaterials by name,

    cancer antigens and therapeutic drugs and modalities,

    and more general terms or the ields under study.Recent reiews and papers, many o which are cited in

    the text, were consulted or additional reerences.

    1. Feynman, R. P., Robbins, J. & Dyson, F. J. ThePleasure of Finding Things Out: The Best Short

    Works of Richard P. Feynman (Perseus Books,Cambridge, MA, 1999).

    2. Haberzettl, C. A. Nanomedicine: destination orjourney? Nanotechnology13, R9 (2002).

    3. Whitesides, G. M. The once and uturenanomachine. Sci. Am.285, 7883 (2001).

    4. Pastan, I., Hassan, R., Fitzgerald, D. J. &Kreitman, R. J. Immunotoxin therapy o cancer.Nat. Rev. Cancer6, 559565 (2006).

    5. Zhang, M. et al. Pretarget radiotherapy with ananti-CD25 antibody-streptaidin usion proteinwas eectie in therapy o leukemia/lymphomaxenograts.Proc. Natl Acad. Sci. USA100,18911895 (2003).

    6. Xu, G. & McLeod, H. L. Strategies or enzyme/prodrug cancer therapy. Clin. Cancer Res.7,33143324 (2001).

    7. Sengupta, S. et al. Temporal targeting o tumourcells and neoasculature with a nanoscaledeliery system. Nature436, 568572 (2005).

    8. McDeitt, M. R. et al. Tumor therapy withtargeted atomic nanogenerators. Science294,15371540 (2001).

    9. National Research Council o the NationalAcademies. A Matter o Size: Triennial Reiew othe National Nanotechnology Initiatie. The

    National Academies Press (2006).10. Hartman, K. B., Wilson, L. J. & Rosenblum, M. G.Detecting and treating cancer withnanotechnology. Mol. Diagn. Ther.12, 114(2008).

    11. Dais, M. E., Chen, Z. G. & Shin, D. M.Nanoparticle therapeutics: an emergingtreatment modality or cancer. Nat. Rev. DrugDiscov.7, 771782 (2008).

    12. Ferrari, M. Cancer nanotechnology: opportunitiesand challenges. Nat. Rev. Cancer5, 161171(2005).

    13. Ferrari, M. Nanogeometry: beyond drug deliery.Nat. Nanotechnol.3, 131132 (2008).

    14. Peer, D. et al. Nanocarriers as an emergingplatorm or cancer therapy. Nat. Nanotechnol.2,751760 (2007).

    15. Allen, T. M. Ligand-targeted therapeutics inanticancer therapy. Nat. Rev. Cancer2, 750763(2002).

    16. Minko, T., Pakunlu, R. I., Wang, Y., Khandare, J. J.& Saad, M. New generation o liposomal drugsor cancer.Anticancer Agents Med. Chem. 6,537552 (2006).

    17. Torchilin, v. P. Recent adances with liposomesas pharmaceutical carriers. Nat. Rev. DrugDiscov.4, 145160 (2005).

    18. Heath, J. R., Phelps, M. E. & Hood, L.NanoSystems biology. Mol. Imaging Biol.5,312325 (2003).

    19. Tuerk, C. & Gold, L. Systematic eolution oligands by exponential enrichment: RNA ligandsto bacteriophage T4 DNA polymerase. Science249, 505510 (1990).

    20. Simmel, F. C. Towards biomedical applicationsor nucleic acid nanodeices. Nanomedicine2,817830 (2007).

    21. Cattaneo, R., Miest, T., Shashkoa, E. v. &Barry, M. A. Reprogrammed iruses as cancertherapeutics: targeted, armed and shielded. Nat.Rev. Microbiol.6, 529540 (2008).

    22. Resnik, D. B. & Tinkle, S. S. Ethical issues inclinical trials inoling nanomedicine. Contemp.Clin. Trials28, 433441 (2007).

    23. Drexler, K. E. Engines of Creation (Anchor Press/

    Doubleday, Garden City, NY, 1986).24. Crichton, M. Prey(HarperCollins, New York, 2002).25. Stark, D. D. et al. Superparamagnetic iron oxide:

    clinical application as a contrast agent or MRimaging o the lier. Radiology168, 297301(1988).

    26. Weissleder, R. et al. Ultrasmallsuperparamagnetic iron oxide: an intraenouscontrast agent or assessing lymph nodes withMR imaging. Radiology175, 494498 (1990).

    27. Eghtedari, M., Liopo, A. v., Copland, J. A.,Oraesky, A. A. & Motamedi, M. Engineering ohetero-unctional gold nanorods or the in vivomolecular targeting o breast cancer cells. NanoLett.9, 287291 (2008).

    28. Gannon, C. J. et al. Carbon nanotube-enhancedthermal destruction o cancer cells in a

    noninasie radiorequency ield. Cancer110

    ,26542665 (2007).29. Burke, A. et al. Long-term surial ollowing a

    single treatment o kidney tumors withmultiwalled carbon nanotubes and near-inraredradiation. Proc. Natl Acad. Sci. USA106,1289712902 (2009).

    30. Kam, N. W. & Dai, H. Carbon nanotubes asintracellular protein transporters: generality andbiological unctionality.J. Am. Chem. Soc.127,60216026 (2005).

    31. Georgakilas, v. et al. Organic unctionalizationo carbon nanotubes.J. Am. Chem. Soc.124,760761 (2002).

    32. Duncan, R. Polymer conjugates as anticancernanomedicines. Nat. Rev. Cancer6, 688701(2006).

    33. Li, C. & Wallace, S. Polymerdrug conjugates:recent deelopment in clinical oncology.Adv.Drug Deliv. Rev.60, 886898 (2008).

    34. Schluep, T. et al. Preclinical eicacy o thecamptothecinpolymer conjugate IT-101 inmultiple cancer models. Clin. Cancer Res.12,16061614 (2006).

    35. Scheinberg, D. A., Strand, M. & Gansow, O. A.Tumor imaging with radioactie metal chelatesconjugated to monoclonal antibodies. Science215, 15111513 (1982).

    36. Langer, R. & Folkman, J. Polymers or thesustained release o proteins and othermacromolecules.Nature263, 797800 (1976).

    37. Whitesides, G. M. The right size innanobiotechnology. Nat. Biotechnol.21,11611165 (2003).

    38. Euliss, L. E., DuPont, J. A., Gratton, S. &DeSimone, J. Imparting size, shape, andcomposition control o materials ornanomedicine.Chem. Soc. Rev.35, 10951104(2006).

    39. Chithrani, B. D., Ghazani, A. A. & Chan, W. C.Determining the size and shape dependence ogold nanoparticle uptake into mammalian cells.Nano Lett.6, 662668 (2006).

    40. Jiang, W., Kim, B. Y., Rutka, J. & Chan, W. C.Nanoparticle-mediated cellular response is

    size-dependent.Nat. Nanotechnol.3, 145150(2008).41. Osaki, F., Kanamori, T., Sando, S., Sera, T. &

    Aoyama, Y. A quantum dot conjugated sugar balland its cellular uptake. On the size eects oendocytosis in the subiral region.J. Am. Chem.Soc.126, 65206521 (2004).

    42. Gratton, S. E. et al. The eect o particle designon cellular internalization pathways. Proc. Natl

    Acad. Sci. USA105, 1161311618 (2008).43. Rejman, J., Oberle, v., Zuhorn, I. S. &

    Hoekstra, D. Size-dependent internalization oparticles ia the pathways o clathrin- andcaeolae-mediated endocytosis. Biochem. J.377, 159169 (2004).

    44. Fiis, T. et al. Size-dependent immunogenicity:therapeutic and protectie properties o nano-

    accines against tumors.J. Immunol. 173

    ,31483154 (2004).45. Tran, K. K. & Shen, H. The role o phagosomal

    pH on the size-dependent eiciency o cross-presentation by dendritic cells. Biomaterials30,13561362 (2009).

    46. Poland, C. A. et al. Carbon nanotubes introducedinto the abdominal caity o mice showasbestos-like pathogenicity in a pilot study.Nat. Nanotechnol.3, 423428 (2008).

    47. Malik, N. et al. Dendrimers: relationship betweenstructure and biocompatibility in vitro, andpreliminary studies on the biodistribution o125I-labelled polyamidoamine dendrimersin vivo.J. Control. Release65, 133148 (2000).

    48. Deen, W. M. What determines glomerularcapillary permeability?J. Clin. Invest.114,

    14121414 (2004).49. Deen, W. M., Lazzara, M. J. & Myers, B. D.Structural determinants o glomerularpermeability.Am. J. Physiol. Renal Physiol.281,F579F596 (2001).

    50. Kobayashi, H. & Brechbiel, M. W. Dendrimer-based nanosized MRI contrast agents. Curr.Pharm. Biotechnol.5, 539549 (2004).

    51. Semmler-Behnke, M. et al. Biodistributiono 1.4- and 18-nm gold particles in rats. Small4,21082111 (2008).

    52. De Jong, W. H. et al. Particle size-dependentorgan distribution o gold nanoparticles aterintraenous administration. Biomaterials29,19121919 (2008).

    53. Choi, H. S. et al. Renal clearance o quantumdots. Nat. Biotechnol.25, 11651170 (2007).

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    10/11nATuRe RevIewS|CliniCAl onCology vOluMe 7 | MAY 2010 | 275

    54. Burns, A. A. et al. Fluorescent silicananoparticles with eicient urinary excretion ornanomedicine. Nano Lett. 9, 442448 (2009).

    55. Joshi, A., vance, D., Rai, P., Thiyagarajan, A. &Kane, R. S. The design o polyalenttherapeutics.Chemistry14, 77387747 (2008).

    56. Fox, M. E., Szoka, F. C. & Frchet, J. M. Solublepolymer carriers or the treatment o cancer: theimportance o molecular architecture.Acc.Chem. Res.42, 11411151 (2009).

    57. Champion, J. A., Katare, Y. K. & Mitragotri, S.Making polymeric micro- and nanoparticles ocomplex shapes. Proc. Natl Acad. Sci. USA104,1190111904 (2007).

    58. Gratton, S. E., Napier, M. E., Ropp, P. A., Tian, S.& DeSimone, J. M. Microabricated particles orengineered drug therapies: elucidation into themechanisms o cellular internalization o PRINTparticles. Pharm. Res.25, 28452852 (2008).

    59. Jana, N. R., Gearheart, L. & Murphy, J. Seed-mediated growth approach or shape-controlledsynthesis o spheroidal and rod-like goldnanoparticles using a suractant template.

    Adv. Mater.13, 13891393 (2001).60. Champion, J. A. & Mitragotri , S. Role o target

    geometry in phagocytosis. Proc. Natl Acad. Sci.USA103, 49304934 (2006).

    61. Zhang, K., Fang, H., Chen, Z., Taylor, J. S. &Wooley, K. L. Shape eects o nanoparticlesconjugated with cell-penetrating peptides (HIvTat PTD) on CHO cell uptake. Bioconjug. Chem.19, 18801887 (2008).

    62. Decuzzi, P. & Ferrari, M. The receptor-mediatedendocytosis o nonspherical particles. Biophys. J.94, 37903797 (2008).

    63. Jin, H., Heller, D. A., Sharma, R. & Strano, M. S.Size-dependent cellular uptake and expulsion osingle-walled carbon nanotubes: single particletracking and a generic uptake model ornanoparticles.ACS Nano3, 149158 (2009).

    64. Champion, J. A. & Mitragotri , S. Shape inducedinhibition o phagocytosis o polymer par ticles.Pharm. Res.26, 244249 (2009).

    65. Wong Shi Kam, N. & Dai, H. Single walled carbon

    nanotubes or transport and deliery obiological cargos. Physica Status Solidi B243,35613566 (2006).

    66. Kostarelos, K. et al. Cellular uptake ounctionalized carbon nanotubes is independento unctional group and cell type. Nat.Nanotechnol.2, 108113 (2007).

    67. Geng, Y. et al. Shape eects o ilaments ersusspherical particles in low and drug deliery.Nat. Nanotechnol.2, 249255 (2007).

    68. McDeitt, M. R. et al. PET imaging o solubleyttrium-86-labeled carbon nanotubes in mice.PLoS One2, e907 (2007).

    69. Singh, R. et al. Tissue biodistribution and bloodclearance rates o intraenously administeredcarbon nanotube radiotracers. Proc. Natl Acad.Sci. USA103, 33573362 (2006).

    70. villa, C. et al. Synthesis and biodistribution ooligonucleotide-unctionalized, tumor-targetablecarbon nanotubes. Nano Lett.8, 42214228(2008).

    71. Okamura, Y. et al. Noel platelet substitutes:disk-shaped biodegradable nanosheets andtheir enhanced eects on platelet aggregation.Bioconjug. Chem.20, 19581965 (2009).

    72. Joshi, A., vance, D., Rai, P., Thiyagarajan, A.& Kane, R. S. The design o polyalenttherapeutics.Chemistry14, 77387747 (2008).

    73. verma, A. et al. Surace-structure-regulated cell-membrane penetration by monolayer-protectednanoparticles. Nat. Mater.7, 588595 (2008).

    74. Jones, S. W. et al. Characterisation o cell-penetrating peptide-mediated peptide deliery.Br. J. Pharmacol.145, 10931102 (2005).

    75. Costantini, D. L., Hu, M. & Reilly, R. M. Peptidemotis or insertion o radiolabeled biomoleculesinto cells and routing to the nucleus or cancerimaging or radiotherapeutic applications. CancerBiother. Radiopharm.23, 324 (2008).

    76. Kobayashi, H. et al. The pharmacokineticcharacteristics o glycolated humanized anti-TacFabs are determined by their isoelectric points.Cancer Res.59, 422430 (1999).

    77. Faure, A. C. et al. Control o the in vivo

    biodistribution o hybrid nanoparticles withdierent poly(ethylene glycol) coatings. Small5,25652575 (2009).

    78. Alexis, F., Pridgen, E., Molnar, L. K. &Farokhzad, O. C. Factors aecting the clearanceand biodistribution o polymeric nanoparticles.Mol. Pharm.5, 505515 (2008).

    79. Duncan, R. & Izzo, L. Dendrimer biocompatibi lityand toxicity.Adv. Drug Deliv. Rev.57, 22152237(2005).

    80. Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y.& Kataoka, K. Long-circulating poly(ethyleneglycol)-poly(D, L-lactide) block copolymermicelles with modulated surace charge.

    J. Control. Release77, 2738 (2001).81. Gotthardt, M. et al. Indication or dierent

    mechanisms o kidney uptake o radiolabeled

    peptides.J. Nucl. Med.48, 596601 (2007).82. Bartlett, D. W., Su, H., Hildebrandt, I. J.,

    Weber, W. A. & Dais, M. E. Impact o tumor-speciic targeting on the biodistribution andeicacy o siRNA nanoparticles measured bymultimodality in vivo imaging. Proc. Natl Acad.Sci. USA104, 1554915554 (2007).

    83. Albrecht, H. & Denardo, S. Recombinantantibodies: rom the laboratory to the clinic.Cancer Biother. Radiopharm.21, 285304(2006).

    84. Oldham, R. K. & Dillman, R. O. Monoclonalantibodies in cancer therapy: 25 years oprogress.J. Clin. Oncol.26, 17741777 (2008).

    85. Boyiadzis, M. & Foon, K. A. Approed monoclonalantibodies or cancer therapy. Expert Opin. Biol.Ther.8, 11511158 (2008).

    86. Castillo, J., Winer, E. & Quesenberry, P. Newermonoclonal antibodies or hematologicalmalignancies.Exp. Hematol.36, 755768(2008).

    87. Tasse, D. v. & Cheung, N. K. Monoclonalantibody therapies or solid tumors. Expert Opin.Biol. Ther.9, 341353 (2009).

    88. Jain, R. K. Normalization o tumor asculature:an emerging concept in antiangiogenic therapy.Science307, 5862 (2005).

    89. Shaked, Y. et al. Rapid chemotherapy-inducedacute endothelial progenitor cell mobilization:implications or antiangiogenic drugs aschemosensitizing agents. Cancer Cell14,263273 (2008).

    90. Matsumura, Y. & Maeda, H. A new concept ormacromolecular therapeutics in cancer

    chemotherapy: mechanism o tumoritropicaccumulation o proteins and the antitumor agentsmancs. Cancer Res.46, 63876392 (1986).

    91. Yuan, F.et al. vascular permeability in a humantumor xenograt: molecular size dependence andcuto size. Cancer Res.55, 37523756 (1995).

    92. Boen, E. et al. Phase II preclinical drugscreening in human tumor xenograts: a irstEuropean multicenter collaboratie study. CancerRes.52, 59405947 (1992).

    93. voskoglou-Nomikos, T., Pater, J. L. & Seymour, L.Clinical predictie alue o the in vitro cell line,human xenograt, and mouse allograt preclinicalcancer models. Clin. Cancer Res.9, 42274239(2003).

    94. Minko, T., Kopeckoa, P., Pozharo, v.,Jensen, K. D. & Kopecek, J. The inluence o

    cytotoxicity o macromolecules and o vEGFgene modulated ascular permeability on theenhanced permeability and retention eectin resistant solid tumors. Pharm. Res.17,505514 (2000).

    95. Michalet, X. et al. Quantum dots or lie cells,in vivo imaging, and diagnostics. Science307,538544 (2005).

    96. Gao, X., Cui, Y., Leenson, R., Chung, L. & Nie, S.In vivo cancer targeting and imaging with

    semiconductor quantum dots. Nat. Biotechnol.22, 969976 (2004).

    97. Liu, Z. et al. Drug deliery with carbon nanotubesor in vivo cancer treatment. Cancer Res.68,66526660 (2008).

    98. McDeitt, M. R. et al. Tumor targeting withantibody-unctionalized, radiolabeled carbonnanotubes.J. Nucl. Med.48, 11801189(2007).

    99. Bhirde, A. A. et al. Targeted killing o cancer cellsin vivo and in vitro with EGF-directed carbonnanotube-based drug deliery.ACS Nano3,307316 (2009).

    100. Choi, H. S. et al. Design considerations ortumour-targeted nanoparticles. Nat.Nanotechnol.5, 4247 (2009).

    101. US Department o Health and Human Serices

    FDA Regulation of Nanotechnology Products[online],http://www.da.go/ScienceResearch/SpecialTopics/Nanotechnology/deault.htm (2009).

    102. Dobroolskaia, M. A., Aggarwal, P., Hall, J. B. &McNeil, S. E. Preclinical studies to understandnanoparticle interaction with the immune systemand its potential eects on nanoparticlebiodistribution.Mol. Pharm.5, 487495 (2008).

    103. Eckelman, W., Kilbourn, M. R., Joyal, J. L.,Labiris, R. & valliant, J. F. Justiying the numbero animals or each experiment.Nucl. Med. Biol.34, 229232 (2007).

    104.The Radiochemical Manual 2nd edn(Ed. B. J. Wilson) (The Radiochemical Centre,Amersham, 1966).

    105. Hall, J. B., Dobroolskaia, M. A., Patri, A. K. &

    McNeil, S. E. Characterization o nanoparticlesor therapeutics. Nanomedicine2, 789803(2007).

    106. Boxall, A. B., Tiede, K. & Chaudhry, Q.Engineered nanomaterials in soils and water:how do they behae and could they pose a riskto human health? Nanomedicine2, 919927(2007).

    107. Nel, A., Xia, T., Mdler, L. & Li, N. Toxic potentialo materials at the nanoleel. Science311,622627 (2006).

    108. De Jong, W. H. & Borm, P. J. Drug delier y andnanoparticles: applications and hazards. Int. J.Nanomedicine3, 133149 (2008).

    109. Elgrabli, D. et al. Induction o apoptosis andabsence o inlammation in rat lung aterintratracheal instillation o multiwalled carbon

    nanotubes. Toxicology253, 131136 (2008).110. Hamad, I. et al. Complement actiation bypegylated single-walled carbon nanotubes isindependent o C1q and alternatie pathwayturnoer. Mol. Immunol.45, 37973803 (2008).

    111. Kagan, v. E., Bayir, H. & Shedoa, A. A.Nanomedicine and nanotoxicology: two sides othe same coin. Nanomedicine1, 313316(2005).

    112. Magrez, A. et al. Cellular toxicity o carbon-basednanomaterials. Nano Lett.6, 11211125 (2006).

    113. Simon-Deckers, A. et al.In vitro inestigation ooxide nanoparticle and carbon nanotube toxicityand intracellular accumulation in A549 humanpneumocytes. Toxicology253, 137146 (2008).

    114. Zhang, L. W., Zeng, L., Barron, A. R. & Monteiro-Riiere, N. A. Biological interactions o

    REViEwS

    20 Macmillan Publishers Limited. All rights reserved10

  • 8/3/2019 Conscripts of the Infinite Armada Systemic

    11/11| |

    unctionalized single-wall carbon nanotubes inhuman epidermal keratinocytes. Int. J. Toxicol.26, 103113 (2007).

    115. Lam, C. W., James, J. T., McCluskey, R.,Arepalli, S. & Hunter, R. L. A reiew o carbonnanotube toxicity and assessment o potentialoccupational and enironmental health risks.Crit. Rev. Toxicol.36, 189217 (2006).

    116. Dumortier, H. et al. Functionalized carbonnanotubes are non-cytotoxic and presere the

    unctionality o primary immune cells. Nano Lett.6, 15221528 (2006).

    117. Lacerda, L. et al. Tissue histology and physiologyollowing intraenous administration o dierenttypes o unctionalized multiwalled carbonnanotubes. Nanomedicine3, 149161 (2008).

    118. Schipper, M. L. et al. A pilot toxicology study osingle-walled carbon nanotubes in a small sampleo mice. Nat. Nanotechnol.3, 216221 (2008).

    119. Allen, B. L. et al. Biodegradation o single-walledcarbon nanotubes through enzymatic catalysis.Nano Lett.8, 38993903 (2008).

    120. Costigan, S. The toxicology o nanoparticlesused in healthcare products. http://www.mhra.go.uk/home/idcplg?IdcSerice=SS_GET_PAGE&nodeId=996 (2006).

    121. De Jong, W. H. & Borm, P. J. Drug delier y and

    nanoparticles: applications and hazards. Int. J.Nanomedicine3, 133149 (2008).

    122. Chang, J. S., Chang, K. L., Hwang, D. F. &Kong, Z. L. In vitro cytotoxicitiy o silicananoparticles at high concentrations stronglydepends on the metabolic actiity type o the cellline. Environ. Sci. Technol.41, 20642068 (2007).

    123. Hardman, R. A toxicologic reiew o quantumdots: toxicity depends on physicochemical andenironmental actors. Environ. Health Perspect.114, 165172 (2006).

    124. Hoshino, A. et al. Physicochemical properties

    and cellular toxicity o nanocrystal quantum dotsdepend on their surace modiication. Nano Lett.4, 21632169 (2004).

    125. Loric, J. et al. Dierences in subcellulardistribution and toxicity o green and redemitting CdTe quantum dots.J. Mol. Med.83,377385 (2005).

    126. Chen, H. T., Neerman, M. F., Parrish, A. R. &Simanek, E. E. Cytotoxicity, hemolysis, and acutein vivo toxicity o dendrimers based onmelamine, candidate ehicles or drug deliery.

    J. Am. Chem. Soc.126, 1004410048 (2004).127. Heiden, T. C., Dengler, E., Kao, W. J.,

    Heideman, W. & Peterson, R. E. Deelopmentaltoxicity o low generation PAMAM dendrimers inzebraish. Toxicol. Appl. Pharmacol.225, 7079(2007).

    128. Roberts, J. C., Bhalgat, M. K. & Zera, R. T.Preliminary biological ealuation o

    polyamidoamine (PAMAM) Starburst dendrimers.J. Biomed. Mater. Res.30, 5365 (1996).

    129. Plank, C., Mechtler, K., Szoka, F. C. Jr &Wagner, E. Actiation o the complement systemby synthetic DNA complexes: a potential barrieror intraenous gene deliery. Hum. Gene Ther.7,14371446 (1996).

    130. Kaminskas, L. M. et al. The impact o molecularweight and PEG chain length on the systemicpharmacokinetics o pegylated poly l-lysine

    dendrimers. Mol. Pharm.5, 449463 (2008).131. Larson, S. M. & Nelp, W. B. Radiopharmacologyo a simpliield technetium-99m-colloidpreparation or photoscanning.J. Nucl. Med.7,817826 (1966).

    132. Escorcia, F. E., McDeitt, M. R., villa, C. H. &Scheinberg, D. A. Targeted nanomaterials orradiotherapy. Nanomedicine2, 805815 (2007).

    133. Cai, W. & Chen, X. Multimodality molecularimaging o tumor angiogenesis.J. Nucl. Med.49 (Suppl. 2), 113S128S (2008).

    134. Sitharaman, B. et al. Superparamagneticgadonanotubes are high-perormance MRIcontrast agents. Chem. Commun. 21,39153917 (2005).

    Suppemetar frmat is linked to the onlineersion o the paper at www.nature.com/nrclinonc

    REViEwS