37
Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators: Maxim Pshirkov (PRAO Lebedev Phyical Institute), Artyom Tuntsov (SAI), Aleksandr Polnarev (QMC London UK), Deepak Baskaran (Cardiff UK) QUARKS-2008

Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Constraints on massive graviton dark matter from precision pulsar timing and astrometry

Konstantin POSTNOV (Sternberg Astronomical Institute)

Collaborators: Maxim Pshirkov (PRAO Lebedev Phyical Institute), Artyom Tuntsov (SAI), Aleksandr

Polnarev (QMC London UK), Deepak Baskaran (Cardiff UK)

QUARKS-2008

Page 2: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Plan

•Pulsars as GW detectors•Observational constraints on massive graviton CDM•“Surfing effect” of massive gravitons and limits on their propagation speed

Page 3: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pulsars as GW detectors

Gravitational waves (1/2)

•General Relativity

• GW propagation velocity in empty space is с:

• Along axis z: )exp(ikzeh • Polarizatrion tensor have two non-zero components

• Monochromatic transverse GW has two polarizatios (GR)

e 11e 12e&

Page 4: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

• GW energy density (monochromatic plane):

22222

~16

hhhG

c

• Stochastic isotropic background:

df

fdff g

cg

)()(

29 323 8 2 100c H G g cm Is the critical density

•Or:

cHkH /2 0

cfk /2

Pulsars as GW detectors

Gravitational waves (1/2)

Page 5: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pulsars as monochromatic GW detectors

Monochromatic GW (1/3)

z

x

y

PSR

•GW changes the observed pulsar frequency (Sazhin (1978), Detweiler (1979))

dlt

hzz2

1

)exp()exp(1

sinRe~ 2 tiu

uDi

cos1u

•In GR interaction is independent of distance (if ) – no secular increase ~D.

cD 2

,)cos()(cos12cos2

1~

DDthth

),(,cos gwpgwp nnnnP

P

Is the GW polarization vector

Page 6: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pulsars as GW detectorsMonochromatic GW (2/3)

•Variation of the observed frequency results in time residuals in time of arrival (TOA):

thdtttR

t

cos~/)()( 0

0

00

h

•Maximum sensitivity at frequencies ~ 1/Tobs

•Longer GWs also contribute to the observed Pulsar period and its derivativePP ,

1/Tobs 1/Tsamp 1/Tint

Tobs ~ 10 yearsTsamp~ 10 daysTint ~ 1 hour

Page 7: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

h

In 2003 periodic motions in 3C66b were explained by binary SMBH (Sudou et al., 2003)-80 Mpc, 1.5x1010 M⊙

•Timing of PSR B1855+09 rejected this possibility (Jenet et al., 2004)

Pulsars as GW detectorsMonochromatic GW (3/3)

Page 8: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pulsars as GW detectorsStochastic GWB (1/3)

• RMS of TOA residuals is (Detweiler, 1979):

•RMS of TOA residuals depend on GW energy density

•For flat GW spectrum of width Δf~f centered at f

dfdf

gc

f

G

f

GtR

43432

243

208

243

208)(

29 323 8 2 100c H G g cm - the critical density

Page 9: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

yrsfhf

fhfS

yrgg 2524

54

2

11034.116

)()(

• For arbitrary GWB («red noise»):

01100

Hh

km s Mpc

Kaspi, Taylor, Ryba, 1994

Pulsars as GW detectorsStochastic GWB (2/3)

Page 10: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pair correlation of the TOA residuals for 20 pulsars (simulation, R,Manchester, 2007 )

•GW noise is the same for all pulsars

It is advantageous to observe ensemble of pulsars and correlate rms of TOA residuals between each pair of pulsars

Pulsars as GW detectorsStochastic GWB (3/3)

Page 11: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Pulsars as GW detectorsPresent limits and prospects

(Manchester, 2007 – arXiv:0710.5026v2)

Page 12: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Tests in Solar systems

Doppler tracking (1/2)

•Estabrook & Wahlquist, 1975, principle similar to pulsar timing •Best current limits: Cassini mission, 10-3-10-6 Hz(Armstrong et al. 2003)

Page 13: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Solar system testsDoppler tracking (2/2)

Reynaud et al. 2008

•Future projects: Search for Anomalous Gravity using Atomic Sensors, SAGAS

Page 14: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Astrometric constraints

• A GW causes «drizzling» of visual position of a source on the sky (e.g, Kaiser&Jaffe, 1997):

h~

•The observed quantity is the arc length between two sources Ψ:

2sin~

h

• In the presence of a GW sources on the sky would oscillate w.r.t. to their true position with amplitude h. Modern ICRF precision (~100 μas) constrain low-frequency GWB: h<5x10-10

Page 15: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Theories with massive gravitons

• Massive gravity ( Rubakov 2004, Dubovsky 2004) with spontaneous Lorentz braking (Rubakov & Tinyakov arXiv:0802.4379 for a review)

• Healthy theory: no ghosts, no vDVZ discontinuity, no strong coupling at low scale

• Interesting phenomenology: DE-like term in Fridmann equations + possibility to produce massive gravitons in the early Universe copiously enough to explain all of CDM (Dubovsky, Tinyakov & Tkachev 2005)

• Taking graviton mass < (1015 cm)-1 (binary PSR constraints) and assuming all galactic CDM due to massive gravitons leads to a strong almost monochromatic (Δf/f~10-6) GW signal with amplitude

110

5~ 10

3 10

fh

Hz

Page 16: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: PTP08Pulsar timing (1/2)

• Isotropic GW background affects pulsar timing

• GW amplitude can be constrained from rms residuals of TOA of even one pulsar

• Strong monochromatic signal (e.g. if all of galactic DM is due to massive gravitons, as in Dubovsky et al 2005) will manifest itself at frequencies < 1/Tint (PSR integration time ~ 1-2 hrs) (PTP08):

)0(2Rr ,

• Limit on the GW amplitude from the existing rms residuals of TOA of pulsars:

2008arXiv0805.1519: Pshirkov, Tuntsov, Postnov

Page 17: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Constraints using existing rms TOA residuals (Manchester, 2007), PSR B1937+21

Observational constraints: PTP08Pulsar timing (2/2)

Page 18: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect» (1/4)

• Unlike in GR, massive gravitons propagate with velocity less than c :

• Mass of the graviton is expressed through phenomenological parameter ε :

• Pulsar frequency change by massive GW::

arXiv:0805.3103: Baskaran, Polnarev, Pshirkov, Postnov

Page 19: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect» (2/4)

• TOA residuals:

• Unlike GR, residuals seculary increase with distance to the source D !

• Above results for a monochromatic GW can be generalized to stochastic GWB:

Page 20: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect» (3/4)

• Response to any harmonics is known:

• The observed TOA residuals will be expressed through this «transfer function»:

Page 21: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect» (4/4)

• R(k) depends on ε (term )

I.

II.

• For example, power-law spectrum:

Page 22: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect»: limits (1/5)

• Depending on ε, PSR timing put bounds on energy density of GWB:

• Or some combination of GW energy density and ε :

Page 23: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect»: limits (2/5)

• For known GW amplitude, the parameter ε can be constrained:

• For theoretically motivated GWB from SMBH:

or

Page 24: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect»: limits (3/5)

Page 25: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Observational constraints: BPPP08«Surfing effect»: limits (5/5)

• In terms of the graviton mass:

• From modern pulsar timing (Manchester 2007)

,

• which is by 3 orders of magnitude better than from Solar system bounds• can be increased by one order with increasing observational time• comparable to the future LISA constraints.

Page 26: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

CONCLUSIONS

• Precise astronomical observations, especially pulsar timing, put strong bounds on massive graviton parameters:

• Cold massive gravitons cannot constitute all of the galactic dark matter

Page 27: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Спасибо за внимание!

Page 28: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Теории с массивным гравитономНаблюдаемые проявления (1/4)

(Тиняков 2007)

Page 29: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Теории с массивным гравитономНаблюдаемые проявления (2/4)

(Тиняков 2007)

(Hi – параметр Хаббла в инфл. эпоху)

Page 30: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Теории с массивным гравитономНаблюдаемые проявления (3/4)

(Тиняков 2007)

Page 31: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Одиночные пульсары(1/4)

J 1022+ 10 J 1640+22

B1937+21 J2145- 07

Stairs, 2003

Page 32: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Одиночные пульсары(2/4)

Радиотелескоп РТ-64 КРАО (ТНА-1500 ОКБ МЭИ)

Page 33: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Одиночные пульсары(3/4)

•N-ый импульс от пульсара приходит на РТ в момент времени N. •Редукция в барицентр Солнечной системы. Момент прихода в барицентр СС:

62

32NN

N

tttN

•Считается, что пульсар вращается по известным законам. Момент прихода N-го импульса связан с его номером, частотой вращения и её производными и может быть предсказан.

•В действительности, между наблюдаемыми моментами прихода N-го импульса и предсказанными значениями всегда существует разница-остаточные уклонения:

)(

)( NobsN

tNNtR

Page 34: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Одиночные пульсары(4/4)

00

2000

10 6

1)(

2

1)(

ttBttA

ttttttRR

•Уточнение параметров происходит по МНК. Минимизируются остаточные уклонения:

EEE crA sincoscos/

cossincossincos/ EEEE crB

p ,...,, -поправки к принятым значениям p,...,,

Page 35: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Остаточные уклонения

•После процедуры остаются остаточные уклонения моментов прихода импульсов

)(

)( NobsN

tNNtR

Остаточные уклонения пульсаров B1937+21 и B1855+09 (1985-1993, Аресибо),Kaspi, Taylor&Ryba(1994)

Page 36: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Двойные пульсары

•Движение в двойной системе описывается стандартными кеплеровскими параметрами:

•Период обращения: Pb

•Проекция большой полуоси:

•Эксцентриситет: e

•Долгота периастра: ω

•Эпоха периастра: T0

iax sin

•В сильных гравитационных полях появляются ПК-параметры ( и т.д. )

•Все эти параметры могут быть найдены из тайминга (аналогично, МНК-методом)

,bP

Page 37: Constraints on massive graviton dark matter from precision pulsar timing and astrometry Konstantin POSTNOV (Sternberg Astronomical Institute) Collaborators:

Принципы тайминга

Алгоритм

1. Наблюдения, вычисление моментов прихода импульсов пульсаров (МПИ) в барицентре Солнечной системы.

2. Вычисление теоретических значений МПИ с использованием модели хронометрирования.

3. Определение отклонения значений теоретических МПИ от наблюдаемых (расчет остаточных уклонений – ОУ МПИ).

4. Уточнение параметров модели хронометрирования (далее к п.3 до сходимости модели).