58
Construction of Two-Weight Codes Axel Kohnert Tokyo November 2005 Bayreuth University Germany [email protected] linearcodes.uni-bayreuth.de . – p.1/33

Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany [email protected] linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction ofTwo-Weight Codes

Axel KohnertTokyo November 2005

Bayreuth University [email protected]

. – p.1/33

Page 2: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Coding Theory

0101

10100000

1111

2 4

2

2

2

4

. – p.2/33

Page 3: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Coding Theory

Hamming distance dH(x, y)=number of placeswith different letters in two codewords x and y.

Minimum distance = minimum of dH(x, y) for allpairs of codewords.

Error correcting capability is measured by theminimum distance.

. – p.3/33

Page 4: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Linear Code

A linear [n, k; q] code C is a k−dimensionalsubspace of the vectorspace GF (q)n.

. – p.4/33

Page 5: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Linear Code

0101

10100000

1111

2 4

2

2

2

4

. – p.5/33

Page 6: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Linear Code

A linear [n, k; q] code C is a k−dimensionalsubspace of the vectorspace GF (q)n.

The generator matrix Γ of a linear [n, k; q]code C is a k × n matrix where each row isa basis element of the code C.

C = {vΓ : v ∈ GF (q)k}

. – p.6/33

Page 7: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Linear Code

0101

10100000

1111

2 4

2

2

2

4

Γ =

(

1 0 1 0

0 1 0 1

)

. – p.7/33

Page 8: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Linear Code

0101

10100000

1111

2 4

2

2

2

4

Γ =

(

1 0 1 0

0 1 0 1

)

. – p.7/33

Page 9: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Minimum Distance

The minimum distance of a linear codeis the minimum number of nonzero entries(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

. – p.8/33

Page 10: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Minimum Distance

The minimum distance of a linear codeis the minimum number of nonzero entries(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

. – p.8/33

Page 11: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Minimum Distance

The minimum distance of a linear codeis the minimum number of nonzero entries(=weight) of all nonzero codewords.

0101

10100000

1111

2 4

2

2

2

4

2

2

4. – p.9/33

Page 12: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Minimum Distance

The minimum distance of a linear codeis the minimum number of nonzero entries(=weight) of all nonzero codewords.

0101

10100000

1111

2

2

4. – p.10/33

Page 13: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Enumerator

Weight enumerator AC(z) :=∑

Aizi where

Ai is the number of codewords in C of weighti.

. – p.11/33

Page 14: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Enumerator

Weight enumerator AC(z) :=∑

Aizi where

Ai is the number of codewords in C of weighti.

0101

10100000

1111

2

2

4

AC = z0 + 2z2 + z4

. – p.12/33

Page 15: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Enumerator

Weight enumerator AC(z) :=∑

Aizi where

Ai is the number of codewords in C of weighti.

0101

10100000

1111

2

2

4

AC = z0 + 2z2 + z4

. – p.12/33

Page 16: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Two-Weight Code

This is a (linear) code with only two differentnonzero weights w1 and w2(w1 < w2).0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =

1 0 0 1

0 1 0 1

0 0 1 1

AC = z0 + 6z2 + z4

. – p.13/33

Page 17: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Two-Weight Code

This is a (linear) code with only two differentnonzero weights w1 and w2(w1 < w2).0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =

1 0 0 1

0 1 0 1

0 0 1 1

AC = z0 + 6z2 + z4

. – p.13/33

Page 18: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Two-Weight Code

This is a (linear) code with only two differentnonzero weights w1 and w2(w1 < w2).0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 1

Γ =

1 0 0 1

0 1 0 1

0 0 1 1

AC = z0 + 6z2 + z4

. – p.13/33

Page 19: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Two-Weight Code

Visualization of a two-weight code C by a graph GC

1100

1010 0101

1001

0110

0011

00001111

. – p.14/33

Page 20: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33

Page 21: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33

Page 22: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Graph GC of a Two-Weight Code

Given a code C with the two nonzero weights w1

and w2

vertices = codewords

edge between x and y if dH(x, y) = w1

. – p.15/33

Page 23: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Properties of GC

GC is a regular graph.

GC is strongly regular [DELSARTE], i.e. thenumber of common neighbors of a pair x, y ofvertices depends only on the fact whether xand y are adjacent or not.

. – p.16/33

Page 24: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Properties of GC

GC is a regular graph.

GC is strongly regular [DELSARTE], i.e. thenumber of common neighbors of a pair x, y ofvertices depends only on the fact whether xand y are adjacent or not.

. – p.16/33

Page 25: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Strongly Regular Graphs

A strongly regular graph is (partially) describedby four parameters (N,K, λ, µ)

N= number of verticesK= degreeλ = number of common neighbors of

adjacent verticesµ = number of common neighbors of

non-adjacent vertices

. – p.17/33

Page 26: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction

To construct a two-weight [n, k; q] code weconstruct a corresponding generator matrix Γ.

The codewords of a two-weight code haven− w1 or n− w2 zeros.We have to control the number of zeros in thecodewords.

. – p.18/33

Page 27: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction

To construct a two-weight [n, k; q] code weconstruct a corresponding generator matrix Γ.

The codewords of a two-weight code haven− w1 or n− w2 zeros.

We have to control the number of zeros in thecodewords.

. – p.18/33

Page 28: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction

To construct a two-weight [n, k; q] code weconstruct a corresponding generator matrix Γ.

The codewords of a two-weight code haven− w1 or n− w2 zeros.We have to control the number of zeros in thecodewords.

. – p.18/33

Page 29: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction

A codeword c is given by a product:

vΓ = c. (v ∈ GF (q)k)

We build a matrix M whose columns arelabeled by the possible columns γ of thegenerator matrix. Rows are labeled bythe nonzero v ∈ GF (q)k which give aftermultiplication with the generator matrix thecodewords of the two-weight code.

. – p.19/33

Page 30: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Construction

A codeword c is given by a product:

vΓ = c. (v ∈ GF (q)k)

We build a matrix M whose columns arelabeled by the possible columns γ of thegenerator matrix. Rows are labeled bythe nonzero v ∈ GF (q)k which give aftermultiplication with the generator matrix thecodewords of the two-weight code.

. – p.19/33

Page 31: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Matrix

γ ∈ GF (q)k

M =

Mv,γ ← v ∈ GF (q)k

Mv,γ = {1 vγ = 0

0 vγ 6= 0

. – p.20/33

Page 32: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Matrix

γ ∈ GF (q)k

M = Mv,γ ← v ∈ GF (q)k

Mv,γ = {1 vγ = 0

0 vγ 6= 0

. – p.20/33

Page 33: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Weight Matrix

γ ∈ GF (q)k

M = Mv,γ ← v ∈ GF (q)k

Mv,γ = {1 vγ = 0

0 vγ 6= 0

. – p.20/33

Page 34: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

Now a two-weight code corresponds to a 0/1solution x = (x1, . . . , xqk−1) of the system

(1) Mx =

n− w1 or n− w2...

n− w1 or n− w2

(2)∑

xi = n

. – p.21/33

Page 35: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

w1 − w2 0 . . . 0 0 n− w1

0. . . 0 0

...

M... 0 w1 − w2 0

... x =

0 0. . . 0

...

0 0 . . . 0 w1 − w2 n− w1

1 . . . 1 0 . . . 0 . . . 0 n

To solve this system we use an LLL-variant of A.Wassermann.

. – p.22/33

Page 36: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

w1 − w2 0 . . . 0 0 n− w1

0. . . 0 0

...

M... 0 w1 − w2 0

... x =

0 0. . . 0

...

0 0 . . . 0 w1 − w2 n− w1

1 . . . 1 0 . . . 0 . . . 0 n

To solve this system we use an LLL-variant of A.Wassermann.

. – p.22/33

Page 37: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

We are interested in a 0/1 solution x =(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solutioncorresponds via selection of columns of thegenerator matrix to an [n, k; q] two-weightcode with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-merator.

. – p.23/33

Page 38: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

We are interested in a 0/1 solution x =(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solutioncorresponds via selection of columns of thegenerator matrix to an [n, k; q] two-weightcode with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-merator.

. – p.23/33

Page 39: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Diophantine System of Equations

We are interested in a 0/1 solution x =(x1, . . . , xqk−1, . . . , x2(qk−1)) of the system.

The first half x = (x1, . . . , xqk−1) of a solutioncorresponds via selection of columns of thegenerator matrix to an [n, k; q] two-weightcode with weights w1 and w2.

The second half x = (xqk , . . . , x2(qk−1))

contains the information on the weight enu-merator.

. – p.23/33

Page 40: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Projective Geometry

As we are computing scalar products, the0/nonzero property is invariant under scalarmultiplication, so we can label rows andcolumns by 1−dimensional subspaces ofGF (q)k.

M is after this reduction the incidence matrixbetween the 1−dimensional subspaces andthe (k − 1)− dimensional subspaces ofGF (q)k.

. – p.24/33

Page 41: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Projective Geometry

As we are computing scalar products, the0/nonzero property is invariant under scalarmultiplication, so we can label rows andcolumns by 1−dimensional subspaces ofGF (q)k.

M is after this reduction the incidence matrixbetween the 1−dimensional subspaces andthe (k − 1)− dimensional subspaces ofGF (q)k.

. – p.24/33

Page 42: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

3 Different Languages

We can study the same object in 3 differentsettings:

• Two-Weight Codes• Strongly Regular Graphs• Point-Sets in the Projective Geometry

. – p.25/33

Page 43: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Automorphisms

We further reduce the size of the systemby prescribing a group of automorphisms,this method corresponds to choosing com-plete orbits of subgroups of PGL(k, q) onthe 1−dimensional subspaces as possiblecolumns of the generator matrix.

This further reduces the number of columns,in our system of equations, as the dimensionis now the number of orbits.

. – p.26/33

Page 44: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Automorphisms

We further reduce the size of the systemby prescribing a group of automorphisms,this method corresponds to choosing com-plete orbits of subgroups of PGL(k, q) onthe 1−dimensional subspaces as possiblecolumns of the generator matrix.

This further reduces the number of columns,in our system of equations, as the dimensionis now the number of orbits.

. – p.26/33

Page 45: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Reduction

The defining property of the incidence matrix

MU,V = 1 ⇐⇒ U ≤ V

is invariant under the automorphisms.

This also reduces the number of rows in thesame way, the height is also the number oforbits.

. – p.27/33

Page 46: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Reduction

The defining property of the incidence matrix

MU,V = 1 ⇐⇒ U ≤ V

is invariant under the automorphisms.

This also reduces the number of rows in thesame way, the height is also the number oforbits.

. – p.27/33

Page 47: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Example

We computed a new [738, 8; 3] two-weight codewith nonzero weights 486 and 513.

qk − 1 qk−1q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 → 40 orbits

. – p.28/33

Page 48: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Example

We computed a new [738, 8; 3] two-weight codewith nonzero weights 486 and 513.

qk − 1

qk−1q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560

→ 3280 → 40 orbits

. – p.28/33

Page 49: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Example

We computed a new [738, 8; 3] two-weight codewith nonzero weights 486 and 513.

qk − 1 qk−1q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280

→ 40 orbits

. – p.28/33

Page 50: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Example

We computed a new [738, 8; 3] two-weight codewith nonzero weights 486 and 513.

qk − 1 qk−1q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 →

40 orbits

. – p.28/33

Page 51: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Example

We computed a new [738, 8; 3] two-weight codewith nonzero weights 486 and 513.

qk − 1 qk−1q−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 1 1 2 0

1 2 2 1 2 1 0 0

2 0 0 1 1 2 2 1

2 1 2 2 0 2 2 0

1 2 1 1 2 1 1 0

0 2 2 2 0 2 1 1

1 1 1 2 2 2 0 2

0 2 0 2 0 2 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6560 → 3280 → 40 orbits

. – p.28/33

Page 52: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Searching for Groups

We use different subgroups of PGL(k, q).

• random cyclic generator (like aboveexample)

• Permutation groups• Blockdiagonal• Monomial

Limits on orbit sizes, number of orbits, ....

. – p.29/33

Page 53: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Searching for Groups

We use different subgroups of PGL(k, q).

• random cyclic generator (like aboveexample)

• Permutation groups• Blockdiagonal• Monomial

Limits on orbit sizes, number of orbits, ....

. – p.29/33

Page 54: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Results

Using this method we computed several newtwo-weight codes.

Among these there are also distance-optimalcodes.

. – p.30/33

Page 55: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Results

Using this method we computed several newtwo-weight codes.

Among these there are also distance-optimalcodes.

. – p.30/33

Page 56: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Results

Some new two-weight codestwo-weight code strongly regular graph

n k q w1 w2 N K λ µ

140 6 3 90 99 729 280 103 110

198∗ 10 2 96 112 1024 198 22 42

...

. – p.31/33

Page 57: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Last Page

Thank you very much for your attention.

• A. Kohnert: Construction of Two-WeightCodes, in preparation

• M. Braun, A. Kohnert, A. Wassermann:Optimal Linear Codes From Matrix Groups,IEEE Information Theory, 2005

. – p.32/33

Page 58: Construction of Two-Weight Codes - uni-bayreuth.de · Tokyo November 2005 Bayreuth University Germany axel.kohnert@uni-bayreuth.de linearcodes.uni-bayreuth.de. Œ p.1/33. Coding Theory

Last Page

Thank you very much for your attention.

• list of new codes including generator matrixand weight enumerator:http://linearcodes.uni-bayreuth.de

• A. E. Brouwer has a list (not online) of knownparameters:http://www.win.tue.nl/~aeb/

. – p.33/33