7
Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016 1 Supporting Information for: Synthetic Investigation, Structural Analysis and Photocatalytic Study of a Carboxylate-Phosphonate Bridged Ti 18 -Oxo Cluster Wei-Hui Fang, Lei Zhang* and Jian Zhang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. Corresponding Author *E-mail: [email protected] Content Table S1 The sequence of the addition of reagents in the contrast test. ............................................................ 2 Figure S1 The PXRD of the simulated and experimental and air stability patterns of PTC-51. ........................... 3 Figure S2 The EDS analysis of PTC-51. ................................................................................................................. 3 Figure S3 The EDS analysis of PTC-50. ................................................................................................................. 4 Figure S4 The IR spectrum of PTC-51. ................................................................................................................. 4 Figure S5 The IR spectrum of PTC-50. ................................................................................................................. 4 Figure S6 The TGA curve of PTC-51. .................................................................................................................... 5 Figure S7 The TGA curve of PTC-50. .................................................................................................................... 5 Figure S8 The geometry skeleton of the reported ring-shape Ti 9 cluster. .......................................................... 3 Figure S9 The assembly of PTC-50 (left) and the top view of it (right)................................................................ 5 Figure S10 The packing view of PTC-51 along with the [100], [010], and [001] direction. ................................. 6 Figure S11 The packing view of PTC-50 along with the [100], [010], and [001] direction. ................................. 6 Figure S12 The linear fit of the H 2 generation of PTC-50. ................................................................................... 6 Table S2 Bond valence sum (BVS) analysis of titanium and bridged oxygen atoms [a] for PTC-51 and PTC-50. .. 7 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

1

Supporting Information for:

Synthetic Investigation, Structural Analysis and Photocatalytic Study of a Carboxylate-Phosphonate Bridged Ti18-Oxo Cluster

Wei-Hui Fang, Lei Zhang* and Jian Zhang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. Corresponding Author *E-mail: [email protected]

Content

Table S1 The sequence of the addition of reagents in the contrast test. ............................................................ 2

Figure S1 The PXRD of the simulated and experimental and air stability patterns of PTC-51. ........................... 3

Figure S2 The EDS analysis of PTC-51. ................................................................................................................. 3

Figure S3 The EDS analysis of PTC-50. ................................................................................................................. 4

Figure S4 The IR spectrum of PTC-51. ................................................................................................................. 4

Figure S5 The IR spectrum of PTC-50. ................................................................................................................. 4

Figure S6 The TGA curve of PTC-51. .................................................................................................................... 5

Figure S7 The TGA curve of PTC-50. .................................................................................................................... 5

Figure S8 The geometry skeleton of the reported ring-shape Ti9 cluster. .......................................................... 3

Figure S9 The assembly of PTC-50 (left) and the top view of it (right)................................................................ 5

Figure S10 The packing view of PTC-51 along with the [100], [010], and [001] direction. ................................. 6

Figure S11 The packing view of PTC-50 along with the [100], [010], and [001] direction. ................................. 6

Figure S12 The linear fit of the H2 generation of PTC-50. ................................................................................... 6

Table S2 Bond valence sum (BVS) analysis of titanium and bridged oxygen atoms [a] for PTC-51 and PTC-50. .. 7

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2016

Page 2: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

2

Table S1 The sequence of the addition of reagents in the contrast test.

1 Ti IPA PA O3P-Phen3 -

2 Ti IPA O3P-Phen3 PA -

3 Ti PA IPA O3P-Phen3 -

4 Ti PA O3P-Phen3 IPA -

5 Ti O3P-Phen3 PA IPA -

6 Ti O3P-Phen3 IPA PA -

7 IPA Ti PA O3P-Phen3 -

8 IPA Ti O3P-Phen3 PA -

9 IPA O3P-Phen3 PA Ti √

10 IPA O3P-Phen3 Ti PA √

11 IPA PA O3P-Phen3 Ti -

12 IPA PA Ti O3P-Phen3 -

13 O3P-Phen3 IPA PA Ti √

14 O3P-Phen3 IPA Ti PA √

15 O3P-Phen3 PA Ti IPA -

16 O3P-Phen3 PA IPA Ti √

17 O3P-Phen3 Ti PA IPA -

18 O3P-Phen3 Ti IPA PA -

19 PA Ti IPA O3P-Phen3 -

20 PA Ti O3P-Phen3 IPA -

21 PA O3P-Phen3 IPA Ti -

22 PA O3P-Phen3 Ti IPA -

23 PA IPA Ti O3P-Phen3 -

24 PA IPA O3P-Phen3 Ti -

Page 3: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

3

Figure S1 The PXRD of the simulated and experimental and air stability patterns of PTC-51.

Figure S2 The geometry skeleton of the reported ring-shape Ti9 cluster. (G. Kickelbick and U. Schubert, Eur. J. Inorg. Chem., 1998, 159-161)

Figure S3 The EDS analysis of PTC-51.

Page 4: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

4

Figure S4 The EDS analysis of PTC-50.

Figure S5 The IR spectrum of PTC-51.

Figure S6 The IR spectrum of PTC-50.

Page 5: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

5

Figure S7 The TGA curve of PTC-51.

Figure S8 The TGA curve of PTC-50.

Figure S9 The assembly of PTC-50 (left) and the top view of it (right).

Page 6: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

6

Figure S10 The packing view of PTC-51 along with the [100], [010], and [001] direction.

Figure S11 The packing view of PTC-50 along with the [100], [010], and [001] direction.

Figure S12 The linear fit of the H2 generation of PTC-50.

Page 7: Content - Royal Society of ChemistryTi9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429

Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2016

7

Table S2 Bond valence sum (BVS) analysis of titanium and bridged oxygen atoms [a] for PTC-51 and PTC-50.

PTC-51

Ti1 4.171 Ti1-O7 1.154 d=1.762(6) Ti1-O2 0.819 d=1.889(7) Ti1-O1 0.799 d=1.898(6) Ti1-O19 0.553 d=2.034(8) Ti1-O20 0.533 d=2.048(7) Ti1-O4 0.314 d=2.244(7)

Ti2 4.125 Ti2-O8 1.148 d=1.764(6) Ti2-O3 0.817 d=1.890(7) Ti2-O2 0.780 d=1.907(7) Ti2-O23 0.533 d=2.048(8) Ti2-O28 0.499 d=2.072(7) Ti2-O6 0.349 d=2.205(6)

Ti3 4.073 Ti3-O9 1.090 d=1.783(6) Ti3-O1 0.823 d=1.887(6) Ti3-O3 0.810 d=1.893(7) Ti3-O25 0.544 d=2.040(8) Ti3-O26 0.502 d=2.070(8) Ti3-O5 0.304 d=2.256(7)

Ti4 4.274 Ti4-O30 1.186 d=1.752(7) Ti4-O4 0.839 d=1.880(7) Ti4-O6 0.782 d=1.906(8) Ti4-O18 0.533 d=2.048(9) Ti4-O29 0.521 d=2.056(8) Ti4-O2 0.413 d=2.142(6)

Ti5 4.168 Ti5-O31 1.111 d=1.776(7) Ti5-O4 0.862 d=1.870(7) Ti5-O5 0.784 d=1.905(8) Ti5-O21 0.536 d=2.046(8) Ti5-O27 0.478 d=2.088(8) Ti5-O1 0.397 d=2.157(6)

Ti6 4.191 Ti6-O32 1.108 d=1.777(7) Ti6-O5 0.890 d=1.858(8) Ti6-O6 0.830 d=1.884(8) Ti6-O24 0.489 d=2.080(9) Ti6-O22 0.453 d=2.108(8) Ti6-O3 0.421 d=2.135(6)

Ti7 4.309 Ti7-O34 1.182 d=1.753(7) Ti7-O7 0.917 d=1.847(6) Ti7-O35 0.676 d=1.960(7) Ti7-O16 0.581 d=2.016(8) Ti7-O15 0.497 d=2.074(7) Ti7-O10 0.457 d=2.105(6)

Ti8 4.285 Ti8-O10 1.070 d=1.790(6) Ti8-O8 0.947 d=1.835(6) Ti8-O11 0.782 d=1.906(6) Ti8-O12 0.633 d=1.984(6) Ti8-O17 0.541 d=2.042(7) Ti8-O33 0.311 d=2.247(6)

Ti9 4.269 Ti9-O36 1.148 d=1.764(7) Ti9-O9 0.915 d=1.848(6) Ti9-O13 0.727 d=1.933(7) Ti9-O35 0.587 d=2.012(7) Ti9-O10 0.463 d=2.100(6) Ti9-O14 0.429 d=2.128(7)

O1 2.019 O2 2.012 O3 2.048

O4 2.014 O5 1.978 O6 1.960

O7 2.071 O8 2.095 O9 2.005 O12 1.961

PTC-50

Ti1 4.190 Ti1-O12 1.141 Ti1-O3 0.872 d=1.8657(18) Ti1-O2 0.771 d=1.9114(18) Ti1-O6 0.512 d=2.063(2) Ti1-O4 0.497 d=2.0736(19) Ti1-O1 0.398 d=2.1562(17)

Ti2 4.211 Ti2-O11 1.186 Ti2-O1 0.849 d=1.8755(18) Ti2-O3 0.758 d=1.9176(18) Ti2-O5 0.537 d=2.0448(19) Ti2-O9 0.509 d=2.065(2) Ti2-O2 0.371 d=2.1814(17)

Ti3 4.197 Ti3-O10 1.154 Ti3-O2 0.867 d=1.8680(18) Ti3-O1 0.780 d=1.9067(17) Ti3-O8 0.521 d=2.056(2) Ti3-O7 0.506 d=2.067(2) Ti3-O3 0.368 d=2.1851(18)

O1 2.027 O2 2.009 O3 1.998

[a] Vi =ΣSij = Σexp[(r1-rij)/B], where r0 is the length of a single bond (here r1=1.815 for Tiiv-O), r1 is the bond length

between atoms i and j; B is a constant, the “universal parameter” ~0.37 Å; Sij is the valence of a bond between atoms i and j; Vi is the sum of all bond valences of the bonds formed by a given atom i.