33
Contents 1 Vector Functions and Space Curves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions ...................... 2 1.2 Arc Length and Curvature ..................................... 3 1.3 Motion in Space: Velocity and Acceleration ............................ 4 2 Functions of Several Variables 5 2.1 Domain and Range ......................................... 5 2.2 Limits and Continuity ........................................ 6 2.3 Partial Derivatives .......................................... 7 2.4 Tangent Planes and Linear Approximation ............................ 8 2.5 The Chain Rule ........................................... 9 2.6 Directional Derivatives and the Gradient ............................. 10 2.7 Minimum and Maximum Values .................................. 11 2.8 Lagrange Multipliers ........................................ 13 3 Multiple Integrals 14 3.1 Iterated Integrals .......................................... 14 3.2 Double Integrals over General Regions ............................... 15 3.3 Double Integrals in Polar Coordinates ............................... 16 3.4 Applications of Iterated Integrals ................................. 17 3.5 Triple Integrals ............................................ 19 3.6 Triple Integrals in Cylindrical Coordinates ............................ 20 3.7 Triple Integrals in Spherical Coordinates ............................. 21 3.8 Change of Variables in Iterated Integrals ............................. 22 4 Vector Calculus 23 4.1 Vector Fields ............................................. 23 4.2 Line Integrals ............................................ 24 4.3 Fundamental Theorem of Line Integrals .............................. 25 4.4 Green’s Theorem ........................................... 26 4.5 Curl and Divergence ......................................... 28 4.6 Parametric Surfaces and their Areas ................................ 29 4.7 Surface Integrals ........................................... 31 4.8 Stoke’s Theorem ........................................... 32 4.9 The Divergence Theorem ...................................... 33 1

Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

  • Upload
    lyhanh

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Contents

1 Vector Functions and Space Curves 21.1 Limits, Derivatives, and Integrals of Vector Functions . . . . . . . . . . . . . . . . . . . . . . 21.2 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Motion in Space: Velocity and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Functions of Several Variables 52.1 Domain and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4 Tangent Planes and Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.6 Directional Derivatives and the Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.7 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.8 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Multiple Integrals 143.1 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2 Double Integrals over General Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3 Double Integrals in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.4 Applications of Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.5 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.6 Triple Integrals in Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.7 Triple Integrals in Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.8 Change of Variables in Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Vector Calculus 234.1 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.2 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.3 Fundamental Theorem of Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.5 Curl and Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.6 Parametric Surfaces and their Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.7 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.8 Stoke’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.9 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1

Page 2: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

1 Vector Functions and Space Curves

1.1 Limits, Derivatives, and Integrals of Vector Functions

Consider the vector function

~r(t) =⟨√

4− t2, e−3t, ln(t + 1)⟩.

a. Find the domain of ~r(t).

b. Compute limt→−1+

~r(t). Is ~r(t) continuous at t = −1?

c. Find ~r ′(t).

d. Find parametric equations for the tangent line to ~r(t) at t = 0.

2

Page 3: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

1.2 Arc Length and Curvature

Consider the vector function

~r(t) =⟨√

2t, et, e−t⟩, 0 ≤ t ≤ 1.

a. Compute the length of the curve.

b. Find the unit tangent and unit normal vectors to the curve.

c. Compute the curvature of the function at t = 0.

3

Page 4: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

1.3 Motion in Space: Velocity and Acceleration

Consider the vector function

~r(t) =

⟨−1

2t2, t

⟩.

a. Find the velocity, acceleration, and speed of the particle with the position function ~r(t).

b. Find the normal and tangent components of the acceleration at t = 1.

4

Page 5: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2 Functions of Several Variables

2.1 Domain and Range

Find and sketch the domain of the function f(x, y, z).

f(x, y, z) =√

1− x2 − y2 − z2

5

Page 6: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.2 Limits and Continuity

Is the function g(x, y) defined by

g(x, y) =

x2 − y2

x2 + y2if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

continuous at (x, y) = (0, 0)?

6

Page 7: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.3 Partial Derivatives

Find all first order partial derivatives of the following functions.

a. z = (2x + 3y)10

c. t =ev

u + v2

b. w = zexyz

d. u = xy/z

7

Page 8: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.4 Tangent Planes and Linear Approximation

Consider the function

f(x, y) = 1 + x ln(xy − 5).

a. Explain why f(x, y) is differentiable at (x, y) = (2, 3).

b. Find the linearization L(x, y) of f(x, y) at the point (2, 3) and use it to approximate (2.01, 2.99).

8

Page 9: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.5 The Chain Rule

Use the chain rule to find the partial derivatives∂z

∂s,∂z

∂t, and

∂z

∂uwith z(x, y), x(s, t, u) and y(s, t, u) defined

below.

z = x4 + x2y, x = s + 2t− u, y = s + u2

9

Page 10: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.6 Directional Derivatives and the Gradient

Consider the function

f(x, y) = sin(2x + 3y).

a. Find the gradient of f(x, y).

b. Find the maximal rate of change of f(x, y) at the point (−6, 4) and the direction in which it occurs.

c. Find the rate of change of f(x, y) at the point (−6, 4) in the direction of 〈√

3,−1〉.

10

Page 11: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.7 Minimum and Maximum Values

Find the local maxima, minima, and saddle points of the following function.

f(x, y) = ey(y2 − x2)

11

Page 12: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

Find the absolute maximum and minimum values of the function

f(x, y) = x2 + y2 − 2x

on the closed, triangular region D with vertices (2, 0), (0, 2), and (0,−2).

12

Page 13: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

2.8 Lagrange Multipliers

Find the extreme values of the function f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.

13

Page 14: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3 Multiple Integrals

3.1 Iterated Integrals

Calculate the following iterated integrals.

a.

∫ 5

0

12x2y3 dx

c.

∫ 3

1

∫ 5

1

ln y

xydy dx

b.

∫ 2

0

∫ 4

0

y2e2x dy dx

d.

∫ 3

−3

∫ 1

0

xy2

x2 + 1dy dx

14

Page 15: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.2 Double Integrals over General Regions

Evaluate the integrals by reversing the oder of integration.

a.

∫ 1

0

∫ 3

3y

ex2

dx dy b.

∫ 8

0

∫ 2

3√y

ex4

dx dy

15

Page 16: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.3 Double Integrals in Polar Coordinates

Evaluate the given integral by changing to polar coordinates.∫∫R

sin(x2 + y2) dA

Where R is the region in the first quadrant between the circles of radii 1 and 3 centered at the origin.

16

Page 17: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.4 Applications of Iterated Integrals

Find the center of mass of the lamina whose boundary consists of the semi-circle y =√

1− x2 and y =√4− x2 together with the portions of the x-axis that join them and whose density at any point is inversely

proportional to its distance from the origin.

17

Page 18: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

Find the area of the part of the surface z = xy that lies within the cylinder x2 + y2 = 1.

18

Page 19: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.5 Triple Integrals

Evaluate the triple integrals.

a.

∫∫∫E

y dV, E = {(x, y, z)|0 ≤ x ≤ 3, 0 ≤ y ≤ x, x− y ≤ z ≤ x + y}

b.

∫∫∫E

z

x2 + z2dV, E = {(x, y, z)|1 ≤ y ≤ 4, y ≤ z ≤ 4, 0 ≤ x ≤ z}

19

Page 20: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.6 Triple Integrals in Cylindrical Coordinates

Evaluate the triple integral ∫∫∫E

z dV

where E is the area enclosed by z = x2 + y2 and z = 4.

20

Page 21: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.7 Triple Integrals in Spherical Coordinates

Find the volume of the solid that lies below z =√

4− x2 − y2 and z =√x2 + y2, and above z = 0.

21

Page 22: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

3.8 Change of Variables in Iterated Integrals

Evaluate the double integral by making an appropriate change of variables.∫∫R

cos

(y − x

y + x

)dA

Where R is the trapezoidal region with vertices (1, 0), (2, 0), (0, 2), and (0, 1).

22

Page 23: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4 Vector Calculus

4.1 Vector Fields

Sketch the vector fields.

a. ~F (x, y) = −~i +~j b. ~F (x, y) =

⟨1

2x, y

23

Page 24: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.2 Line Integrals

Calculate the following line integrals.

a.

∫C

xyz2 ds where C is the line segment from (−1, 5, 0) to (1, 6, 4).

b.

∫C

~F · d~r where ~F (x, y) = 〈y, x〉 and C is the upper half of the circle of radius 1 centered at the origin

oriented counter-clockwise.

24

Page 25: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.3 Fundamental Theorem of Line Integrals

Prove that the vector field ~F (x, y) is conservative and find a function f such that ~∇f = ~F (x, y).

~F (x, y) = 〈x2, y2〉

Use your result to calculate ∫C

~F · d~r

where C is the arc of the parabola y = 2x2 from (−1, 2) to (2, 8).

25

Page 26: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.4 Green’s Theorem

Use Green’s Theorem to evaluate the line integral∫C

y3 dx− x3 dy

where C is the circle x2 + y2 = 4 oriented counterclockwise.

26

Page 27: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

Use Green’s Theorem to evaluate ∫C

~F · d~r

where

~F (x, y) = 〈y cosx− xy sinx, xy + x cosx〉

and C is the triangle with vertices (0, 0), (2, 0), and (0, 4).

27

Page 28: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.5 Curl and Divergence

Compute the curl and divergence of the vector field.

~F (x, y, z) = 〈ex sin y, ey sin z, ez sinx〉

28

Page 29: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.6 Parametric Surfaces and their Areas

Find the surface area of the part of the plane 3x + 2y + z = 6 that lies in the first octant.

29

Page 30: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

Find the surface area of the part of the cone z =√x2 + y2 that lies between the plane y = x and the cylinder

y = x2.

30

Page 31: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.7 Surface Integrals

Evaluate the surface integrals.

a.

∫∫S

x2yz dS where S is the part of the plane z = 1 + 2x+ 3y that lies above the rectangle [0, 3]× [0, 2].

b.

∫∫S

~F · d~S where ~F (x, y, z) = 〈x,−z, y〉 and S is the part of the sphere x2 + y2 + z2 = 4 in the first

octant with orientation towards the origin.

31

Page 32: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.8 Stoke’s Theorem

Use Stoke’s Theorem to evaluate ∫∫S

curl ~F · d~S

where ~F (x, y, z) = 〈x2z2, y2z2, xyz〉 and S is the part of the surface z = x2 + y2 that lies inside the cylinderx2 + y2 = 4 oriented upwards.

32

Page 33: Contents 1 Vector Functions and Space Curves 2 · Department of Mathematical Sciences @IUPUI 26100 Exam Jam 1Vector Functions and Space Curves 1.1 Limits, Derivatives, and Integrals

Department of Mathematical Sciences @IUPUI 26100 Exam Jam

4.9 The Divergence Theorem

Use the Divergence Theorem to calculate the surface integral∫∫S

~F · d~S

where ~F (x, y, z) = 〈x3 + y3, y3 + z3, x3 + z3〉 and S is the sphere of radius two centered at the origin.

33