109
Lecture 1 Context: technological disruptions in energy systems S. Keshav School of Computer Science University of Waterloo Waterloo, Ontario, Canada All images from Wikipedia unless otherwise specified

Context: technological disruptions in energy systems S. Keshav

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Context: technological disruptions in energy systems S. Keshav

Lecture 1Context: technological disruptions in energy systems

S. Keshav

School of Computer ScienceUniversity of Waterloo

Waterloo, Ontario, Canada

All images from Wikipedia unless otherwise specified

Page 2: Context: technological disruptions in energy systems S. Keshav

Topics

Context

Technology disruptors◦ Solar◦ Storage◦ BlockchainsEconomic impact

2

Page 3: Context: technological disruptions in energy systems S. Keshav
Page 4: Context: technological disruptions in energy systems S. Keshav

4

Page 5: Context: technological disruptions in energy systems S. Keshav
Page 6: Context: technological disruptions in energy systems S. Keshav

6http://blueskiesmeteorology.com

Page 7: Context: technological disruptions in energy systems S. Keshav

7http://www.antinuclear.net

Page 8: Context: technological disruptions in energy systems S. Keshav

What can we do?

8

Page 9: Context: technological disruptions in energy systems S. Keshav

9

Politics

• Citizen awareness

Policies

• Regulation• Pricing

Economics

• Viability•Markets• Individual rationality

Energy systems

•Generation• Transmission• Distribution• Consumption

Technology

• Energy tech• Solar•Wind

• Info tech• Sensing• Communication• Computation• Control• Blockchain

Page 10: Context: technological disruptions in energy systems S. Keshav

10

Politics

• Citizen awareness

Policies

• Regulation• Pricing

Economics

• Viability•Markets• Individual rationality

Energy systems

•Generation• Transmission• Distribution• Consumption

Technology

• Energy tech• Solar•Wind

• Info tech• Sensing• Communication• Computation• Control• Blockchain

• Citizens• Professionals• Educators

Page 11: Context: technological disruptions in energy systems S. Keshav

11

Politics

• Citizen awareness

Policies

• Regulation• Pricing

Economics

• Viability•Markets• Individual rationality

Energy systems

•Generation• Transmission• Distribution• Consumption

Technology

• Energy tech• Solar•Wind

• Info tech• Sensing• Communication• Computation• Control• Blockchain

• Citizens• Professionals• Educators

Page 12: Context: technological disruptions in energy systems S. Keshav

12

Politics

• Citizen awareness

Policies

• Regulation• Pricing

Economics

• Viability•Markets• Individual rationality

Energy systems

•Generation• Transmission• Distribution• Consumption

Technology

• Energy tech• Solar• Storage•Wind

• Info tech• Sensing• Communication• Computation• Control• Blockchain

Page 13: Context: technological disruptions in energy systems S. Keshav

Technology disruptionsSolar energy

Storage

Digitalization◦ Sensing◦ Communication◦ Computation◦ Control

Blockchain: the engine of trust

13

Page 14: Context: technological disruptions in energy systems S. Keshav

Solar energy: an introduction

14

Page 15: Context: technological disruptions in energy systems S. Keshav
Page 16: Context: technological disruptions in energy systems S. Keshav
Page 17: Context: technological disruptions in energy systems S. Keshav

25 April 1954 Bell Laboratories

Chapin, Fuller and Pearson.

Page 18: Context: technological disruptions in energy systems S. Keshav

18http://free-energy-ltd.com/freeenergy-solar-power.html

Page 19: Context: technological disruptions in energy systems S. Keshav
Page 20: Context: technological disruptions in energy systems S. Keshav
Page 21: Context: technological disruptions in energy systems S. Keshav
Page 22: Context: technological disruptions in energy systems S. Keshav
Page 23: Context: technological disruptions in energy systems S. Keshav

Topaz solar farm, California 25.6 km2 9 million panels

Page 24: Context: technological disruptions in energy systems S. Keshav
Page 25: Context: technological disruptions in energy systems S. Keshav

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cell phone penetration (ITU) 1990=1 Cumulative Solar (EPIA) 2000=1

Solar PV is growing as fast as cell phones

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

http://stats.areppim.com/stats/stats_mobile.htmhttp://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf

(c) S. Keshav [email protected] http://iss4e.ca

Page 26: Context: technological disruptions in energy systems S. Keshav
Page 27: Context: technological disruptions in energy systems S. Keshav

Positive feedback loop

27

The more you ship

The cheaper it gets

Page 28: Context: technological disruptions in energy systems S. Keshav
Page 29: Context: technological disruptions in energy systems S. Keshav
Page 30: Context: technological disruptions in energy systems S. Keshav

3 characteristics of solar generation1. Sunlight is free! Near‐zero OPEX, all cost is CAPEX

30

Page 31: Context: technological disruptions in energy systems S. Keshav

3 characteristics of solar generation1. Sunlight is free! Near‐zero OPEX, all cost is CAPEX

2. 20‐25 year nearly maintenance‐free lifetime

31

Page 32: Context: technological disruptions in energy systems S. Keshav

3 characteristics of solar generation1. Sunlight is free! Near‐zero OPEX, all cost is CAPEX

2. 20‐25 year nearly maintenance‐free lifetime

3. Amount of generation over lifetime depends on geography

32

Page 33: Context: technological disruptions in energy systems S. Keshav

Levelized Cost of Energy

Page 34: Context: technological disruptions in energy systems S. Keshav

Levelized Cost of Energy

Effective cost per kWh (units of energy)

Page 35: Context: technological disruptions in energy systems S. Keshav

Levelized Cost of Energy

$/kWp(Dollars per 1000 watts)

CAPEX$1000

Page 36: Context: technological disruptions in energy systems S. Keshav

Levelized Cost of Energy

$/kWhAverage cost per unit of energy over 20y lifetime

$/kWpCAPEX

*Assumes a fixed equipment lifetime

$1000

Page 37: Context: technological disruptions in energy systems S. Keshav

Levelized Cost of Energy

$/kWhAverage cost (over lifetime)

$/kWpCAPEX

*Assumes a fixed equipment lifetime

$1000

1000 KWh producedover lifetime

$1/KWh

Page 38: Context: technological disruptions in energy systems S. Keshav

Impact of CAPEX reduction

$/kWhAverage cost

$/kWp$1000

1000 KWh producedover lifetime

$1/KWh

$800

$0.8/KWh

CAPEX

Swanson’s Law

Page 39: Context: technological disruptions in energy systems S. Keshav

Impact of geography

$/kWhkWh/kWp.year

Incoming solar radiationAverage cost

$/kWpInitial cost

Southwest US

Saudi Arabia

North Germany

France

$1000

$1/KWh

$0.5/KWh

Page 40: Context: technological disruptions in energy systems S. Keshav

Compare to conventional$/kWh

kWh/kWp.yearInsolationAverage cost

$/kWpInitial cost

Cost of conventional grid energy$0.1/KWh

Southwest US

Saudi Arabia

North Germany

France

Page 41: Context: technological disruptions in energy systems S. Keshav

CAPEX trend$/kWh

kWh/kWp.yearInsolationAverage cost

$/kWpInitial cost

Cost of conventional grid energy

$200

$0.2kWh

$50

$0.05/kWh

$0.1/kWh Southwest US

Saudi Arabia

North Germany

France

Swanson’s Law

Page 42: Context: technological disruptions in energy systems S. Keshav

Conventional energy trend$/kWh

kWh/kWp.yearInsolationAverage cost

$/kWpInitial cost

Cost of conventional grid energy Southwest US

Saudi Arabia

North Germany

France

$0.1/kWh

Page 43: Context: technological disruptions in energy systems S. Keshav

Solar wins! Everywhere!

Page 44: Context: technological disruptions in energy systems S. Keshav

The solar revolution …

44

Page 45: Context: technological disruptions in energy systems S. Keshav

… will be led by the accountants

45

Page 46: Context: technological disruptions in energy systems S. Keshav

Unfortunately…

Problem 1: No sun at night…

Page 47: Context: technological disruptions in energy systems S. Keshav

Barnhart et al, Proc. Energy and Environment, 6:2804, 2013

Problem 2: Variability

Page 48: Context: technological disruptions in energy systems S. Keshav

Problem 3: Excess generation

488 May 2016, Germany (from Agora Energiewende)

Page 49: Context: technological disruptions in energy systems S. Keshav

Problem 4: Land use

49

Page 50: Context: technological disruptions in energy systems S. Keshav

One solution: storage

Storage decouples supply and demand

Page 51: Context: technological disruptions in energy systems S. Keshav

Traditional storage 

51

Page 52: Context: technological disruptions in energy systems S. Keshav

Storage: old and new

52

Page 53: Context: technological disruptions in energy systems S. Keshav

Nature Climate Change: 2014Tesla/Panasonic and GM/LG Chem battery costs are already (in 2016) down to the lowest projections for 2020!

Page 54: Context: technological disruptions in energy systems S. Keshav
Page 55: Context: technological disruptions in energy systems S. Keshav

Positive feedback loop

55

The more you ship

The cheaper it gets

Page 56: Context: technological disruptions in energy systems S. Keshav

Why?

56

Page 57: Context: technological disruptions in energy systems S. Keshav

Nissan Leaf chassis

Page 58: Context: technological disruptions in energy systems S. Keshav

Tesla gigafactory

Page 59: Context: technological disruptions in energy systems S. Keshav

Source: EvSales.blogspot.com

Annual EV sales

*Includes Battery as well as Hybrid Electric Vehicles

Page 60: Context: technological disruptions in energy systems S. Keshav
Page 61: Context: technological disruptions in energy systems S. Keshav

Positive feedback loop

61

The more you ship

The cheaper it gets

Page 62: Context: technological disruptions in energy systems S. Keshav

But something is missing…

62

Page 63: Context: technological disruptions in energy systems S. Keshav

Sensing and control

63

Page 64: Context: technological disruptions in energy systems S. Keshav

One example…

64

Generation Load

Page 65: Context: technological disruptions in energy systems S. Keshav

Conventional grid

65

Generation Load

Page 66: Context: technological disruptions in energy systems S. Keshav

Future grid

66

Generation Load

Page 67: Context: technological disruptions in energy systems S. Keshav

Future grid

67

Generation Load

Page 68: Context: technological disruptions in energy systems S. Keshav

Need to forecast, monitor and control…

68

Generation Load

Page 69: Context: technological disruptions in energy systems S. Keshav

Digitalization

69

Page 70: Context: technological disruptions in energy systems S. Keshav

Pervasive sensing

Page 71: Context: technological disruptions in energy systems S. Keshav

Pervasive communication

Page 72: Context: technological disruptions in energy systems S. Keshav

Pervasive computation and control

Page 73: Context: technological disruptions in energy systems S. Keshav

Source: The Economist

Digitalization allows pervasive communication, sensing, computation, control

Page 74: Context: technological disruptions in energy systems S. Keshav

Source: European Technology Platform Vision Document

Page 75: Context: technological disruptions in energy systems S. Keshav

Blockchains: an introduction

75

Page 76: Context: technological disruptions in energy systems S. Keshav

Would you buy an umbrella from me?

76

Page 77: Context: technological disruptions in energy systems S. Keshav

How about 1KWh?

77

Page 78: Context: technological disruptions in energy systems S. Keshav

What is a blockchain?A globally visible ledger that is owned by no one but can be trusted by everyone

Page 79: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Page 80: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Go to the bank

Page 81: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Go to the bank

Get $5◦ Bank reduces your account balance by $5

Page 82: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Go to the bank

Get $5◦ Bank reduces your account balance by $5

Pay $5 to vendor and get a hot dog

Page 83: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Go to the bank

Get $5◦ Bank reduces your account balance by $5

Pay $5 to vendor and get a hot dog

Vendor deposits $5◦ Bank increases vendor’s account balance by $5

Page 84: Context: technological disruptions in energy systems S. Keshav

How to buy a hot dog

Go to the bank

Get $5◦ Bank reduces your account balance by $5

Pay $5 to vendor and get a hot dog

Vendor deposits $5◦ Bank increases vendor’s account balance by $5

It’s all about manipulating a ledger!◦ No need for bank notes

Page 85: Context: technological disruptions in energy systems S. Keshav

Buying with a ledger

Transfer $5 to vendor

Transfer hotdog to buyer

Page 86: Context: technological disruptions in energy systems S. Keshav

But…

What if the ledger is corrupted?

Page 87: Context: technological disruptions in energy systems S. Keshav

CS to the rescue!

Distribute the ledger◦ A copy of the ledger is stored at many servers

Page 88: Context: technological disruptions in energy systems S. Keshav

CS to the rescue!

Distributed

Transparent◦ Everyone can easily validate transactions◦ Though private transactions possible

Page 89: Context: technological disruptions in energy systems S. Keshav

CS to the rescue!

Distributed

Transparent

Immutable◦ Once in the ledger, information cannot be changed

Page 90: Context: technological disruptions in energy systems S. Keshav

CS to the rescue!

Distributed

Transparent

Immutable

Secure◦ Non‐repudiable◦ Allows a certain fraction of servers to be hacked/become untrusted

Page 91: Context: technological disruptions in energy systems S. Keshav

No need for a trusted entity!

Page 92: Context: technological disruptions in energy systems S. Keshav

Result

A globally visible ledger that is owned by no one but can be trusted by everyone

Page 93: Context: technological disruptions in energy systems S. Keshav

ConsequencesAllows trading by mutually untrusting parties

93

Page 94: Context: technological disruptions in energy systems S. Keshav

ConsequencesAllows trading by mutually untrusting parties

Can we use it to trade umbrellas?

94

Page 95: Context: technological disruptions in energy systems S. Keshav

ConsequencesAllows trading by mutually untrusting parties

Can we use it to trade umbrellas?

Energy?

Rides in an autonomous solar‐powered EV?

95

Page 96: Context: technological disruptions in energy systems S. Keshav

96

Politics

• Citizen awareness

Policies

• Regulation• Pricing

Economics

• Viability•Markets• Individual rationality

Energy systems

•Generation• Transmission• Distribution• Consumption

Technology

• Energy tech• Solar•Wind

• Info tech• Sensing• Communication• Computation• Control• Blockchain

Page 97: Context: technological disruptions in energy systems S. Keshav
Page 98: Context: technological disruptions in energy systems S. Keshav

$30 Trillioneconomic activity!

*displaced over 20 years and very approximate numbers

Page 99: Context: technological disruptions in energy systems S. Keshav

Fuel cost of transportation: $3.5 Trillion/year99

Page 100: Context: technological disruptions in energy systems S. Keshav

1.05 Trillion/yr 30% solar-powered transportation

Page 101: Context: technological disruptions in energy systems S. Keshav

ElectricUtility AnnualRevenues:

1 Trillion/year

101

Page 102: Context: technological disruptions in energy systems S. Keshav

102

1.05 Trillion/yr 30% solar-powered transportation

0.5 Trillion/yr Utilities 50% solar/wind supply

Page 103: Context: technological disruptions in energy systems S. Keshav

Source: The Economist

IoT spending = 10% of revenue= 0.1 Trillion/year

Page 104: Context: technological disruptions in energy systems S. Keshav

104

1.05 Trillion/yr 30% solar-powered transportation

0.5 Trillion/yr

0.1 Trillion/yr IoT spending

Utilities 50% solar/wind supply

Page 105: Context: technological disruptions in energy systems S. Keshav

105

1.05 Trillion/yr 30% solar-powered transportation

0.5 Trillion/yr Utilities 50% solar/wind supply

0.25 Trillion/yr

$1.65 Trillion/year of economic disruption

0.1 Trillion/yr IoT spend

Page 106: Context: technological disruptions in energy systems S. Keshav

$ 33 Trillioneconomic activity!

*displaced over 20 years and very approximate numbers

Page 107: Context: technological disruptions in energy systems S. Keshav

I’m lying…

107

Page 108: Context: technological disruptions in energy systems S. Keshav

Well, perhaps not

108

Page 109: Context: technological disruptions in energy systems S. Keshav

109