CONTROL DEL ARCO ELECTRICO.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    1/10

    Study about the Process Control of an Electric Arc Furnace using

    Simulations based on an Adaptive Algorithm 

    MANUELA PANOIU1, CAIUS PANOIU1, IOAN ŞORA2, ANCA IORDAN1

    1

    Faculty of Engineering Hunedoara,2Faculty of Electrical Engineering

    Polytechnic University of Timisoara1Revolutiei street nr. 5, cod 331128

    2Vasile Parvan street, no. 2, Timisoara, cod 300223

    ROMANIA

    {c.panoiu, m.panoiu, anca.iordan}@fih.upt.ro, [email protected]

     Abstract: - The electric arc furnaces are a very large power load, determining the negative effects on the power

    quality (harmonics currents, unbalanced load, and reactive power). For a maximum efficiency of the power

    consumption it is necessary to use an automat system for control the harmonics filters, the reactive power

    compensation installation and the electrodes position, in order to obtain a high value of power factor and a

    maximum efficiency. In this paper is used an adaptive algorithm for process control for an Electric Arc

    Furnace. The method is validating using simulation in PSCAD EMTDC software dedicated to Power Systems.

    Key-Words: - Adaptive control, LMS algorithm, active power control

    1 IntroductionIn the last decade the EAF (Electric Arc

    Furnaces) are very large used to the steel making

    industry. But, the electrical installation of the

    electric arc furnace is a massive generator of thereactive power, harmonics currents and unbalanced

    currents. These effects are very harmful for the

    electric power supplying line and for the others

    consumers. Because the inductive load character of

    the electric arc furnace, the reactive power

    component are significant, following to the

    diminution of the active power factor and therefore

    to the decreasing of the efficiency of the electric arc

    furnace. In scope of improving the efficiency of the

    entire installation it is necessary to use a complex

    installation for reactive power compensation,

    harmonics current filters and load balancing. Theseinstallations must be connected to an automat

    system for an efficient real–time control.

    2 Designing the control system of the

    EAFThe design of the control system was made

    following the measurements made in an industrial

     plant. The measurements were made at a 3-phase

     power supply installation of a 3-phase EAF of 100 t,

    to which were not connected the filters for thecurrent harmonics, neither the load symmetrisation

    devices nor reactive power compensation. The

    detailed results of these measurements were

     presented in [7]. From the ones previously presented

    resulted that the elements that contribute to the

    development of an action concerning theimprovement of the electric power’s quality can be

    grouped in:

    -  the capacitors fix battery in Y connection used

    for compensation of the constant reactive power;

    -  14  capacitors battery independently

    connectable, in Y connection , used for

    compensation of the variable reactive power;

    -  an Adaptable Balancing Compensator (ABC)

    achieved with 3 susceptances controlled by

    thyristors in Δ  connection used for load

     balancing as well as for the compensation of the

    difference between the reactive power installedin the capacitors’ batteries and harmonic filters

    and the necessary of reactive power until the

    obtaining of a unitary power factor;

    -  4 filtration blocks of filter in Y connection used

    for filtration of current harmonics 5,7,11 and 13.

    Using of these installations aiming the

    fulfillment of the functions for which they were

    designed need the utilization of an intelligent system

    of their control. The control system must allow the

    on–line determination of the electric values of the

    EAF’s installation. The system must also calculate

    the necessary step for compensating the reactive power as well as the value of the susceptances

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1628 Issue 11, Volume 5, November 2008

    mailto:anca.iordan%[email protected]:anca.iordan%[email protected]

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    2/10

    necessary for load balancing. Based on these values,

    having in view the chosen constructive solution of

    adjustable susceptance with tyristors, is calculated

    the control angle of each tyristor;

    The diagram of the control system proposed to

     be used at the load’s compensation – balancing –

    filtration is depicted in fig. 1. In [7], [8] and [5] was

    calculated the values of these elements.

    Fig. 1.The system diagram for process control of the EAF

    3 Simulation of the EAF functioningFor validating the proposed control system it was

    made a simulation of the EAF using PSCAD

    EMTDC simulation program [10]. For simulation it

    was use an electric arc model, depending on the

    nonlinearity of the electric arc. This model was

     presented in [7] and [8]. Based on this model it was

    made a simulation for the entire electrical

    installation of the EAF and for the propose control

    system. The PSCAD simulation scheme is depicted

    in fig. 2.

    3.1 The EAF functioning simulation on

    controlling the electrodes positionThe electrical items variation in different

    functioning regimes can be done only if we consider

    an arc length variation between 0, corresponding to

    the short-circuit regime, and a maximum value. The

    maximum value is determined in such a way that the

    electric arc is burning. For observing the variation

    area of the powers on the supplying line the active

     power meters and reactive power meters was

    connecting like in figure 2. The outputs of these

    meters permit to obtain the rms values.

    The electrodes position controlling is performed

    taking into account on the real condition existing on

    the considered industrial plant. The maximum

    motion speed of the electrodes is of 3 m/min (0.05

    m/s)  and is reached in emergency regime, its

    variation being achieved as in fig. 2; The electric

    arc’s length can be modified from zero to a

    maximum value determined by limiting the

    integrator’s output, fig. 2; The calculus of the dropvoltage is made based on the electric arc model ([7],

    [8]), the implementation diagram being also in fig.

    2; The electric arc’s length can be modified from

    zero to a maximum value.  Adjustment of the

    electrodes’ position is made independently on each

     phase. Simulation of the electric installation’s

    operation modifying the electric arc’s length was

    made initially without harmonics filters, power

    compensation or load balancing. It was considering

    the electric arc’s initial value as well as

    the electrodes’ initial speed

    cm160   =l

    321 0=== vvv   m/min.Then, was command the lowering-down of the

    Impulse Generator Block

    for Thiristros Command

    (IGBTC)

    Ssc=1100 MVA (min.) 

    FA5  FA7 FA11  FA1314 steps

    ADAPTING BLOCK

    (AB) 

    Data acquisition

     board  

    Contactors Block

    Command (CBC)

    160 MVA3 x TT 

    30 KV3 x TC 

    ABC

     Furnace 

    transformer  

    6 analog

    signals

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1629 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    3/10

    electrodes up to the fulfillment of the short-circuit

    condition. After approximate 8 seconds it was

    command, independently on each phase, the lifting-

    up of the electrodes with different speeds up to the

    considered maximum length of the electric arc

    cm26max   =l .

    Um1

    Um2

    Im1

    Im2

    v1

    Im3

    Um3

    Q

    P  ow er 

    A B 

    P  Q

     A

    B

    C

     A

    B

    C

    .000001 [ohm]

    .000001 [ohm]

    .000001 [ohm]

    P

    v2 v3

    RMS

    Uth1 Uth2 Uth3

     A

    B Compar-ator 0.0

    D+

    F

    +

    -0.5

    *

    2.0

    *

    Uth1

     A

    D+

    F

    +*

    B

    l1

    Measure acpower 

    tive

    l1

    l0

    D+

    F

    +*

    v1

    l1 l2 l3

    TIME

    1sT

    The threephase electricarc model

     A

    B

    C

     A

    B

    C0.565 [kV]

    #2#1

    30kV

    73.0 [MVA]6.9 e-3 [ohm]9.5422 E-6 [H]

    3.64 e-3 [ohm]

    0.372e-3[ohm]

    8.9416 e-6 [H]

    9.5422 e-6 [H]

    Ul2

    Ul1

    RA 1    + 

    RA 2    + 

    RA  3    + 

    IA1

    IA2

    IA3

    Ul3

    RMS

    RL

    RL

     A

    B

    C

    RL

     A

    B

    C

     A

    B

    C30 [kV]

    #2#1

    110 [kV]

    100 [MVA]

    Electrodes speed control

    0.05

    -0.05

    v1 (m/s)

    -0.001

    0.05

    -0.05

    v2 (m/s)

    -0.001

    0.05

    -0.05

    v3 (m/s)

    -0.011

    The HV-MV

    transformer 

    T

    (Fu

    he MV-LV transformer 

    rnace transformer)

    Measurereactive power 

     Arc length onphase 1

     Arc speed onphase 1

    The drop (threshold)voltage on phase 1

     

    Fig. 2. The PSCAD simulation scheme for measure active power and reactive power.

    The calculus of the arc length based on the electrodes speed  

    In this way it was covered practically the entire

    operation domain, from the short-circuit regime up

    to the fulfillment of the conditions in which the

    electric arc does not ignite anymore. The simulationresults are presented in fig. 3 and 4. One can

    observe that the highest value of the active power is

    obtained when the value of the arc length is

    aprox.16 cm. The reactive power is positive

    regardless the working regime, having values

     between 15-100 MVAR, being therefore necessary

    the utilization of the reactive power’s compensation

    installation. One can observe that the domain in

    which the reactive power should be compensate is

    higher than the one chosen in case of designing the

    reactive power’s compensation installation from [8].

    This is due to the fact that the simulation includedalso the short-circuit regime where the reactive

     power, considering the symmetrical short network,

    has, according to the circle’s diagram, the value

     MVARS Q cnsc 23,1032   =⋅=

      (1)In the electrodes’ short-circuit regime are obtained

    maximum values of the currents on the three phases,

    on the both supply lines and minimum values of the

    voltages, fact due to the high loading of the 3-phase

    transformers. The rms values of the currents and

    voltages, fig. 3, are different between the phases

     because the different values of the load impedance

    and because of the different values of the arc lengths

    on each phase. The different values of the load

    impedances are obtained from the values of the

    resistances and inductivities from relation (2) and

    (3). These are the real values from the electrical

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1630 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    4/10

    installation of an EAF in an industrial plant in

    Romania.

    ,0372,0

    ,3640,0

    ,6908,0

    3

    2

    1

    Ω=

    Ω=

    Ω=

    m R

    m R

    m R

      (2)

    .9416,8

    ,5422,9

    2

    31

     H  L

     H  L L

    r r 

    μ 

    μ 

    =

    ==  (3)

    0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

       A  r  c  c  u  r  r  e  n   t   (   k   A   )

    IA1 IA2 IA3

    0.000

    0.050

    0.100

    0.150

    0.200

    0.250

    0.300

    0.350

    0.400

       V  o   l   t  a  g  e   i  n  s  e  c .   f  u  r  n  a  c  e   t  r  a  n  s   f

    Uj1 Uj2 Uj3

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

       C  u  r  r  e  n   t   i  n  p  r   i  m  a  r  y   f  u  r  n  a  c  e   t  r  a  n  s   f .

    Im1 Im2 Im3

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    16.0

    18.0

       V  o   l   t  a  g  e   i  n  p  r   i  m  a  r  y   f  u  r  n  a  c  e   t  r  a  n  s   f .

    Um1 Um2 Um3

     

    Fig. 3 The rms values for currents and voltages in the secondary in primary voltage transformer

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1631 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    5/10

    0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

    0

    25

    50

       A  c   t   i  v  e  p  o  w  e  r   (   M   W   )

    P

    0

    25

    50

    75

    100

    125

    150

       R  e  a  c   t   i  v  e

      p  o  w  e  r   (   M   V   A   R   )

    Q

    0.0000.050

    0.100

    0.150

    0.200

    0.250

    0.300

    0.350

    0.400

       A  r  c   d  r  o  p  v  o   l   t  a  g  e   (   k   V   )

    Ust1 Ust2 Ust3

    0.000

    0.050

    0.100

    0.150

    0.200

    0.250

    0.300

       A  r  c   l  e  n  g   t   h   (  m   )

    l1 l2 l3

    -0.0100

    -0.0050

    0.0000

    0.0050

    0.0100

    0.0150

    0.0200

    0.0250

    0.0300

    0.0350

       E   l  e  c   t  r  o   d  e  s  s  p  e  e   d

    v1 v2 v3

    Shortcircuitregime

    Maximum arclength

     Fig. 4. The variation of active and reactive power, drop voltage, arc length and electrodes speed

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1632 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    6/10

    3.2 Simulation of the active power control

    system’s operation following the reactive

    power’s compensation and filtration of the

    harmonic currentsTo simulate the operation of the power control

    system in different regimes using the reactive power’s filtration and compensation installation, it

    was used the diagram presented in fig. 5. This

    condition contains the 4 filters on the harmonics

    5,7,11 and 13 and the reactive power compensation

    installation composed by the constant part (in Y

    connection) and the adjustable part in steps. The

    values of the elements are the ones designed in [7]

    and [8].

    RL

    RL

     A

    B

    C

    RL

     A

    B

    C

     A

    B

    C30 [kV]

    #2#1

    110 [kV]

    100 [MVA] A

    B

    C

     A

    B

    C0.6 [kV]

    #2#1

    30kV

    73.0 [MVA]0.00000934 [H]

    0.00000934H

    0.00000934 [H]

    Uj2

    Um1

    Um2

    Im1

    Im2

    The passive filters for 5, 7, 11 and 13harmonics 

    Furnacetransformer 

    Uj3

    Im3

    Um3

    Uj1

    P  ow er 

    A B 

    P  Q

     A

    B

    C

     A

    B

    C

    .1 [ohm]

    .1 [ohm]

    .1 [ohm]

    PRMS

    RMS

     A

    B Compar-ator 0.0

    D+

    F

    +

    -0.5

    *

    2.0

    *Q

       4   7 .   5

       2   [  u   F   ]

       4   7 .   5

       2   [  u   F   ]

       4   7 .   5

       2   [  u   F   ]

       C   +

       C   +

       C   +

     0 . 0 1 7  5  9  [  H ]  

    2  3 . 0 4  [   uF  ]  

     0 . 0 1 7  5  9  [  H ]  

    2  3 . 0 4  [   uF  ]  

     0 . 0 1 7  5  9  [  H ]  

    2  3 . 0 4  [   uF  ]  

     0 . 0 2  3  9  3  [  H ]  

     8 . 6 4  [   uF  ]  

     0 . 0 2  3  9  3  [  H ]  

     8 . 6 4  [   uF  ]  

     0 . 0 2  3  9  3  [  H ]  

     8 . 6 4  [   uF  ]  

     0 . 0 1 4  5 4  [  H ]  

     5 .7  6  [   uF  ]  

     0 . 0 1 4  5 4  [  H ]  

     5 .7  6  uF  ]  

     0 . 0 1 4  5 4  [  H ]  

     5 .7  6  [   uF  ]  

     0 . 0 1  0 4 1  [  H ]  

     5 .7  6  uF  ]  

     0 . 0 1  0 4 1  [  H ]  

     5 .7  6  uF  ]  

     0 . 0 1  0 4 1 H ]  

     5 .7  6  [   uF  ]  

    P

    The threephase electricarc model

    6.9 e-3 [ohm]

    3.64 e-3 [ohm]

    0.372e-3[ohm]

    RA 1    + 

    RA 2    + 

    RA  3    + 

    HV-MVtransformer  The three

    phase variablecapacities

     

    Fig. 5. The PSCAD simulation scheme for EAF with harmonics filters and power compensation installation

    To ensure the reactive power’s compensation on the

    entire duration of the active power’s control process

    it is necessary that, depending on the reactive

     power’s momentary value, to connect or disconnectone compensation step at a time.

    Choosing of the compensation step is made as

    follow:

    -  If the reactive power is situated within the

    range –4,00 ÷  4,00 MVAR the

    compensation step does not modify;

    -  If the reactive power is higher than 4,00

    MVAR a new compensation step will be

    introduced;

    -  If the reactive power is lower than - 4,00

    MVAR a compensation step will bedisconnected.

    The PSCAD simulation scheme for choosing

    compensation step is depicted in fig. 6.

    In [10] was presented the powers dependency by the

    drop voltage. Thus, in [10] was show that active power reaches up to a maximum value for a certain

    value of the drop voltage. Therefore, the active

     power dependency by the drop voltage is a

    monotone increasing function for drop voltage

    values between 0 and a value corresponding to

    maximum active power. For these values the

    dependency of active power/drop voltage is a

     bijective function. Because the drop voltage

    depends linearly by the electric arc’s length, it

    results that also the active power depends on the

    electric arc’s length. Based on these remarks, the

    active power’s iterative adjustment algorithm

     proposed by the de authors is based on the

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1633 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    7/10

    modification of the electric arc’s length depending

    on the active power desired to be obtained.

    Assuming that at iteration n the arc’s length is ( )nl ,and the active power is ( )nP , the arc’s length atiteration will be given by the relation1+n

    ( ) ( ) (nenlnl   ⋅+=+   )α 1   (4)where

    (5)( ) ( )nPPne   −= 0are the error by which is obtained the imposed

    active power P0 at iteration n, and α   represents an

    adapting factor. It is obvious that if the value of the

    active power obtained at iteration n is higher than

    the value of the imposed active power P0 is

    necessary to reduce the electric arc’s length and

    opposite, fact ensured by the presented algorithm.

    [9], [11]. This algorithm is known as the LMS

    algorithm (Least Mean Square) or the stochastic

    gradient’s algorithm, being, due to its simplicity, the

    most used algorithm implemented in the current

    systems. Choosing of the adapting factor’s values is

    made taking into account its influence upon the

    algorithm’s main characteristics: the algorithm’s

    convergence speed and the adjustment error.

    Were obtained the results presented in fig. 7 for an

    adapting factor’s value 000001,0=α  and in figure 8

    for an adapting factor’s value α=0,000005.

    .

    Determination of direction for reactive power compensation

    The calculus of equivalent capacity

    D+

    F

    +14.4

    Cstep

    Q

    *Cech

    C

    Clear 

    1sT

     A

    B Compar-ator 

    Mono-

    T

    stable A

    B Compar-ator 

    Mono-

    T

    stable-4.17

    4.17

    *

    -1.0

    D+

    F

    +

    CN

    D

    N/D

    3.0

     

    Fig. 6. The PSCAD simulation scheme for choosing compensation step. The calculus for equivalent capacity

    4 Conclusion

    By using harmonics filters, load balancing and

    reactive power compensation the functioning regime

    of the UHP EAF can be improve by controlling the

    active power. For higher values of the adapting

    factor allow the obtaining of higher convergence

    speed of the control algorithm, but the dispersion

    obtained around the desired value is higher, the

    algorithm being possible to lose the convergence.

    Smaller values of the adapting factor allow the

    obtaining of a smaller dispersion of the system

    output’s values but the convergence speed is

    smaller.

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1634 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    8/10

    0.0 5.0 10.0 15.0 20.0

    0

    10

    20

    30

    40

    50

       A  c   t   i  v  e  p  o  w  e  r   (   M   W   )

    P P0

    0

    1020

    30

    40

    50

    60

    70

    80

    90

    100

       R  e  a  c   t   i  v  e  p  o  w  e  r   (   M   V   A   R   )

    Q

    0

    20

    40

    60

    80

    100

    120

       E  q  u   i  v  a   l  e  n   t  c  a  p  a  c   i   t  y   (  m   i  c  r  o   F   )

    C

    0.000

    0.020

    0.040

    0.060

    0.080

    0.100

    0.120

    0.140

    0.160

       T   h  e  a  r  c   l  e  n  g   t   h   (  m   )

    l1 l2 l3

    0.040

    0.060

    0.080

    0.100

    0.120

    0.140

    0.160

    0.180

    0.200

       T   h  e  a  r  c   d  r  o  p  v  o   l   t  a  g  e   (   k   V   )

    Ust1 Ust2 Ust3

     

    Fig. 7 Variation of active power (impose and simulated), reactive power, equivalent capacity, arc lengths and

    drop voltages for α=0.000001

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1635 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    9/10

     

    0.0 5.0 10.0 15.0 20.0

    0

    10

    20

    30

    40

    50

       A  c   t   i  v  e  p  o  w  e  r   (   M   W   )

    P P0

    -20

    -10

    010

    20

    3040

    50

    60

    70

    80

    90

       R  e  a  c   t   i  v  e

      p  o  w  e  r   (   M   V   A   R   )

    Q

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

       E  q  u   i  v  a   l  e  n   t  c  a  p  a  c   i   t  y   (  m   i  c  r  o   F   )

    C

    0.000

    0.025

    0.050

    0.075

    0.100

    0.125

    0.150

    0.175

    0.200

    0.225

       T   h  e  a  r  c   l  e  n  g   t   h   (  m   )

    l1 l2 l3

    0.025

    0.050

    0.075

    0.100

    0.125

    0.150

    0.175

    0.200

    0.225

    0.250

       T   h  e  a  r  c   d  r  o  p  v  o   l   t  a  g  e   (   k   V   )

    Ust1 Ust2 Ust3

     

    Fig. 7 Variation of active power (impose and simulated), reactive power, equivalent capacity, arc lengths and

    drop voltages for α=0.000005

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1636 Issue 11, Volume 5, November 2008

  • 8/18/2019 CONTROL DEL ARCO ELECTRICO.pdf

    10/10

     

    References:

    [1]  “IEEE recommended practice for monitoring

    electric power quality”. Standard IEEE   std.

    1159-1995

    [2]  Montanari, G.C., Loggini, M., Cavallini, A.,

    Pitti, L.,  Zaminelli, D. (1994), Arc-Furnace

    model for the Study of Flicker Compensation

    in Electrical Networks,  IEEE Transactions on

    Power Delivery, vol. 9, No. 4, pg. 2026-2036.

    [3]  Tang, L., Kolluri, S., Mark, F. Mc-Granaghan,

    Voltage Flicker Prediction for two

    simultaneously operated Arc Furnaces, IEEE

    Trans. on Power Delivery, vol. 12, No. 2, 1997.

    [4]  Panoiu M, Panoiu C, Modeling and simulating

    the AC electric arc using PSCAD EMTDC,

    Proceedings of the 5th WSEAS Int. Conf. onSystem Science and Simulation in Engineering,

    Tenerife, Spain, Dec. 16-18, 2006

    [5]  Panoiu M., Panoiu C., Osaci M, Muscalagiu I.,

    Simulation Result about harmonics filtering for

    Improving the Functioning Regime of the UHP

    EAF, Proceedings of the 7th WSEAS Int. Conf. on

    Signal Processing, Computational Geometry and

     Artificial Vision  ,Vouliagmeni Beach, Athens,

    Greece, Aug. 24-26, 2007, pg. 71-76

    [6]  Panoiu M., Panoiu C., Osaci M, Muscalagiu I.,

    Simulation Results for Modeling the AC Electric

    Arc as Nonlinear Element using PSCAD

    EMTDC, WSEAS Transaction on circuits and

    systems, pp 149-156. vol 6, 2007

    [7]  Panoiu M., Panoiu C., Osaci M, Muscalagiu I.,

    Simulation Result about Harmonics Filtering

    using Measurement of Some Electrical Items in

    Electrical Installation on UHP EAF, WSEAS

    Transaction on circuits and systems, vol 7, Jan

    2008, pp 22-31.

    [8]  Panoiu M., Panoiu C., Sora I, Iordan A., Rob R.,

    Using Simulation for study the Possibility of

    Canceling Load Unbalance of non-sinusoidal

    High Power three-phase Loads, WSEAS

    TRANSACTIONS on SYSTEMS , Issue 7, Volume

    7, July 2008, pp 699-710, ISSN: 1109-2777

    [9]  Alexander, S. T., Adaptive Signal Processing,

    Springer Verlag New York Inc., 1986.[10] Panoiu M, Panoiu C, Sora I, Osaci M, About the

     possibility of power controlling in the Three-

    Phase Electric Arc Furnaces using PSCAD

    EMTDC simulation program,  Advances in

     Electrical and Computer Engineering  , vol. 7,

    number 1 (27), 2007, ISSN 1582-7445, pp 38-43

    [11] Yuu-Seng Lau; Hussian, Z.M.; Harris, R., A

    time-dependent LMS algorithm for adaptive

    filtering, WSEAS Transactions on Circuits and

    Systems, v 3, n 1, Jan. 2004, p 35-42 

    [12] www.pscad.com

    WSEAS TRANSACTIONS on

    INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Caius Panoiu, Ioan Sora, Anca Iordan

    ISSN: 1790-0832 1637 Issue 11, Volume 5, November 2008

    http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYuu-Seng+Lau%7d&section1=AU&database=8195&yearselect=yearrange&sort=yrhttp://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHussian%2C+Z.M.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yrhttp://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHarris%2C+R.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yrhttp://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHarris%2C+R.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yrhttp://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHussian%2C+Z.M.%7d&section1=AU&database=8195&yearselect=yearrange&sort=yrhttp://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYuu-Seng+Lau%7d&section1=AU&database=8195&yearselect=yearrange&sort=yr