Control With Wireless Hart

Embed Size (px)

Citation preview

  • 8/3/2019 Control With Wireless Hart

    1/9

    ControlwithWirelessHART

  • 8/3/2019 Control With Wireless Hart

    2/9

    ControlwithWirelessHART

    Page2

    Copyright2009 HARTCommunicationFoundationThisdocumentcontainscopyrightedmaterialandmaynotbereproducedinanyfashionwithoutthewritten

    permissionoftheHARTCommunicationFoundation.

    TrademarkInformationHARTisaregisteredtrademarkoftheHARTCommunicationFoundation,Austin,Texas,USA.

    AnyuseofthetermHARThereafterinthisdocument,orinanydocumentreferencedbythisdocument,implies

    theregisteredtrademark.WirelessHARTisatrademarkoftheHARTCommunicationFoundation.Allother

    trademarks

    used

    in

    this

    or

    referenced

    documents

    are

    trademarks

    of

    their

    respective

    companies.

    For

    more

    informationcontacttheHCFStaffattheaddressbelow.

    Attention:FoundationDirector

    HARTCommunicationFoundation

    9390ResearchBoulevard

    SuiteI350

    Austin,TX78759,USA

    Voice:(512)7940369

    FAX:(512)7943904

    http://www.hartcomm.org

  • 8/3/2019 Control With Wireless Hart

    3/9

    ControlwithWirelessHART

    Page3

    Synopsys:TheWirelessHARTstandardisthefirstopenwirelesscommunicationstandardfor

    measurementandcontrolintheprocessindustries.Ituseswirelessmesh

    networkingbetweenfielddevices,aswellasotherinnovations,toprovidesecure,

    reliabledigitalcommunicationsthatcanmeetthestringentrequirementsof

    industrialapplications.

    Thisisoneofaseriesofpapershelpingusersrecognizethebenefitsof

    WirelessHART,aswellasaddressingspecificquestionsaboutWirelessHART.

  • 8/3/2019 Control With Wireless Hart

    4/9

    ControlwithWirelessHART

    Page4

    Fornearlytwodecades,HARTCommunicationhasbeentheprocessindustrystandardforsecure,

    simple,andreliableoperations.NewcapabilitiesandwirelesscommunicationintroducedwithHART

    version7,complimentestablishedpracticeandexpandtheuseofHARTCommunicationintonewareas

    andapplications.

    WirelessHARTwasdesignedspecificallytosupportthewiderangeofprocessindustryusecasesfrom

    simplemonitoringtoclosedloopcontrol.Testingandfieldtrialswithwirelessdeviceshave

    demonstratedthatthecommunicationaccuracy,stability,totalperformance,andreliabilitycanmeet

    thedemandsofindustrialprocessmonitoringandcontrolapplications.

    Controlapplicationrequirementsforsamplingintervals,jitter,andlatencywerespecificallyaddressed

    anddesignedintotheWirelessHARTtechnology.Infact,controlperformancewithWirelessHARTcanbe

    comparabletothatofawiredsystemusingtraditionalfieldbuses.Let'slookatsomeofthefactorsthat

    cancomeupinconsideringWirelessHARTforcontrolapplications.Let'slookatsomeofthefactorsthatcancomeupinconsideringWirelessHARTforcontrolapplications.

    SamplingintervalsWirelessHARTallowssamplingintervalsthatmeettherequirementsofmostcontrolloopswhileatthe

    sametimeminimizingtheimpactonfielddevicesthatmaybepoweredbyabattery.

    Thetypicalruleofthumbisthatfeedbackcontrolshouldbeexecuted410timesfasterthantheprocess

    responsetime,whereresponsetimeequalstheprocesstimeconstantplusdeadtime.

    Becausemeasurementsystemsareoftenunsynchronizedwiththecontrolsystem,measurementvalues

    aretypicallysampledasmuchas210timesfasterthantheprocesscanrespond(Figure1below).

  • 8/3/2019 Control With Wireless Hart

    5/9

    ControlwithWirelessHART

    Page5

    Withwirelesssystems,however,it'sdesirabletoreducethefrequencythatmeasurementsaretaken

    andcommunicatedinordertoextendmeasurementdevicebatterylife.

    TheabilitytoschedulecommunicationswithWirelessHARTmakesthiseasytodowithoutcompromising

    controlreliability.Figure2addsthesetwomethodstothepreviousdiagram:

    Synchronized.Measurementsaretakenandtransmittedonly(andexactly)whenthey'reneededforcontrolexecution.

    Synchronizedwithexceptionreporting.Measurementsaretakenatscheduledintervalsforexample,410timesfasterthantheprocessresponsetimebuttransmittedonlyifthe

    measurementhaschangedbyaspecifiedamountorifthetimesincethelastcommunication

    exceedsaspecifiedinterval.

    Figure2

    Morefrequentcommunicationofmeasuredvaluesiscertainlypossibleandinthecaseoflinepowered

    devicescanworksimilartowirednetworks.Inthecaseofbatterypoweredordeviceswhereenergy

    conservationisimportant,WirelessHARToffersuserstheopportunitytofindanapplication'soptimum

    balancebetweencommunicationintervalsandbatterylife.

    LatencyandJitterEffectivecontrolrequirestimelyaccesstomeasurementandcontrolinformation.Asystem'sabilityto

    meetitscontrolperformancerequirementscanbeaffectedbothbydelays(latency)andvariation(jitter)

    inwhentheinformationisavailable.

    Insomesystems,latencyandjittercanstartwiththetimingofthemeasurementsthemselves.But

    WirelessHARTisatimesynchronizedprotocol,witheverydevicehavingacommonsenseoftime

    accurateto1millisecondacrosstheentirenetworkacapabilitynotavailableinmanyotherprotocols.

    Themeasurementsoftwareandcircuitryusethissenseoftimeinschedulingmeasurements,allbut

    eliminatingdelaysandvariationinmeasurementtiming.

  • 8/3/2019 Control With Wireless Hart

    6/9

    ControlwithWirelessHART

    Page6

    Latencyandjittercanalsobeintroducedwhendataiscommunicatedforexample,fromatransmitter

    toagateway.Inthiscase,latencyisthetimeittakesforacommunicationpackettomakeitswayfrom

    thesourcetothedestination,whilejitterisvariationinlatencybetweendifferentcommunicationcycles

    (Figure3).Excessivelatency(whicheffectivelyaddsdeadtimetotheprocess)andjitter(whichadds

    errorinto

    the

    control

    calculations)

    can

    lead

    to

    significant

    degradation

    in

    control

    performance.

    Figure3

    In

    direct

    communications,

    WirelessHART

    has

    a

    transmission

    rate

    that

    is

    faster

    than

    some

    traditional

    wiredfieldbustechnology.Forexample,ifthecommunicationrateis31.25kilobits/second,the

    communicationsdelaywillbe32microseconds/bit.WirelessHARThasamuchfastercommunications

    rate250kilobits/second sothedelayintroducedbythecommunicationsrateisonly4

    microseconds/bit.

    SinceatypicalWirelessHARTmessageis128bytes,thetimeforcompletemessagetransmissionis4

    milliseconds.Eachtransmissionanditscorrespondingacknowledgementoccurwithina10millisecond

    "timeslot"inaperiodiccommunicationSuperframeormacrocycle(Figure4).

    Figure4.

  • 8/3/2019 Control With Wireless Hart

    7/9

    ControlwithWirelessHART

    Page7

    However,inmanyscenarioscommunicationsrequiremorethanonetimeslotforamessagetotravel

    fromthesourcetothedestination.Let'slookatonesuchscenario.

    Ifacommunicationcan'treachitsdestinationdirectly,itcan"hop"fromnodetonodetobridgethegap

    orcircumventobstructions.Thisabilitytoroutearoundphysicalobstaclesorinterferenceisacore

    featureof

    the

    WirelessHART

    mesh

    technology.

    Figure

    5shows

    three

    paths

    acommunication

    might

    followfromthedeviceonthelefttothegatewayontheright.

    Figure5

    Changingtheroutethedatatravelscancontributetovariationincommunicationtime(jitter).Although

    eachadditionalhopincreaseslatency,intypicalapplicationstheaveragedelayiswellwithinthe

    requirementsforcontrol.Wecanillustratethiswithanexample.

    Inmostcases,aWirelessHARTnetworkwillbeabletoretryafailedmessageinthenexttimeslotorthe

    onefollowing.Forourexamplewellassumeittakes10millisecondstoprocessamessageandassignit

    toanothertimeslot.PathAinFigure5couldthereforeproduceasmuchas50millisecondsoftotal

    latency(10ms+[10ms+10ms]+[10ms+10ms]).PathBhasthesamenumberofhopsandthusthe

    samecommunications

    latency.

    But

    Path

    Chas

    an

    additional

    hop,

    bringing

    total

    communications

    latency

    to70milliseconds.Thistimingdifferenceintroducesa20millisecondjitterinthecommunications.(In

    manycasestheroutingdevicewillbeabletoretryinthenextslot,whichwouldreducethetotal

    latenciesto30millisecondsforPathsAandBandto40millisecondsforPathC.)

    Experienceinhundredsofwirelessfielddeviceinstallationsshowsthatcommunicationslatencyon

    averageismuchlowerthaninthisexample.Inrealplantsettings,typically30%ofthedevices

    communicatedirectlywiththegatewayornetworkaccesspoint(10milliseconds)andabout50%are

    onehopaway(30milliseconds).Theremaining20%maybe34hops.Usingthesenumbersfromactual

    plantinstallations,theaveragelatencytimewillbeabout30milliseconds.

  • 8/3/2019 Control With Wireless Hart

    8/9

    ControlwithWirelessHART

    Page8

    Existinginstallationsalsoshowthatnetworkreliabilityistypicallygreaterthan99%,sothelatencytime

    willnotvarysignificantlybetweencommunicationseffectivelyeliminatingtheeffectofjitter.

    Butisitfastenoughforcontrol?Communications

    latency

    does

    not

    affect

    control

    as

    long

    as

    the

    delay

    is

    small

    compared

    to

    the

    process

    responsetime.Appropriateschedulingoftransmissionsacrossthetimeslotsinamacrocyclecanensure

    thedatareachesitsdestinationwhenneeded.

    Forgoodcontrolweneedtobeabletoreadthecontrolmeasurement,communicatethemeasurement

    toacontroller,executethecontrolfunction,andcommunicatetheoutputbacktothetargetinonehalf

    theprocesstimeconstant.Mostcontrolloopsare1secondormore,sofora1secondcontrolloopwe

    wouldneedtobeabletoperformallofthesestepswithin500milliseconds.

    Let'sseehowthisworkswiththeexamplecontrolloopshowninFigure6.Inthisexample,the

    measurementisprocessedinthefielddevice,thecontrolalgorithmrunsinthegateway,andthe

    actuationoccurs

    in

    avalve

    that's

    the

    same

    "hop

    depth"

    from

    the

    gateway

    as

    the

    measurement

    device.

    ThetotalspanofthecycleincludestheAI,PID,AO,andcommunicationtimes.

    Figure6

    Usingthenumbersfromourearlierexample,eachcommunicationfromthemeasurementdeviceto

    thegateway,andfromthegatewaytothevalve wouldtake70milliseconds.Ifwefurtherassumethat

    thecontrolexecutiontimeinsidethegatewayisverysmall,thenwecanassumethatthecontrolloop

    willexecute

    in

    140

    150

    milliseconds

    well

    below

    the

    required

    500

    milliseconds.

    Atypicalnetworkscheduletosupportthisscenarioisshownbelow.Theindividualcommunications

    shownearlierinFigure5aredistributedbothacrossthe50timeslotsineachmacrocycleandacrossthe

    15radiofrequencychannelsusedbyWirelessHART.

  • 8/3/2019 Control With Wireless Hart

    9/9

    ControlwithWirelessHART

    Page9

    Figure7

    Asthisexampleshows,500millisecondmacrocyclesareeasilyachievableevenwhenmultiplehopsare

    assumedinthecommunication.Thisisfastenoughfortypicalcontrolloops,whichinmostcasesare

    muchslower

    than

    our

    example.

    (Thediagramalsoshowsthatthereisalmostnoimpacttothebandwidthofthesystem.Infact,less

    than12%ofavailableslotsareneededtodo10highspeedcontrolloopsinparallel.)

    Inthisexampleweillustratedwhatwouldhappenifthecommunicationstook70milliseconds.As

    mentionedearlier,however,actualplantexperienceshowsthataveragelatencytimesareabout30

    milliseconds.Using30millisecondsinourcalculationsreducestheloopexecutiontimetolessthan100

    millisecondsandreducesthenumberofcommunicationsinthenetwork.Ifitisimportanttoreducethe

    delaysintroducedbymultiplehops,additionalnetworkaccesspointscanbeused.

    Itis

    also

    possible

    to

    further

    reduce

    communication

    latency

    and

    address

    higher

    speed

    control

    applicationsbyusingpeertopeercommunicationsbetweenfielddevices.Runningthecontrol

    algorithminafielddeviceeliminatestheneedforwirelesshopsbetweenthatdeviceandagateway

    residentalgorithm.Suchanarrangementmayalsouselessbandwidth,allowingformultiplecontrol

    loopswithminimalimpacttooverallbandwidth.Ofcourse,usingthisstrategyisdependentonwhether

    thereareadditionalinteractionsbetweenthecontrolloops.

    Thisexampleusedwirelessnetworklayoutsthatweremorecomplexthanwhatexperiencehasfoundin

    actualplantenvironments.Wecouldhavealsoincorporatedmultipleaccesspointstoshorten

    communicationpaths,andallocatedadditionalcommunicationresourcestofurtherenhancethe

    effectivenessoftheWirelessHARTnetwork.AndbecauseallWirelessHARTmeasurementsincludea

    timestamp,wecouldhaveusedthetimestampinthecontrolalgorithmtofurtherreducetheimpactof

    anylatency

    and

    jitter.

    ConclusionEvenwithoututilizinganyoftheseadditionalfeatures,theexampleshowsthattheoverallcontrol

    performanceofatypicalWirelessHARTnetworkiscomparabletothatoftraditionalwiredfieldbuses.

    TheWirelessHARTprotocolallowsforsecure,highlyreliable,lowlatencycontrolwithalmostnoimpact

    onthebandwidthandabsolutelynoimpactonprocessperformance.

    WirelessHARTissimple,reliable,andsecure.