98
DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 1 3.2 Procesele combustiei Schema procesului de conversie completă a biomaasei

Conversia Termica a Biomasei Solide

Embed Size (px)

Citation preview

Page 1: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 1

3.2 Procesele combustiei

Schema procesului de conversie completă a biomaasei

Page 2: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 2

SISTEME TEHNICE/INSTALAŢII PENTRU

COMBUSTIA BIOMASEI

.

Page 3: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 3

3.3 Principii şi tehnici de ardere/combustie

• Pregătirea biomasei în vederea arderii• uscare;• formare; depozitare

• Proiectarea/Alegerea echipamentelor şi tehnologiei de ardere

• Instalaţii folosite la arderea cărbunilor (inferiori);• Instalaţii noi, proiectate funcţie de destinaţie (producere apă caldă

menajeră, încălzire, producere abur, centrale energetice producătoare de căldură (CT), electrice (CE) sau de cogenerare (CET);

• Instalaţii speciale pentru co-incinerare (ardere biomasă cu unul din combustibili fosili, ardere combustibili solizi cu lichizi sau gazoşi etc.)

Page 4: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 4

Tehnologii de ardereCo-incinerare

• Conceptul I – arderea biocomb. Si comb. fosil in acelasi focar, cu o singura unitate de producere de caldura sau curent electric (instalatii de capacitate mare)

• Ardere biomasa + aer + Combustibil fosil =ncenuse + gaze de ardere = curent electric sau caldura

• Conceptul II - arderea biocomb. si comb. fosil in in doua focare diferite, gazele de ardere se amesteca fiind folosite la o singura unitate de producere de caldura sau curent electric

• (Combustibil fosil + aer) sau/şi (Biomasa + aer) = cenusa + gaze de ardere = curent electric sau caldura

• Conceptul III - arderea biocomb. si comb. fosil in in doua focare diferite, cu doua unitati separate de producere de caldura sau curent electric, functionand in paralel si caldura sau electricitatea livrate impreuna

• (Combustibil fosil + aer) sau/şi (Biomasa + aer) = cenusa + gaze de ardere = (curent electric-1 sau 2 unitati electrice) sau (caldura-1 sau 2 unitati termice)

Page 5: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 5

Tehnologii şi echipamente de ardere Ardere biomasa

Clasificarea instalatiilor de ardere/generatoareA Dupa felul focarului:

In generatoare cu focar deschisIn generatoare cu focar inchis

B Dupa puterea termica nominala:Generatoare de ardere mici, mijlocii si mari

C Dupa modul de introducere a aerului:- cu tiraj natural- cu tiraj fortat

D Dupa tipul de gratar folosit: Gratar fix si gratar mobil- plan orizontal- plan inclinat- in trepte- inclinat cu bare mobile- rulant- circular etc.

Page 6: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 6

Clasificarea instalatiilor de ardere/generatoare - continuare

E. Dupa starea biomasei si curentul de aer:

- ardere in strat fix;

- ardere in strat fluidizat (stationar sau circulant);

- arderea in suspensie

F. Dupa modul de alimentare:- cu alimentare manuala/discontinua – variaza continuu caracteristicile procesului, reglarea dificila a aerului primar si a coeficientului

- cu alimentare automata/ continua – toate fazele arderii sunt continue, reglare usoara a parametrilor

Page 7: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 7

3.4 Instalaţii de ardere

- In strat fix- In strat fluidizat- In suspensie

• 3.4.1 Instalaţii de ardere în strat fix, cu focare pe grătar- Cu ardere directa

- Cu ardere inversa

- Cu ardere mixta

Page 8: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 8

Schemele de principiu ale focarelor de ardere în strat fix pe gratar orizontal: cu ardere directă; ardere superioară; ardere inversă (cu accesul

descendent şi ascendent al aerului)

Page 9: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 9

Generatoare cu focar cu gratar

• focar cu gratar orizontal fix cu ardere directa• focar cu gratar orizontal fix cu ardere inversa• Focar cu gratar tronconic fix sau rotativ• Focar cu gratar in panta fix• Focar cu gratar in panta mobil• Focar cu gratar orizontal cu miscare rectilinie• Focar cu gratar in panta, mobil, cu zone de

combustie distincte• Vezi diopozitivele pe transparente!

Page 10: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 10

Instalatie de ardere cu gratar tronconic rotativ

Page 11: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 11

Schema instalatiei de ardere a biomasei pe focar dim bare mobile in cascada – cu ardere in contracurent ( aplicabil pentru combustibil umed)

Page 12: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 12

ash discharge

secondary a ir in take

heat exchanger

prim ary a ir in take

secondary com -bustion cham ber

fue l feed ing

com bustionretort

cyclone

Schema instalatiei de ardere a biomasei cu focar fix cu alimentare prin impingere inferioara

Page 13: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 13

Constructia Sistemelor tehnice pentru combustia lemnului

Faciliati pentru combustia lemnului sub forma de bucati

Schema functionala a unui generator/cuptor simplu pentru lemn bucati sau brichete, cu ardere directa

Page 14: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 14

Sectiune printr-un cuptor din caramida pentru incalzire si gatit

Page 15: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 15

Principiul de funcţionare al unui generator cu peleţi

Page 16: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 16

Generator modern pe peleţi

Page 17: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 17

Centrala termică ,P= 4MW, pe peleti si aschii de lemn Danemarca,Prin utilizarea condensatorului de gaze de evacuare,se mai castiga 0,8 MW.

Umiditatea aschiilor pana la 50%

Page 18: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 18

Schema instalaţiei de ardere a biomasei sub formă de praf sau rumeguş, cu focar tip ciclon

Page 19: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 19

Focar cu ardere in strat fluidizat stationar, cu trei zone de admisie aer, Coef. Exces aer = 1, 1-1,3, aer preincalzit la 200-250 grade celsius

Page 20: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 20

flu idisedbedr

secondary air

air

recurrent cyclone

heat exchanger heat exchanger

gross ach air

flu idised bedcooler

Schema unui cazan cu focar de ardere biomasa, in strat fluidizat circulant

Page 21: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 21

Schema constructiv- funcţională a unui şemineu cu focar închis (stânga) şi a unei sobe cu focar închis (dreapta)

Page 22: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 22

Focar cu circulaţia forţată a aerului

Page 23: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 23

Schema constructiv-funcţională a 2 generatoare de căldură: cu circulaţie naturală (stânga şi circulaţie forţată (dreapta)

Page 24: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 24

Vedere exterioară a unui cuptor cu focar închis

Page 25: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 25

4. Echipamente specifice pentru combustia biomasei

4.1 Echipamente specifice pentru combustia reziduurilor agricole

- Sobe pentru gatit, boilere/centrale termice si generatoare de aer cald

- Alegerea sau proiectarea generatoareleor este determinata de caracteristicile combustibilului si domeniul de utilizare

Forma si necesarul de energie determina capacitatea generatorului 

Page 26: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 26

Tipuri de boilere

• Generator/boiler cu circulatia gazelor calde prin conducte

Page 27: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 27

• Boiler cu circulatia si incalzirea apei in conducte

Page 28: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 28

PROBLEME SPECIFICE LA COMBUSTIA BiOMASEI DIN REZIDUURI AGRICOLE

– Continut mare de cenusa a majoritatii reziduurilor agricole

– Characteristici nefavorabile d.p.d.v. al inmuierii cenusii

– Continut ridicat de K, Na,Cl si N – pot cauza coroziunea suprafetelor pentru schimbul de caldura

- Eliminarea cenusii trebuie facuta des sau autonat

- Asigurarea unei raciri intense in zona cu temperatura ridicata, pentru evitarea topirii cenusii

- Emisii inalte de praf si particule – Reducerea lor prin dispozitive speciale

Page 29: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 29

ACUMULATOARE DE CALDURA

-Folosite pentru marirea capacitatii termice a instalatiei si pentru evitare oscilatiilor puterii termice

-Permit reglarea mai usoara a caldurii

- Permit stocarea caldurii pentru perioade reduse de timp

- Asigura functionarea continua la putere nominala

-Capacitatea acumulatorului - Minimum 50 l per kW

Page 30: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 30

Schema unui sistem de incalzire cu biomasa – boiler cu acumulator de caldura si acumulator pentru apa calda menajera

Page 31: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 31

Focar cu alimentare fortata cu un rotor cu palete

Page 32: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 32

TIPURI DE SISTEME PENTRU ALIMENTAREA CU AER

Cu depresiune

- Tiraj natural – cu cos de tragere, reglarea dificila a coeficientului de exces de aer si a CO

- Cu exhaustor pentru gazele de evacuare - control usor si securitate mai mare in functionare

Cu presiune

- Cu ventilator central sau separat pentru aerul primar si secundar – reglarea mai usoara

Cuptorul sau boilerul si partile aferente trebuie sa fie ermetice

Page 33: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 33

Generatoare/Boilere pentru combustia balotilor de paie

-Diferite solutii constructive si puteri – 30 kW… 1 MW

-Boilerele mici

-sunt destinate pentru baloti conventionali (mici), cu ardere directa; este necesar un acumulator de caldura pentru reglarea temperaturii; emisii mari de CO, NOx si particule; control dificil;

utilizeaza in general tragere libera a aerului

-Alimentarea manuala sau automata - secvential;

-Exista probleme cu reglarea debitului de aer: in prima faza este necesara o cantitate mare de aer pentru oxidarea rapida a volatilelor; dupa arderea volatilelor ramine o cantitate mica de carbune si aerul trebuie redus;

-Eficienta scazuta si emisii ridicate pentru o incarcatura

Page 34: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 34

Schema unui boiler simplu pentru baloti de paie mici/conventionali, utilizat pentru generatoare de puteri mici si mijlocii

Page 35: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 35

Examplu de acumulator de caldura si schimbator de caldura pentru apa menajera

Page 36: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 36

Vedere de ansamblu a unei instalatii pentru combustia balotilor intregi de paie

Page 37: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 37

Schema unei instalatii pentru combustia balotilor intregi de paie pe gratar inclinat din bare

fu ll autom aticcrane feeding

cap

hydraulicdrive

water cooledgrate ash rem oval

air fans

secondary air intake

security slider

feedingspace

prim ary airintake

Page 38: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 38

Instalatie/boiler pentru incalzire cu baloti intregi de paie si lemne, prevazuta cu acumulator aditional de caldura

Pum p

Ventila tor

Heat user

Expansion tank

Heataccum ulator

Heatexchanger

Com bustionair

F ire clay wall

Water cooleddoor

Straw bale

Page 39: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 39

Boilere pentru baloti maruntiti/dezintegrati

●Separaea balotului prin taiere in straturi, maruntirea sau dezintegrarea

● Alimentare continua, majoritatea cu aer de admisie sub presiune si posibilitatea de control a combustiei

● Utilizare pentru centrale de putere mare destinate incalzirii centrale si districtuale

● Sunt prevazute sisteme pentru separarea particulelor evacuate

● Nu sunt obligatorii acumulatoarele de caldura

Page 40: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 40

Boiler pentru combustia balotilor (maruntiti cu un dispozitiv) si a paielor, prevazut cu un gratar adaptat

Page 41: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 41

Boiler pentru combustia paielor, prevazut cu dispozitiv de dezintegrare a balotilor

Page 42: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 42

Boiler cu alimentare continua cu melc a combustibiluli maruntit, prevazut cu sistem de turbionare a combustibilului

secondarycom bustion zonetube type heat

exchanger

com bustion a irexhaust gas

fuel

ash

drought fan

tem perature sensor

ash screper water cooled com bustiontrough

sensor

autom atic ign iter

two pressurefans

Page 43: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 43

Vedere de ansamblu a unei instalatii de incalzire centrala pe baza de paie

Page 44: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 44

Centrala termica districtuala pe paie – Danemarca, 1999

Page 45: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 45

Centrala pentru incalzire cu aer cald, prevazuta cu schimbator de caldura aditional, utilizand lemne taiate marunt. Poate folosi si schimbator de caldura

cu apa

Page 46: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 46

Schema de principiu a unei centrale termice cu doua faze

, pe lemne, numita si gazogen,

a) 1–admisia centrala a aerului, 2–peretele din spate din caramida refractara, 3–ventilator sub presiune, 4– regulator automat de aer, 5– reglarea aerului primar 6– reglarea aerului secundar, 7– reglarea aerului tertiar

b) 1– spatiu de alimentare cu combustibil, 2– zona de gazeificare, 3– zona de ardere indirecta, 4– placa din caramida refractara, 5– camera de combustie, 6– catalizator, 7– zona schimbatorului de caldura

Page 47: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 47

Vedere de ansamblu a unei centrale cu doua faze – tip gazogen

Page 48: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 48

Schema de principiu a unei centrale pe lemne cu admisia naturala a aerului,

4– reglarea aerului secundar de preincalzire, 5– reglarea aerului secundarr, 12– reglarea zonei de ardere superioare si inferioare, 13– zona flacarii

Page 49: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 49

Constructia unui generator de aer cald pentru uscarea materialelor agricole si forestiere, pe lemne cu o capacitate de 60 kW

Page 50: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 50

FACILITATI TEHNICE PRNTRU COMBUSTIA ASCHIILOR DE LEMN, RUMEGUSULUI SI PELETILOR

Schema alimentarii cu piston

fuelcom bustion cham ber

hydrau lic s lider fo rcoarse m ateria l

Page 51: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 51

Alimentatoare cu melc pe gratar in cascada, pentru combustia aschiilor de lemn, in curent direct si invers

Page 52: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 52

Boiler cu functionare pe aschii si rumegus de lemn, cu gratar mobil in cascada si dispunerea mecanica a cenusii

Page 53: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 53

Centrala pe aschii de lemn cu arzator si boiler ca unitati distincte

Page 54: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 54

Scheme de alimentare a peletilor pe gratare tip farfurie si oscilant

igniter

feedingauger

air intakeprim ary air nozzles(prforated bottom )

secondary airnozzles

rem ovablecombustionbowl pellet-

fa ll duct

gasification cham berpellet fall duct

primary com bustioncham ber

grate drive

primary airflow ash box

grate ash box

Page 55: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 55

Examplu de boiler cu gratar tip farfurie (fix) pentru peleti si aschii de lemn

2– Ventilator cu turatie reglabila pentru gazele de evacuare, 3–sistem semiautomat de curatire a tuburilor de gaz, 4– depozitarea cenusii,

5– camera de combustie, 6– gratarul tip farfurie/retorta

Page 56: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 56

Centrala termica cu miscarea in spirala a gazelor din camera secundara de combustie

heat exchanger exhaust gas ventilator

flow ash box

grate ash box

ventilator

spiral com bustion(secondary combustion)

swing grate

fuel feedingauger

ignitor

Page 57: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 57

Centrala termica pe baza de aschii de lemn cu depozitarea libera a combustibilului

Page 58: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 58

Probleme generale privind generatoarele/instalatiile de conversie termiaca, tendinte

•Eficienta instalatiilor

•Depozitarea si utilizarea cenusii

•Emisiile de poluanti

•Legislatia privind instalatiile termice, emisiile si cenusa

•Tendinte: Perfectionarea instalatiilor si exploatarea optima

Page 59: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 59

Eficienta inalta inseamna/presupune:

- efecte economice pozitive privind utilizarea biomasei;

- combustie completa;

- emisii reduse de elemente si compusi chimici;

- cunoastere procesului de combustie, functionarea instalatiilor si a proceselor conexe poate controbui la cresterea eficientei acestora;

- ca regula generala, instalatiile noi au eficienta mai ridicata, conceptia lor fiind rezultatul ceretarilor efectuate

Page 60: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 60

1. Brkic, M. and M. Martinov. 1984. Proucavanje problema skladistenja vlaznih bala kukuruzovine (Investigation of problem of wet maize straw bales’ storage), XII International Symposium of Yugoslav Society of AgEng, Becici, Proceedings of the Symposium, 452-461.

2. Brkic, M. 1986. Odredjivanje zakonitosti promene otpora strujanja vazduha kroz sloj kukuruzovine u zavisnosti od nacina pripreme biljnog materijala za skladistenje (Determination of maize straw layer air flow resistance respecting method used for their preparation for storage), PhD thesis, Faculty of Agronomic Sciences, Zagreb.

3. Djevic, M. and D. Novakovic. 2002. Fruit and vine pruning residues like energy material. International Conference: Energy Efficiency and Agricultural Engineering, Rousse, Bulgaria, Proceedings of the Conference, Vol. 2, 144-148.

4. Eichhorn, H. 1999. Landtechnik. Verlag Eugen Ulmer, Stuttgart.

5. Hartmann, H. and A. Strehler. 1994. Die Stellung der Biomasse. Landwirtschaftsverlag, Münster-Hiltrup.

BIBLIOGRAFIE

Page 61: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 61

6. Hartmann, 2001: Die energetische Nutzung von Stroh und strohähnlichen Brennstoffen in Kleinanlagen. Gülzower Fachgespräche. Band 17, Energetische Nutzung von Stroh, Ganzplanzengetreide und weiterer halmgutartiger Biomasse–Stand der technik und Perspektiven für den ländlichen Raum, Fachagentur Nachwachsende Rohstoffe e.V. (FNR), pp. 62-84.

7. Kaltschmitt, Hartmann, 2001. Energie aus Biomasse, Springer-Verlag, Berlin, Heidelberg, New York.

8. Kitani, O. and C.W. Hall. 1989. Physical properties of biomass. In Biomass Handbook, pp. 880-882. Gordon and Breach, New York.

9. Martinov, M. 1980. Mogućnosti koriscenja slame kao izvora toplotne energije (Possibilities of wheat straw use as a fuel), MSc work, Faculty of Agricultural Sciences, Zagreb.

10. Martinov, M. 1982. Energetski potencijal sporednih proizvoda ratarstva (Energy potential of field crops residues). IV International Symposium: Agricultural engineering and science, Pozarevac, Proceedings of the Symposium, 497-513.

11. Martinov, M. and M. Babic. 1994. Razvoj generatora toplog vazduha koji kao gorivo koristi drvo (Development of hot air generator using wood log a s a fuel). Savremena poljoprivredna tehnika, 20/4, pp.184-188.

Page 62: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 62

12. Martinov, M. and S Topalov. 1984. Osobine i mogucnosti koriscenja sporednih delova kukuruzne biljke (Characteristics and use possibilities of maize residues). XII International Symposium of Yugoslav Society of AgEng, Bečići, Proceedings of the Symposium, 564-572.

13. Muehlenfeld, K.J. 1997. Biomass Energy Sourcebook: A Guide for Economic Development in the Southeast. AL: Southeastern Regional Biomass Energy Program, Tennessee Balley Authority, Muscle Shoals.

14. Strehler, A. 1988. Biomass Combustion Technologies, Heat from Straw and Wood, CNRE Guideline No.1, FAO, Rome.

15. A1. 1995. Solid mineral fuels – Determination of gross calorific value by the calorimeter bomb method, and calculation net calorific value, ISO 1928 standard, International Organisation for Standardization, Geneva.

16. A2. 1998. Straw for Energy Production, Technology–Environment–Economy, Second edition, The centre for Biomass Technology, Copenhagen.

17. A3. 1999. Wood for Energy Production, Technology–Environment–Economy, Second edition, The centre for Biomass Technology, Copenhagen.

18. A4. 2000. Kleinfeuerungen für Holz – Verbrennungstechnik/Stand der Technik/ Reglwerke/ Entwicklung. Bundesanstalt für Landtechnik, Wieselburg.

Page 63: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 63

Schema constructiv- funcţională a unui şemineu cu focar închis (stânga) şi a unei sobe cu focar închis (dreapta)

Page 64: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 64

Focar cu circulaţia forţată a aerului

Page 65: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 65

Schema constructiv-funcţională a 2 generatoare de căldură: cu circulaţie naturală (stânga şi circulaţie forţată (dreapta)

Page 66: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 66

Vedere exterioară a unui cuptor cu focar închis

Page 67: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 67

UTILIZAREA BIOMASEI PENTRU PRODUCTIOA DE CALRURA SI

ENERGIE – CO-GENERARE

CTE

Page 68: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 68

CTE-urile pe biomasa

Sunt destinate , la fel ca cele pe carbune, producerea de energie termica pentru districte, gererarea de energie electrica in retea. AU capacitati mari si au un grad de automatizare ridicat si un bun control al emisiilor

Reprezentarea schematica procentuala a productiei si pierderilor in diferite variante de functionare, folosind ca si combustibil paiele, aschiile de lemn si gazele naturale

Page 69: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 69

Consumator caldura

Schimbator racire cu lichid

Consumator electricitate

Gaze evacuate

combustibil

Schimbator de caldura

MotorGenerator

Scheme unei CTE

Page 70: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 70

Scheme of CHP biomass plant with ORC (Organic Rankine Cycle) process

Page 71: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 71

Steam boilers

 

For conventional electricity generation in steam turbines

Optimisation by use of condenser heat for heat

Total efficiency, for combination with heating, up to 90%

Steam used for driving of different engines

Steam turbines

Steam engines

Steam screw engine etc.

Page 72: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 72

Fig. 5 Scheme of steam turbine CHP plant

Page 73: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 73

Gross efficiency of steam turbine plant depends strongly on share of heat energy produced. If this is zero electrical efficiency, for plants up to 20 kWe is up to 27%. For the other cases are known following figures:

─ If 10% of total produced energy is used as heat energy, overall efficiency is 35%.

─ If 30% of total produced energy is used as heat energy, overall efficiency is 46%.

─ If 50% of total produced energy is used as heat energy, overall efficiency is 58%.

─ If 70% of total produced energy is used as heat energy, overall efficiency is 68%.

But, it should be considered that the marketing of heat energy is rather complicated, only really used can be paid, and the price of this energy is up to three times lower than electric energy, if the feed-in tariff is applied.

Characteristics of steam turbine process

Page 74: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 74

Fig. 5 Scheme of steam turbine CHP plant

Page 75: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 75

Gross efficiency of steam turbine plant depends strongly on share of heat energy produced. If this is zero electrical efficiency, for plants up to 20 kWe is up to 27%. For the other cases are known following figures:

─ If 10% of total produced energy is used as heat energy, overall efficiency is 35%.

─ If 30% of total produced energy is used as heat energy, overall efficiency is 46%.

─ If 50% of total produced energy is used as heat energy, overall efficiency is 58%.

─ If 70% of total produced energy is used as heat energy, overall efficiency is 68%.

But, it should be considered that the marketing of heat energy is rather complicated, only really used can be paid, and the price of this energy is up to three times lower than electric energy, if the feed-in tariff is applied.

Characteristics of steam turbine process

Page 76: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 76

Fig. 6 Scheme of CHP biomass plant with ORC (Organic Rankine Cycle) process

Page 77: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 77

ORC process

 

Organic Rankine Cycle

As medium is organic matter used with lower boiling and condensation temperature

Non toxic, non fleamable mater should be used instead of water for closed process

Temperature range of boiler 70-100°C

Control of upper temperature needed, thermal oil used for a boiler

Very low efficiency of electricity generation, under 10%

Page 78: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 78

ORC process

 

Organic Rankine Cycle

As medium is organic matter used with lower boiling and condensation temperature

Non toxic, non fleamable mater should be used instead of water for closed process

Temperature range of boiler 70-100°C

Control of upper temperature needed, thermal oil used for a boiler

Very low efficiency of electricity generation, under 10%

Page 79: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 79

Fig. 7 Simplified scheme of ORC process

Page 80: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 80

Fig. 8 Energy balance of ORC CHP plant

Page 81: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 81

Stirling process

Any heat source can be used for driving Stirling engine

Very important to have big regenerator, porous material, high heat capacity

Always same gas inside the engine

Isochoric heating tact (1)– gas is hated by regenerator

Isothermal expansion tact (2)– gas expands using thermal energy of external heater, working tact

Isochoric cooling tact (3)– gas flow, thorough regenerator, to the cool zone

Isothermal compression tact (4)– heating of cool zone

Efficiency of thermal energy of heater is 25% (21 to 28%)

Total efficiency of electricity generation is up to 10%

Page 82: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 82

Fig. 9 Simplified scheme of Stirling engine function

Page 83: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 83

Heat energy consumer

Cooling fluid exchanger

Electricity consumer

Exhaust gases

Fuel, plant oil

Exhaust gas exchanger

EngineGenerator

Fig. 10 Scheme of CHP for plant oil

Page 84: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 84

Kanali zadovod goriva

Anoda

Katoda

KatalizatorElektrolit

Kanali za dovod oksidanta

Anode

Channels for fuel supply

Channels for oxidant

supply

Cathode

Electrolyte Catalyst

Air O2

Heat H O2

H2Fuel

e-

Electrolyte Catalyst

Anode

Cathode

Fig. 11 Principles of fuel cells

Page 85: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 85

35 C° 35 C°

Legend:

Substrate sampling

Gas sampling

Fluid flow measurer

Thermometer

Gas analyzer

Gas filter

Gas reservoir(1.000 m )3

Compressor

Electricitymeasurer

Pilot injection gas engine, 806 KW

Forced cooling

Farm

Stable Liquid manure

R fined manure storage (40.000 m )

e3

Electric grid

Safety torch

Fig. 12 Scheme of biogas CHP plant

Page 86: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 86

Oil burner

Isolated boilerAmbient air

Catalyzer

Egas

xhaust

cooler

ChimneyE gasxhaust

cooler

E gasxhaustfilter

Ash

Ambient airSteam

Flying ash

Biomass

Gas ooler c Ga filters

Gas washer

Gas motor

Ambient air

G

Fig. 13 CHP plant for solid biomass and gasification

Page 87: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 87

Fig. 14 Schematic diagram of CHP plant using straw, wood chips and natural gas

Page 88: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 88

Three-generation, cooling with heat

KondezatorGenerator

Para rashladnog sredstva

Tečno rashladnosredstvo

Koncentrovaniapsorbent

Apsorber

RashladnavodaHlađena

voda

Pumpa zaapsorbent

Izvortoplote

Isparivač

Condenser

Cooled water

Steam of cooling fluid

Evaporator

Liquid cooling fluid Concentrated

absorbent

Cooling water

Absorbent pump

Heat source

Page 89: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 89

Economy of biomass CHP

Calculation of the profitability of the CHP plants is rather complex. There are two final products, electricity and heat energy. In most cases the price for heat is fixed, and the price of electricity is calculated. There are lots of factors that have influences on the final price of electricity. The most significant are:

1. Fuel price.2. Price of the plant –investment cost.3. Annual operation period.4. Operational costs.5. Electrical, thermal and overall efficiency.

Page 90: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 90

Tab. 1 Prices of biomass per kWh of primary energy and net energy for maximal efficiency of primary conversion (combustion)

BiomassPrice, € t-1

In €c (kWh)-1 Approximate net heating value,

MJ kg-1gross net

Crop residues1, straw, MC ca. 15% 38 1.0 1.7 14

Maize cobs1, MC ca. 15% 35 0.9 1.5 14

Wood chips2, MC ca. 15%, TD up to 50 km 62 1.5 1.9 15

Wood chips2, MC ca. 35%, TD up to 20 km 50 1.6 2.0 11.5

Wood processing residues2, MC ca. 10% 25 0.6 0.8 15.5

Plant oil3 600 5.3 6.2 411Efficiency 60% 2Efficiency 80% 3Efficiency 85% MC– moisture content TD– transport distance

Page 91: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 91

Fig. 15 Specific investment costs, per kW of electric power, for biomass CHP plants

a) for solid biomass (CFB– fix fluidized bed), b) for plant oil

a) b)

For example, the ORC specific investments are reduced for around 20% if the electric power increases from 400 kW to 1.2 MW. The specific investment costs for plant oil CHP plants reduces significantly by increasing its electric power over 150 kW.

Page 92: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 92

Page 93: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 93

Page 94: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 94

HeatingCalculation of heating power in is based on providing indoor temperature e.g. +20° C, if the outside temperature is –18° C. Taking into account the reduced thermal power during the nights and the temperature change during the day and heating period, the average energy needed makes commonly 25% of maximal heating power. This is not a big problem if liquid or gaseous fossil fuels are used, due to relatively simple control of power. If solid biomass CHP plant is used, control is much more difficult and energy losses considerably higher. That is why combination of solid biomass and liquid/gaseous fuel should be applied. If the power of biomass part covers 50% of calculated plant power (Fig. 16 left), the average load of heat energy is 50%, for average climate conditions in the region, and additionally about 7% of fossil fuel is needed. For the share of 40% of thermal power based on biomass, average load is 63%, and the percentage of additional fossil fuel energy makes 13% (Fig. 16 right).

Page 95: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 95

Fig. 16 Effective heat energy use for heating (bright grey colour) of solid biomass CHP plant with nominal power 50% of maximal (calculated) –left, and 40% of maximal –right, and share of heat energy from fossil fuel (dark grey)

Tab. 2 Heating surface covered by minimal solid biomass CHP plants produced thermal power – mixture of business and household objects

Type of biomass CHP plant

Minimal thermal power, MW

Minimal heating surface, m2

ORC 1.0 18.270

Steam turbine 2.7 49.330

Page 96: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 96

Four examples of biomass CHP plants, two for technological utilization of produced heat energy (T1 and T2) and two with heat energy utilization for space heating purposes (H1 and H2) were elaborated:T1 is a CHP plant based on a steam turbine process with electric and thermal power of 3.05 MW and 24.60 MW, respectively. The fuel is soybean straw, annual consumption 60,000 tonnes. The data for this CHP plant are taken from the pre-project of a CHP plant of a local soybean processing company.T2 is a biogas plant with electric and thermal power 540 kW and 680 kW, respectively. For the annual production of 700,000 m3 biogas 4,000 tonnes of maize silage, 300 tonnes of manure and vegetable waste are used. The data for this example are taken from the feasibility study of a dried vegetable producer.H1 plant represents a biogas based CHP facility with electric and thermal power 440 kW and 560 kW, respectively. The biogas is generated from on site produced manure. The data of this example are taken from pre-project of livestock farm.H2 is a CHP plant based on ORC process with electric and thermal capacity of 5,000 kW and 19,000 kW, respectively. It uses 32,500 tonnes of soybean straw as fuel. This example is an imaginary CHP plant for a small community and data from literature were used.

Page 97: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 97

Tab. 3 Technical data of the biomass CHP plants

Technical data Unit CHP plant

T1 T2 H1 H2

Electric power MWe 3.05 0.54 0.44 5.00

Thermal power MWt 24.60 0.68 0.56 19.00

Operating hours h a–1 6,600 2,630 8,500 4,500

Electricity consumption (total) MWhe a–1 2,200 220 23 3,400

Produced electricity MWhe a–1 20,000 1,420 2,900 22,500

Produced heat energy MWht a–1 162,300 1,790 3,230 85,770

Share of marketable heat energy % 72 70 45 63

Total fuel primary energy input MWh a–1 240,000 3,850 7,850 136,000

Page 98: Conversia Termica a Biomasei Solide

DEE MM 09 RENEWABLE ENERGIES IN AGRICULTURE AND RURAL AREAS 98

Tab. 4 Economic appraisal of biomass CHP plants inTechnological

utilizationHeating

CHP facility T1 T2 H1 H2

Investment costs, 106 € 17.0 1.4 1.5 20.5

Total annual costs, 103 € a–1 5,253 308 340 4,195

Total income, 103 € a–1

–Electricity (5.3 €c kWh–1)–Heat (3.5 €c kWh–1)

5,1291,0604,069

1197544

19915346

3,0801,1901,890

Breakeven price of electricity, €c kWh–1 5.9 18.6 10.5 10.2

Obviously, use of maize silage for anaerobic digestion, with intermixture of animal manure, is not profitable. If there is need to use co-substrate in a biogas CHP plant, other types of biomass should be considered.The breakeven electricity price varies between 5.9 and 18.6 €c (kWh)-1. Based on this, the granted price of electricity from solid biomass should be in the range between 7 and 12 €c (kWh)-1, and 11–16 €c (kWh)-1 for biogas.The price of electricity primarily depends on the fuel price, capacity (electric and heat power) of the plant. The annual operating hours and the share of marketable heat energy.