113
Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods – II) 07 March, 2013 Suvrit Sra

Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Embed Size (px)

Citation preview

Page 1: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convex Optimization(EE227A: UC Berkeley)

Lecture 14(Gradient methods – II)

07 March, 2013

Suvrit Sra

Page 2: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Organizational

♠ Take home midterm: will be released on 18th March 2013on bSpace by 5pm; Solutions (typeset) due in class, 21stMarch, 2013 — no exceptions!

♠ Office hours: 2–4pm, Tuesday, 421 SDH (or by appointment)

♠ 1 page project outline due on 3/14

♠ Project page link (clickable)

♠ HW3 out on 3/14; due on 4/02

♠ HW4 out on 4/02; due on 4/16

♠ HW5 out on 4/16; due on 4/30

2 / 33

Page 3: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence theory

3 / 33

Page 4: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

Convergence

Theorem ‖∇f(xk)‖2 → 0 as k →∞

Convergence rate with constant stepsize

Theorem Let f ∈ C1L and

{xk}

be sequence generated as above,with αk = 1/L. Then, f(xT+1)− f(x∗) = O(1/T ).

4 / 33

Page 5: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

Convergence

Theorem ‖∇f(xk)‖2 → 0 as k →∞

Convergence rate with constant stepsize

Theorem Let f ∈ C1L and

{xk}

be sequence generated as above,with αk = 1/L. Then, f(xT+1)− f(x∗) = O(1/T ).

4 / 33

Page 6: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

Convergence

Theorem ‖∇f(xk)‖2 → 0 as k →∞

Convergence rate with constant stepsize

Theorem Let f ∈ C1L and

{xk}

be sequence generated as above,with αk = 1/L. Then, f(xT+1)− f(x∗) = O(1/T ).

4 / 33

Page 7: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1L

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

♣ Gradient vectors of closeby points are close to each other

♣ Objective function has “bounded curvature”

♣ Speed at which gradient varies is bounded

Lemma (Descent). Let f ∈ C1L. Then,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L2 ‖x− y‖22

5 / 33

Page 8: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1L

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

♣ Gradient vectors of closeby points are close to each other

♣ Objective function has “bounded curvature”

♣ Speed at which gradient varies is bounded

Lemma (Descent). Let f ∈ C1L. Then,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L2 ‖x− y‖22

5 / 33

Page 9: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1L

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

♣ Gradient vectors of closeby points are close to each other

♣ Objective function has “bounded curvature”

♣ Speed at which gradient varies is bounded

Lemma (Descent). Let f ∈ C1L. Then,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L2 ‖x− y‖22

5 / 33

Page 10: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – corollary

Coroll. 1 If f ∈ C1L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +α2kL2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get bestbound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖22

6 / 33

Page 11: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – corollary

Coroll. 1 If f ∈ C1L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +α2kL2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get bestbound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖22

6 / 33

Page 12: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – corollary

Coroll. 1 If f ∈ C1L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +α2kL2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get bestbound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖22

6 / 33

Page 13: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – corollary

Coroll. 1 If f ∈ C1L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +α2kL2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent.

Minimize over αk to get bestbound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖22

6 / 33

Page 14: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – corollary

Coroll. 1 If f ∈ C1L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +α2kL2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get bestbound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖22

6 / 33

Page 15: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 16: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1)

≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 17: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 18: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 19: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 20: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ cL‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .

7 / 33

Page 21: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Descent lemma – another corollary

Corollary 2 If f is a convex function ∈ C1L, then

1L‖∇f(x)−∇f(y)‖22 ≤ 〈∇f(x)−∇f(y), x− y〉,

Exercise: Prove this corollary.

8 / 33

Page 22: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

9 / 33

Page 23: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

9 / 33

Page 24: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 25: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 26: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 27: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 28: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 29: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 30: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 12L‖gk‖22

Consider, r2k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2k+1 = r2

k + α2k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2k + α2

k‖gk‖22 − 2αkL ‖gk − g∗‖22 (Coroll. 2)

= r2k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk

9 / 33

Page 31: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 32: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 33: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 34: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk.

In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 35: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 36: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f≤ 〈gk, xk − x∗〉

CS≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥∆k

r0.

Now we have a bound on the gradient norm...

10 / 33

Page 37: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Recall f(xk+1) ≤ f(xk)− 12L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −∆2k

2Lr20

= ∆k

(1− ∆k

2Lr20

)

= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1≥ 1

∆k(1 + β) =

1

∆k+

1

2Lr20

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

11 / 33

Page 38: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Recall f(xk+1) ≤ f(xk)− 12L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −∆2k

2Lr20

= ∆k

(1− ∆k

2Lr20

)= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1≥ 1

∆k(1 + β) =

1

∆k+

1

2Lr20

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

11 / 33

Page 39: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Recall f(xk+1) ≤ f(xk)− 12L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −∆2k

2Lr20

= ∆k

(1− ∆k

2Lr20

)= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1≥ 1

∆k(1 + β) =

1

∆k+

1

2Lr20

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

11 / 33

Page 40: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Recall f(xk+1) ≤ f(xk)− 12L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −∆2k

2Lr20

= ∆k

(1− ∆k

2Lr20

)= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1≥ 1

∆k(1 + β) =

1

∆k+

1

2Lr20

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

11 / 33

Page 41: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

Recall f(xk+1) ≤ f(xk)− 12L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −∆2k

2Lr20

= ∆k

(1− ∆k

2Lr20

)= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1≥ 1

∆k(1 + β) =

1

∆k+

1

2Lr20

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

11 / 33

Page 42: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

I Rearrange to conclude

f(xT )− f∗ ≤ 2L∆0r20

2Lr20 + T∆0

I Use descent lemma to bound ∆0 ≤ (L/2)‖x0 − x∗‖22; simplify

f(xT )− f(x∗) ≤ 2L∆0‖x0 − x∗‖22T + 4

= O(1/T ).

Exercise: Prove above simplification.

12 / 33

Page 43: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

I Rearrange to conclude

f(xT )− f∗ ≤ 2L∆0r20

2Lr20 + T∆0

I Use descent lemma to bound ∆0 ≤ (L/2)‖x0 − x∗‖22; simplify

f(xT )− f(x∗) ≤ 2L∆0‖x0 − x∗‖22T + 4

= O(1/T ).

Exercise: Prove above simplification.

12 / 33

Page 44: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Convergence rate

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1≥ 1

∆0+T + 1

2Lr20

I Rearrange to conclude

f(xT )− f∗ ≤ 2L∆0r20

2Lr20 + T∆0

I Use descent lemma to bound ∆0 ≤ (L/2)‖x0 − x∗‖22; simplify

f(xT )− f(x∗) ≤ 2L∆0‖x0 − x∗‖22T + 4

= O(1/T ).

Exercise: Prove above simplification.

12 / 33

Page 45: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Rates of convergence

Suppose a sequence{sk}→ s.

I Linear If there is a constant r ∈ (0, 1) such that

limk→∞

‖sk+1 − s‖2‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;2.{srk}

, where |r| < 1: linear with rate r

13 / 33

Page 46: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Rates of convergence

Suppose a sequence{sk}→ s.

I Linear If there is a constant r ∈ (0, 1) such that

limk→∞

‖sk+1 − s‖2‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;2.{srk}

, where |r| < 1: linear with rate r

13 / 33

Page 47: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Rates of convergence

Suppose a sequence{sk}→ s.

I Linear If there is a constant r ∈ (0, 1) such that

limk→∞

‖sk+1 − s‖2‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;2.{srk}

, where |r| < 1: linear with rate r

13 / 33

Page 48: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Rates of convergence

Suppose a sequence{sk}→ s.

I Linear If there is a constant r ∈ (0, 1) such that

limk→∞

‖sk+1 − s‖2‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;2.{srk}

, where |r| < 1: linear with rate r

13 / 33

Page 49: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Rates of convergence

Suppose a sequence{sk}→ s.

I Linear If there is a constant r ∈ (0, 1) such that

limk→∞

‖sk+1 − s‖2‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;2.{srk}

, where |r| < 1: linear with rate r

13 / 33

Page 50: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – faster rate

Assumption: Strong convexity; denote f ∈ S1L,µ

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ2‖x− y‖22

♣ Rarely do we have so much convexity!

♣ The extra convexity makes function “well-conditioned”

♣ Exercise: Prove strong convexity =⇒ strict convexity

♣ C1L was sublinear; strong convexity leads linear rate

14 / 33

Page 51: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – faster rate

Assumption: Strong convexity; denote f ∈ S1L,µ

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ2‖x− y‖22

♣ Rarely do we have so much convexity!

♣ The extra convexity makes function “well-conditioned”

♣ Exercise: Prove strong convexity =⇒ strict convexity

♣ C1L was sublinear; strong convexity leads linear rate

14 / 33

Page 52: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient descent – faster rate

Assumption: Strong convexity; denote f ∈ S1L,µ

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ2‖x− y‖22

♣ Rarely do we have so much convexity!

♣ The extra convexity makes function “well-conditioned”

♣ Exercise: Prove strong convexity =⇒ strict convexity

♣ C1L was sublinear; strong convexity leads linear rate

14 / 33

Page 53: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µxI If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 54: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µxI If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 55: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µxI If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 56: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µx

I If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 57: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µxI If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 58: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex case – growth

Thm A. f ∈ S1L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.Exercise: Prove this claim.

Thm B. Suppose f ∈ S1L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L‖x− y‖22 +

1

µ+ L‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ2‖x‖22

I ∇φ(x) = ∇f(x)− µxI If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1L−µ‖∇φ(x)−∇φ(y)‖2

15 / 33

Page 59: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

Theorem. If f ∈ S1L,µ, 0 < α < 2/(L + µ), then the gradient

method generates a sequence{xk}

that satisfies

‖xk − x∗‖22 ≤(

1− 2αµL

µ+ L

)k‖x0 − x∗‖2.

Moreover, if α = 2/(L+ µ) then

f(xk)− f∗ ≤ L

2

(κ− 1

κ+ 1

)2k

‖x0 − x∗‖22,

where κ = L/µ is the condition number.

16 / 33

Page 60: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤(

1− 2αµL

µ+ L

)r2k + α

(α− 2

µ+ L

)‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.

17 / 33

Page 61: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤(

1− 2αµL

µ+ L

)r2k + α

(α− 2

µ+ L

)‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.

17 / 33

Page 62: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤(

1− 2αµL

µ+ L

)r2k + α

(α− 2

µ+ L

)‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.

17 / 33

Page 63: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤(

1− 2αµL

µ+ L

)r2k + α

(α− 2

µ+ L

)‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.

17 / 33

Page 64: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤(

1− 2αµL

µ+ L

)r2k + α

(α− 2

µ+ L

)‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.

17 / 33

Page 65: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient methods – lower bounds

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ k ≤12(n− 1), there is a smooth f , s.t.

f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖2232(k + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, stronglyconvex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xk)− f(x∗) ≥ µ

2

(√κ− 1√κ+ 1

)2k

‖x0 − x∗‖22.

I Notice gap between lower and upper bounds!I We’ll come back to these toward end of course

18 / 33

Page 66: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient methods – lower bounds

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ k ≤12(n− 1), there is a smooth f , s.t.

f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖2232(k + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, stronglyconvex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xk)− f(x∗) ≥ µ

2

(√κ− 1√κ+ 1

)2k

‖x0 − x∗‖22.

I Notice gap between lower and upper bounds!I We’ll come back to these toward end of course

18 / 33

Page 67: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient methods – lower bounds

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ k ≤12(n− 1), there is a smooth f , s.t.

f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖2232(k + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, stronglyconvex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xk)− f(x∗) ≥ µ

2

(√κ− 1√κ+ 1

)2k

‖x0 − x∗‖22.

I Notice gap between lower and upper bounds!

I We’ll come back to these toward end of course

18 / 33

Page 68: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient methods – lower bounds

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ k ≤12(n− 1), there is a smooth f , s.t.

f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖2232(k + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, stronglyconvex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xk)− f(x∗) ≥ µ

2

(√κ− 1√κ+ 1

)2k

‖x0 − x∗‖22.

I Notice gap between lower and upper bounds!I We’ll come back to these toward end of course

18 / 33

Page 69: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Exercise

♠ Let D be the (n− 1)× n differencing matrix

D =

−1 1

−1 1. . .

−1 1

∈ R(n−1)×n,

♠ f(x) = 12‖DTx− b‖22 = 1

2(‖DTx‖22 + ‖b‖22 − 2〈DTx, b〉)♠ Try different choices of b, and different initial vectors x0

♠ Determine L and µ for above f(x) (nice linalg exercise!)

♠ Exercise: Try α = 2/(L+ µ) and other stepsize choices;report on empirical performance

♠ Exercise: Experiment to see how large n must be beforegradient method starts outperforming CVX

♠ Exercise: Minimize f(x) for large n; e.g., n = 106, n = 107

19 / 33

Page 70: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained problems

20 / 33

Page 71: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

min f(x) s.t. x ∈ X〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ X .

x∗

∇f(x∗)xf(x

)

X

21 / 33

Page 72: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

xk+1 = xk + αkdk

I dk – feasible direction, i.e., xk + αkdk ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(zk − xk), αk ∈ (0, 1]

22 / 33

Page 73: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

xk+1 = xk + αkdk

I dk – feasible direction, i.e., xk + αkdk ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(zk − xk), αk ∈ (0, 1]

22 / 33

Page 74: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

xk+1 = xk + αkdk

I dk – feasible direction, i.e., xk + αkdk ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(zk − xk), αk ∈ (0, 1]

22 / 33

Page 75: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

xk+1 = xk + αkdk

I dk – feasible direction, i.e., xk + αkdk ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(zk − xk), αk ∈ (0, 1]

22 / 33

Page 76: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Constrained optimization

xk+1 = xk + αkdk

I dk – feasible direction, i.e., xk + αkdk ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(zk − xk), αk ∈ (0, 1]

22 / 33

Page 77: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Cone of feasible directions

x

Xd

Feasib

le direc

tions a

t x

23 / 33

Page 78: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Conditional gradient method

Optimality: 〈∇f(xk), zk − xk〉 ≥ 0 for all zk ∈ X

Aim: If not optimal, then generate feasible direction dk = zk − xkthat obeys descent condition 〈∇f(xk), dk〉 < 0.

Frank-Wolfe (Conditional gradient) method

N Let zk ∈ argminx∈X 〈∇f(xk), x− xk〉N Use different methods to select αk

N xk+1 = xk + αk(zk − xk)

♠ Practical when easy to solve linear problem over X .

♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)

24 / 33

Page 79: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Conditional gradient method

Optimality: 〈∇f(xk), zk − xk〉 ≥ 0 for all zk ∈ XAim: If not optimal, then generate feasible direction dk = zk − xkthat obeys descent condition 〈∇f(xk), dk〉 < 0.

Frank-Wolfe (Conditional gradient) method

N Let zk ∈ argminx∈X 〈∇f(xk), x− xk〉N Use different methods to select αk

N xk+1 = xk + αk(zk − xk)

♠ Practical when easy to solve linear problem over X .

♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)

24 / 33

Page 80: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Conditional gradient method

Optimality: 〈∇f(xk), zk − xk〉 ≥ 0 for all zk ∈ XAim: If not optimal, then generate feasible direction dk = zk − xkthat obeys descent condition 〈∇f(xk), dk〉 < 0.

Frank-Wolfe (Conditional gradient) method

N Let zk ∈ argminx∈X 〈∇f(xk), x− xk〉N Use different methods to select αk

N xk+1 = xk + αk(zk − xk)

♠ Practical when easy to solve linear problem over X .

♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)

24 / 33

Page 81: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Conditional gradient method

Optimality: 〈∇f(xk), zk − xk〉 ≥ 0 for all zk ∈ XAim: If not optimal, then generate feasible direction dk = zk − xkthat obeys descent condition 〈∇f(xk), dk〉 < 0.

Frank-Wolfe (Conditional gradient) method

N Let zk ∈ argminx∈X 〈∇f(xk), x− xk〉N Use different methods to select αk

N xk+1 = xk + αk(zk − xk)

♠ Practical when easy to solve linear problem over X .

♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)

24 / 33

Page 82: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection

I FW method can be slow

I If X not compact, doesn’t make sense

I A possible alternative (with other weaknesses though!)

If constraint set X is simple, i.e., we can easily solve projections

min 12‖x− y‖2 s.t. x ∈ X .

xk+1 = PX(xk − αk∇f(xk)

), k = 0, 1, . . .

where PX denotes above orthogonal projection.

25 / 33

Page 83: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection

I FW method can be slow

I If X not compact, doesn’t make sense

I A possible alternative (with other weaknesses though!)

If constraint set X is simple, i.e., we can easily solve projections

min 12‖x− y‖2 s.t. x ∈ X .

xk+1 = PX(xk − αk∇f(xk)

), k = 0, 1, . . .

where PX denotes above orthogonal projection.

25 / 33

Page 84: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection

I FW method can be slow

I If X not compact, doesn’t make sense

I A possible alternative (with other weaknesses though!)

If constraint set X is simple, i.e., we can easily solve projections

min 12‖x− y‖2 s.t. x ∈ X .

xk+1 = PX(xk − αk∇f(xk)

), k = 0, 1, . . .

where PX denotes above orthogonal projection.

25 / 33

Page 85: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence

Depends on the following crucial properties of P

Nonexpansivity: ‖Px− Py‖2 ≤ ‖x− y‖2Firm nonxpansivity: ‖Px− Py‖22 ≤ 〈Px− Py, x− y〉

♥ Using the above, essentially convergence analysis withαk = 1/L that we saw for the unconstrained case works.

♥ Skipping for now; (see next slides though)

Exercise: Recall f(x) = 12‖DTx− b‖22. Write a matlab script to

minimize this function over the convex set X := {−1 ≤ xi ≤ 1}.

26 / 33

Page 86: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence

Depends on the following crucial properties of P

Nonexpansivity: ‖Px− Py‖2 ≤ ‖x− y‖2Firm nonxpansivity: ‖Px− Py‖22 ≤ 〈Px− Py, x− y〉

♥ Using the above, essentially convergence analysis withαk = 1/L that we saw for the unconstrained case works.

♥ Skipping for now; (see next slides though)

Exercise: Recall f(x) = 12‖DTx− b‖22. Write a matlab script to

minimize this function over the convex set X := {−1 ≤ xi ≤ 1}.

26 / 33

Page 87: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence

Depends on the following crucial properties of P

Nonexpansivity: ‖Px− Py‖2 ≤ ‖x− y‖2Firm nonxpansivity: ‖Px− Py‖22 ≤ 〈Px− Py, x− y〉

♥ Using the above, essentially convergence analysis withαk = 1/L that we saw for the unconstrained case works.

♥ Skipping for now; (see next slides though)

Exercise: Recall f(x) = 12‖DTx− b‖22. Write a matlab script to

minimize this function over the convex set X := {−1 ≤ xi ≤ 1}.

26 / 33

Page 88: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence

Depends on the following crucial properties of P

Nonexpansivity: ‖Px− Py‖2 ≤ ‖x− y‖2Firm nonxpansivity: ‖Px− Py‖22 ≤ 〈Px− Py, x− y〉

♥ Using the above, essentially convergence analysis withαk = 1/L that we saw for the unconstrained case works.

♥ Skipping for now; (see next slides though)

Exercise: Recall f(x) = 12‖DTx− b‖22. Write a matlab script to

minimize this function over the convex set X := {−1 ≤ xi ≤ 1}.

26 / 33

Page 89: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22

Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 90: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 91: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 92: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 93: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 94: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invokingCauchy-Schwarz

27 / 33

Page 95: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22〈P (x− αg)− Px, g〉 ≥ −α‖g‖22L2 ‖P (x− αg)− Px‖22 ≤ L

2α2‖g‖22

28 / 33

Page 96: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22〈P (x− αg)− Px, g〉 ≥ −α‖g‖22L2 ‖P (x− αg)− Px‖22 ≤ L

2α2‖g‖22

28 / 33

Page 97: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22

〈P (x− αg)− Px, g〉 ≥ −α‖g‖22L2 ‖P (x− αg)− Px‖22 ≤ L

2α2‖g‖22

28 / 33

Page 98: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22〈P (x− αg)− Px, g〉 ≥ −α‖g‖22

L2 ‖P (x− αg)− Px‖22 ≤ L

2α2‖g‖22

28 / 33

Page 99: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22〈P (x− αg)− Px, g〉 ≥ −α‖g‖22L2 ‖P (x− αg)− Px‖22 ≤ L

2α2‖g‖22

28 / 33

Page 100: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Optimal gradient methods

29 / 33

Page 101: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Optimal gradient methods

We saw upper bounds: O(1/T ), and linear rate involving κ

We saw lower bounds: O(1/T 2), and linear rate involving√κ

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don’t insist on f(xk+1) ≤ f(xk)Note 2: Use “multi-steps”

30 / 33

Page 102: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Optimal gradient methods

We saw upper bounds: O(1/T ), and linear rate involving κ

We saw lower bounds: O(1/T 2), and linear rate involving√κ

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don’t insist on f(xk+1) ≤ f(xk)Note 2: Use “multi-steps”

30 / 33

Page 103: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Optimal gradient methods

We saw upper bounds: O(1/T ), and linear rate involving κ

We saw lower bounds: O(1/T 2), and linear rate involving√κ

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don’t insist on f(xk+1) ≤ f(xk)Note 2: Use “multi-steps”

30 / 33

Page 104: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Optimal gradient methods

We saw upper bounds: O(1/T ), and linear rate involving κ

We saw lower bounds: O(1/T 2), and linear rate involving√κ

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don’t insist on f(xk+1) ≤ f(xk)Note 2: Use “multi-steps”

30 / 33

Page 105: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)Let xk+1 = yk − 1

L∇f(yk)Obtain αk+1 by solvingα2k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥√µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(1−

õ

L

)T,

4L

(2√L+ c2T )2

},

where constants c1, c2 depend on α0, L, µ.

31 / 33

Page 106: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)Let xk+1 = yk − 1

L∇f(yk)

Obtain αk+1 by solvingα2k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥√µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(1−

õ

L

)T,

4L

(2√L+ c2T )2

},

where constants c1, c2 depend on α0, L, µ.

31 / 33

Page 107: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)Let xk+1 = yk − 1

L∇f(yk)Obtain αk+1 by solvingα2k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥√µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(1−

õ

L

)T,

4L

(2√L+ c2T )2

},

where constants c1, c2 depend on α0, L, µ.

31 / 33

Page 108: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)Let xk+1 = yk − 1

L∇f(yk)Obtain αk+1 by solvingα2k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥√µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(1−

õ

L

)T,

4L

(2√L+ c2T )2

},

where constants c1, c2 depend on α0, L, µ.

31 / 33

Page 109: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)Let xk+1 = yk − 1

L∇f(yk)Obtain αk+1 by solvingα2k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥√µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(1−

õ

L

)T,

4L

(2√L+ c2T )2

},

where constants c1, c2 depend on α0, L, µ.

31 / 33

Page 110: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strong-convexity – simplification

If µ > 0, select α0 =√µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1L∇f(yk)

β = (√L−√µ)/(

√L+√µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33

Page 111: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strong-convexity – simplification

If µ > 0, select α0 =√µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1L∇f(yk)

β = (√L−√µ)/(

√L+√µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33

Page 112: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

Strong-convexity – simplification

If µ > 0, select α0 =√µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1L∇f(yk)

β = (√L−√µ)/(

√L+√µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33

Page 113: Convex Optimization - Suvrit Sra (∯∐∇⊉I⊤ ∳⊋ )suvrit.de/teach/ee227a/lect14.pdf · Convex Optimization (EE227A: UC Berkeley) Lecture 14 (Gradient methods { II) 07 March,

References

1 Y. Nesterov. Introductory lectures on convex optimization

2 D. Bertsekas. Nonlinear programming

33 / 33