17
COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker , D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*, P. Sternin, and O.Y. Gnedin** Ioffe Physical Technical Institute, St.-Petersburg, Russia *Rikkyo University, Tokyo 171-8501, Japan **Ohio State University, 760 1/2 Park Street, Columbus, OH 43215, USA Conclusions Introducti on Physics input Cooling calculations Nanjing 2006.07.25

COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Embed Size (px)

Citation preview

Page 1: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

COOLING OF MAGNETARS WITH INTERNALCOOLING OF MAGNETARS WITH INTERNAL LAYER HEATINGLAYER HEATING

A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*, P. Sternin, and O.Y. Gnedin**

Ioffe Physical Technical Institute, St.-Petersburg, Russia*Rikkyo University, Tokyo 171-8501, Japan **Ohio State University, 760 1/2 Park Street, Columbus, OH 43215, USA

Conclusions

Introduction

Physics input

Cooling calculations

Nanjing 2006.07.25

Page 2: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

)(TTT ss

Thermal balance:

Photon luminosity:

Heat blanketingenvelope:

ergsTUT2

94810~Heat content:

Cooling theory with internal heating

Main cooling regulators:

1. EOS2. Neutrino emission3. Reheating processes4. Superfluidity5. Magnetic fields6. Light elements on the surface

42L 4 sR T

Heat transport:

( )dT

C T W L Ldt

;dT

Fdr

- effective thermal conductivity

Page 3: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Direct Urca (Durca) process

e

ep

n

Lattimer, Pethick, Prakash, Haensel (1991)

ee nepepn ,

eenn

dfffwQ epnfi )1)(1(2

npeepn

A Tc

mmmgGQ

6

31022 )31(

10080457

169

4610~ sergTL

Threshold: FeFpFn ppp 02 ~in the inner coresof massive stars

Similar processes with muons : produce

Similar processes with hyperons, e.g.:

n

1369

27103~ scmergTQ

Page 4: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Inner cores of massive neutron stars:

Nucleons,hyperons

Pioncondensates

Kaoncondensates

Quarkmatter

e

e

nep

epn

e

e

nep

epn

~~

~~

e

e

qeq

eqq

~~

~~

e

e

deu

eud

scmerg

TQ 36

927103~

scmerg

TQ 36

9262410~

scmerg

TQ 36

9242310~

scmerg

TQ 36

9242310~

serg

TL 69

4610~

serg

TL 69

444210~

serg

TL 69

424110~

serg

TL 69

424110~

Everywhere in neutron star cores. Most important in low-mass stars.

ModifiedUrca process

Brems-strahlung

e

e

NnNep

NepNn

NNNN

scmerg

TQ 38

9222010~

scmerg

TQ 38

9201810~

serg

TL 89

403810~

serg

TL 89

383610~

,,e

Page 5: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

NONSUPERFLUID NEUTRON STARS: Modified URCA versus Direct URCA

EOS: PAL-I-240 (Prakash, Ainsworth, Lattimer 1988)

Page 6: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Magnetars versus ordinary cooling neutron stars

Two assumptions:(1) The magnetar data reflect persistent thermal surface emission(2) Magnetars are cooling neutron stars

There should be a REHEATING!Which we assume to be INTERNAL

Page 7: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

1. EOS: APR III (n, p, e, µ) Gusakov et al. (2005) Akmal-Pandharipande-Ravenhall (1998) -- neutron star models

Parametrization: Heiselberg & Hiorth-Jensen (1999)

2. Heat blanketing envelope: 310 /10 cmgb

sb TT -- relation;

)(sT surface temperature,

;4442 dTLTR seff

effT -- effective temperature;

d -- surface element

( )b bT T

Page 8: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

21

H

H0

Model of heating:

at 21 10 11 3

1 23 10 ; 10 ;g cm i

12 12 31 210 ; 3 10 ;g cm ii

13 14 31 23 10 ; 10 ;g cm iii

14 32 ; =9 10 ;g cm iv

erg s -1

erg cm -3 s -1

- characteristic time of the heating

Page 9: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

No isothermal stage

Core — crust decoupling

yrt 310 1- SGR 1900+142- SGR 0526-663- AXP 1E 1841-045

5- AXP 1RXS J170849-4009106- AXP 4U 0142+617- AXP 1E 2259+586

Only outer layers of heating are appropriate for hottest NSs

4- CXOU J010043.-721134

Page 10: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Direct Urca process included :

Modified Urca process :Duration of heating

Page 11: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Enhanced and weakened thermal conductivity

Appearance of isothermal layers

from tomin =3 x 10 12max =10 14 g cm -3

Page 12: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Necessary energy input vrs. photon luminosity

)(s

erg into the layer W 1 2

Page 13: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

THE

THE NATURE OF INTERNAL HEATING

1. The stored energy ETOT=1049—1050 erg is released in t=104—105 years.

2. It can still be the energy of internal magnetic field B=(1—3)x1016 G in the magnetar core.

3. The energy can be stored in the entire star but relesed in the outer crust -- Ohmic dissipation? Generation of waves which dissipate in the outer crust?

}Energy release

Energy storage

Page 14: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Neutrino emission mechanisms in the magnetar outer envelope

No Mechanism Reaction

1 Plasmon decay

2 Electron-positron

pair annihilation

3 Electron-nucleus

bremsstrahlung

4 Photoneutrino

5 Neutrino synchrotron

e e

e Z e Z

e e

2 2 22 5 14 2 5F

SYN B 13 95 7 8 3

2 (5) erg ( ) 9.04 10

9 cm s

e G BQ C k T B T

c

e e

Page 15: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

NEUTRINO EMISSION IN THE CRUST AT DIFFERENT TEMPERATURES

Page 16: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

MAGNETARS WITH NEUTRINO SYNCHROTRON EMISSION

Page 17: COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,

Conclusions

1. Our main assumption: the heating source is located inside the neutron star

2. The heating source must be close to the surface: 115 10 g cm -3

3. The heat intensity should range:19 20

03 10 3 10H erg cm-3 s-1

4. Heating of deeper layers is extremely inefficient due to neutrino radiation

Pumping huge energy into the deeper layers would not increase 5. sT

6. Strongly nonuniform temperature distribution:

in the heating layer T > 109 K;

the bottom of the crust and the stellar core remain much colder T << 109 K

7. Thermal decoupling of the outer crust from the inner layers

8. The total energy release (during 104 – 105 years)

cannot be lower than 1049—1050 erg;

only 1% of this energy can be spent to heat the surface