90
To Do List WaTER NaOH Stabilization Concentrate disposal (evap. Ponds) pipelines intakes outfalls Energy cost for Concentrate Dechlorination / Ozonation mods. Cost formulas, where did they come from, are they estimated from graphs or fro Evap Ponds Deep Well injection set lower limits set upper limits heating & lighting is not based on day light or outside air temp. "H2O analysis" - Valence changes with pH "References" Section WT Cost Software Comments have check marks for including/not including certain costs (e.g. building heat needing work:

Copy of WaTER

Embed Size (px)

DESCRIPTION

Copy of WaTER Copy of WaTER

Citation preview

Page 1: Copy of WaTER

To Do ListThis is a list of items we have identified as needing work:

WaTER NaOHStabilizationConcentrate disposal (evap. Ponds)pipelinesintakesoutfalls Energy cost for Concentrate outfallDechlorination / Ozonation mods.Cost formulas, where did they come from, are they estimated from graphs or from qasimEvap PondsDeep Well injectionset lower limitsset upper limitsheating & lighting is not based on day light or outside air temp."H2O analysis" - Valence changes with pH"References" Section

WT Cost Software Commentshave check marks for including/not including certain costs (e.g. building heating)

Page 2: Copy of WaTER

Energy cost for Concentrate outfall

Page 3: Copy of WaTER

Introduction to this model (WaTER)

I. Moch & Assoc., Inc. PMB 161, Suite 6, 1812 Marsh Road, Wilmington, DE 19910-4528(302) 477-0420, Fax: (302) 477-0242, E- Mail:[email protected]

Comments

We welcome any comments (especially corrections).Comments on this model should be addressed to Michelle Chapman at the USBR in Denver

11/4/2005

WaTER or "Water Treatment Estimation Routine" is a model for estimating the cost of drinking water treatment. WaTER is the MS Excel program that is the basis for the Visual Basic program called "WTCost". WaTER was developed by the U.S. Bureau of Reclamation (USBR) "Water Treatment Engineering and Research Group". WaTER is updated on a semi continuous basis (adding new treatment techniques, modifying costs, etc.). WaTER can be downloaded at: http://www.usbr.gov/pmts/water/awtr.html

WaTER uses the 1979 USEPA water treatment cost estimates (1978 dollars) and the 1992 Quasim updates to the 1979 costs as the basis. Costs are updated to todays costs. Processes not included in the 1979 or 1992 updates are estimated from USBR experience and manufacturere estimates. The majoirty of the program is based on applicable flows between 1 and 200 MGD. There has been some recent work incorporating smaller flows of 2,500 gpd to 1 MGD.

Information on treatment techniques included in WaTER for all USEPA regulated contaminants can be found in the USBR publication "Water Treatment Primer for Communities in Need"

WTcost is a Visual Basic version of this program (with some edits and additions) developed by Irvine Moch. This program is for sale through Irvine Moch & Associates.

This version last updated on: 12/18/06

This model is updated on a continuous basis when funding and time permits. Work on this model is not currently funded and has not been funded since FY04. Although this is labeled as a "Non Functional Version" there are many components that work. The non functional status comes from the fact that not everything has been fully checked and there are some components that do not funciton or do not function correctly.

[email protected]

Page 4: Copy of WaTER

Key for WaTER program

= usually contain formulas or data that do change= requires entry of data, and may or may not change= entered data that usually do not change= reference= goal seek cells= limit error

### = unknown use of data = future work and problems that need to be fixed

Major NotesCapital costs are computed using the peak day flow and an operation time factor (OTF) to account for down time which increases the hourly flow rate, but not the daily flow rateO&M costs are computed using the average daily flow which accounts for daily usage of chemicals, power, etc.

Design Notes

Page 5: Copy of WaTER

Capital costs are computed using the peak day flow and an operation time factor (OTF) to account for down time which increases the hourly flow rate, but not the daily flow rateO&M costs are computed using the average daily flow which accounts for daily usage of chemicals, power, etc.

Page 6: Copy of WaTER

Components of the WaTER program

Intake Pipe

Rapid Mix Tank UFSCC Gravity Filter

MF

UF

NF/RO

ED

IX

Coagulant-Ferric Chloride-Ferric Sulfate-Alum (dru)-Alum (liquid)

Coagulant Aid-PolyElectrolyte-PACl

Concentrate Outfall Concentrate Disposal- Outfall- Evap. Ponds

Dechlorination-Sodium Bisulfite-Sodium Sulfite-Sulfer Dioxide

Chemicals-Cl2

-Ozone-Potassium Permanganate-Acid-Lime

Disinfection-Cl2

-Ozone-Chlorine Dioxide-Chloramines

Air Stripping

Rapid Mix Tank UFSCC Gravity Filter

MF

UF

Coagulant-Ferric Chloride-Ferric Sulfate-Alum (dry)-Alum (liquid)-PACl-Lime

Coagulant Aid-PolyElectrolyte

Concentrate Outfall

Pre-TreatmentIntake Primary Treatment

Clearwell

Desalination Disinfection

Chemicals-Cl2

-Ozone-Potassium Permanganate-Acid-Lime

Air Stripping

Stabilization

Disinfection-Cl2

-Ozone-Chlorine Dioxide-Chloramines

Blending

Chemicals-Cl2

-Ozone-Potassium Permanganate-Acid-Lime-Antiscalant

Plant Production Flow

Desal Product Flow

Plant Production Flow

Plant Production Flow

PreDesal Primary Treatment Product

Flow

Primary Treatment Product Flow

Plant Feed Flow

Pre Desal Primary Treatment Feed Flow

Primary Treatment Feed Flow

Blending Flow

Desal Feed Flow

NF/RO Feed Flow

NF/RO Product Flow

FLOW

FLOW

FLOW

Drawing Not Completely Accurate

Page 7: Copy of WaTER

Warnings

Note: If Warnings are present, they are higlighted with red fill e.g.

Worksheet Worksheet Paremeter unitsb Capacity Feed Flow MGDe H20 Analysis Ion Product for Concentratei Acid Acid addition H2SO4 Dose Rate by volumej IronFeed Basis dose rate kg/day

k AlumFeedCalculated dose rate kg/hr.Liquid Alum dose rate kg/hr.

L PolyAC Calculated dose rate kg/hr.m De-Cl2&O4 Basis dose rate kg/day: kg/hr.n CL2 Basis kg/day

o NHCLCalculated Cl2 Dose kg/dayCalculated Aqua Ammonia kg/day

p Ozone Ozone Requirements: kg/day

q LimeFeedBasis Lime: kg/hrBasis Soda: kg/hr

r Antiscalent Polymer Basis Polymer Feed kg/days PolyElectrolyte Basis Polymer Feed kg/day

t KMnO4Basis KMnO4 kg/dayFeed/Product Flow gpd

w GravityFilt Filter area (m2): m2Filter area (m2): m2

y IX Service Flow Rate : L/(hr*L resin)Filter area (m2): m2

z MF-P input Design MF product flow rate MGDf RO&NF Input Primary Treatment Product Flow L/s

Size hp Size hp Size hp

Page 8: Copy of WaTER

Value Lower limit Upper Limit

0 0.000190 0.04 20

1212 144 7200064 4 2300

128 4 250016 4 2300

401 0.5 100946 4 4500

1568 4 4500376 110 2300379 4 1800118 4 4500

0 4 4500223 0.4 100223 0.5 100891 0.4 220

81699 2500 200,000,0002120 13 26002120 13 2600

20 16 4050 13 2600

100 0.01 04796 0 0

528 error error163 3 350139 3 350

Page 9: Copy of WaTER

assumptions

assuming H2SO4 limits and not HCLassuming ferrics sulfate and not ferrous chloride limits

b/w pumpgravity filter

high pressure pumptransfer pumpproduct water pump

Page 10: Copy of WaTER

not in epa not in epa

not in epa

not in epa

wrong calculation/referece in table

Limits (From EPA-600/2-79-162b, figure 39-41)Limits (From EPA-600/2-79-162b, figure 39-41)Limits (From EPA-600/2-79-162b, figure 16-18)Limits (From EPA-600/2-79-162b, figure 16-18)

Limits (From EPA-600/2-79-162b, figure 1-3)Limits (From EPA-600/2-79-162b, figure 1-3)Limits (From EPA-600/2-79-162b, figure 42-44)Limits (From EPA-600/2-79-162b, figure 11-13)Limits (From EPA-600/2-79-162b, figure 24-26)

Limits (From EPA-600/2-79-162b, figure 21-23)

Limits (From EPA-600/2-79-162b, figure 27-29)Limits (From EPA-600/2-79-162b, and EPA-600/3-79-162b

Limits (From EPA-600/2-79-162b, figure 67-69)

Page 11: Copy of WaTER

EPA-600/2-79-162cEstimating Water Treatment Costs. Volume 3. Cost Curves Applicable to 2,500 gpd to 1 MGD Treatment PlantsHansen, Sigurd, Robert Gumerman, and Ressell Culp.August 1979.Concract # 68-03-2516196 pages

Page 12: Copy of WaTER

Estimating Water Treatment Costs. Volume 3. Cost Curves Applicable to 2,500 gpd to 1 MGD Treatment Plants

Page 13: Copy of WaTER

Project Info

Project Name Model Development

Date 06/07/04

Membrane Stage A1 (if applicable)

Worksheets included in this program:

# Worksheet Descriptiona Project & Stage Info Project title, date, list of worksheets in WaTERb Capacity Production Capacity and water data reportc Report Process information input and cost outputd Cost Index Cost indices, interest rates, amortizatione H2O Analysis Water quality inputf RO & NF Input Input of membrane and system parametersg RO & NF Output Cost and energy outputh CO2 Recarbonation basini Acid Sulfuric & Hydorchloric acidj IronFeedk Alum FeedL PAClm De-Cl2 Dechlorination with sodium sulfite, sodium bisulfite, and sulfer dioxiden Cl2o NHClp Ozoneq Lime Feedr Antiscalants PolyElectrolytet KMnO4u GACv Clearwellw Gravity Filterx UFSCCy IXz MF Inputaa MF Outputbb Rejectioncc ConcOutfalldd IonicsEDee ED2ff Pumpsgg StandardAnalyseshh S&DSIii LSI NF & RO Conditioningjj Stiff & Davis

Page 14: Copy of WaTER

{b}Capacity

Water Treatment Cost Estimation Program

Project Name Date Stage

Model Development 06/07/04 A1

Flow Rate Input Page & Water Data Report

Plant Operations Schedule % decimal95 0.95 (used to estimate production/year)

100 1.00 (used to calculate energy & chemical costs)0.950

1000 cfs and 300 cfs. Most flow rates are limited to 1 to 200 MGD 1,292,630,400 646,315,200 193,894,560

897,660 448,830 134,649 2000 1000 300

Average Daily FlowPlant Production Flow L/Sec. L/Min. L/day gpm gph gpd MGD gal/yearFlowrate (Enter in ONE of these cells, set rest cells to "0") 0.00 0.0 0 0 0 0 100.00 0

4,380.79 262,847.2 378,500,000 69436.9 4,166,215 99,989,169 99.99 36,520,244,042 378,500 138,244,0974,611.35 276,681.3 73,091.5 4,385,490 105,251,757

398,421,053 105.3 38,442,362,150 398,421.1 145,520,102

Peak Day FlowPlant Production Flow L/Sec. L/Min. L/day gpm gph gpd MGD gal/yearFlowrate (Enter in ONE of these cells, set rest cells to "0") 0.00 0.0 0 0.0 0 0 1.00 0Flowrate 43.81 2,628.5 3,785,000 694.4 41,662 999,892 1.00 365,202,440 3,785 1,382,441

46.11 2,766.8 730.9 43,855 1,052,5183,984,211 1.1 384,423,621 3,984.2 1,455,201.0

NF/RO Feed Flow Rate L/Sec. L/Min. L/day gpm gph gpd MGD gal/year5,153.87 309,232.03 445,294,118 81,690.50 4,901,429.85 117,634,316 117.63 42,964,992,991 445,294.12 162,640,114.12

54.25 3,255.07 859.90 51,594.00 1,238,256

Rapid Mix Feed Flow Rate L/Sec. L/Min. L/day gpm gph gpd MGD gal/year5,153.87 309,232.03 445,294,118 81,690.50 4,901,429.85 117,634,316 117.63 42,964,992,991 445,294.12 162,640,114.12

54.25 3,255.07 859.90 51,594.00 1,238,256

Plant availability due to down timePlanned operation time per day Combined operation time factor (OTF)

Note: Peak daily flow should be used for capital costs and average daily flow should be used for O&M costs

m3/day m3/year

O&M: FlowrateFlowrate (with OTF)

System Capacity (with OTF)

m3/day m3/year

Capital: Flowrate (with OTF)

System Capacity (with OTF)

m3/day m3/yearO&M: NF/RO Feed Flow Rate:*Capital: NF/RO Feed Flow Rate (with OTF):

Note: NF/RO Feed Flow = (Plant Production Flow) / (NF/RO Recovery)

m3/day m3/yearO&M: Rapid Mix Feed Flow Rate:*Capital: Rapid Mix Feed Flow Rate (with OTF):

Note Rapid Mix Feed Flow = (Plant Production Flow) / (NF/RO Recovery)

Page 15: Copy of WaTER

{u}GAC

Water Treatment Cost Estimation Program

Granular Activated Carbon Filtration

Units

Desired Flow Rate: 4611 L/s

Bed Life (months) 12% $ 28,273,633 1978 Capital Cost:

Page 16: Copy of WaTER

{u}GAC

Water Treatment Cost Estimation Program

Alternative Units Alternative Units

73,099 gpm 398,421

6 3 $ 59,763,158 $ 79,684,211

m3/day

Page 17: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Cost reports for water treatment processes

Production Capacity

Average Daily Flow (for O&M) Peak Daily Flow (for capital)

378,500 3,785

138,244,097 1,382,441 99,989 1,000 kgal/day

36,520,244 365,202 kgal/year

Process Cost Parameter Units Alternative Units

Construction Cost Operating Cost

$ $/kgal $/yr $/kgal

Inta

ke

Pre

-Tre

atm

en

t

Ozone $ 2,927,245 $ 773.38 $ 2,927.56 $ 233,064 $ 0.18 $ 0.67 Dose Rate (~5mg/L): 1.0 mg/LContact Time (~2 min): 2.0 min

Chlorination $ 371,544 $ 98.16 $ 371.58 $ 77,792 $ 0.06 $ 0.22 Residual; 2.5 mg/LCalculated Dose Rate: 2.5 mg/LAlternative Dose Rate: mg/L

Air Stripping #REF! #REF! #REF! #REF! #REF! #REF!Residual; 2.5 mg/LCalculated Dose Rate: 2.5 mg/LAlternative Dose Rate: mg/L

Pri

ma

ry T

rea

tme

nt

Microfiltration $ 62,355,748 $ 164.74 $ 0.05 $ 2,670,491 $ 0.02 $ 0.07 Microfilter system equipment Memcor, 90M10CNumber of microfilter 103Recovery 0.98 (decimal)

Granular Activated CarbonFlow rate 5153.9 L/sec 81699 gal/minAlternative Flow Rate: L/sec gal/min

Bed LifeMonths 12 $ 74,243,293 $ 196.15 $ 742.51 $ 17,655,788 $ 0.13 $ 0.48 Months 6 $ 156,931,146 $ 414.61 $ 1,569.48 $ 23,668,969 $ 0.17 $ 0.65 Months 3 $ 209,241,528 $ 552.82 $ 2,092.64 $ 26,132,532 $ 0.19 $ 0.72

Gravity Filtration

Calculated Surface Area: 2,120.45 22825

Alternative Surface Area: Structure: $ 11,921,849 $ 31.50 $ 119.23 $ 670,324 $ 0.00 $ 0.02 Backwashing: $ 5,647,058 $ 14.92 $ 56.48 $ 59,945 $ 0.00 $ 0.00 Media Rapid Sand $ 1,797,258 Coal/Sand $ 1,797,258 Coal/Sand/Garnet $ 2,546,115 Coal/GreenSand/Coal $ 2,995,430

Upflow Solids Contact ClarifierHow Many? 1 $ 8,059,211 $ 21.29 $ 80.60 Retention Time (min) 180

Calculated Surface Area: 9857 106101

Alternative Surface Area: G Rating % 70 $ 150,352 $ 0.00 $ 0.00 G Rating % 110 $ 234,071 $ 0.00 $ 0.01 G Rating % 150 $ 319,042 $ 0.00 $ 0.01

De

sa

lin

ati

on

De

sa

lin

ati

on

Reverse Osmosis/Nanofiltration $ 93,010,050 $ 245.73 $ 930.20 $ 23,847,981 $ 0.17 $ 0.65 Membrane Type FilmTecNumber of elements 20139 elements

Operating Pressure 1542 kPa 224NaCl Rejection 0.995 (decimal)Recovery 0.85 (decimal)Target Product TDS 50 mg/LBlending? (Y or N) YRatio (Blend:Product) 9.5 %

Ion Exchange $ 2,208,278 $ 5.83 $ 22.09 $ 3,081,756 $ 0.02 $ 0.08 Cation Equivalents/L Resin 20

$1,607 45

Cation Resin Volume: 1,577 56,324 To Remove Cation Equivalents/L: 1.05E-04Anion Equivalents /L Resin 11

$6,250 175

Anion Resin Volume 1,577 56,324 To Remove Anion Equivalents /L: 7.21E-03Run Cycle 1 days

Ionics Electrodialysis Reversal $ 37,892,808 $ 100.11 $ 378.97 $ 66,640,633 $ 0.48 $ 1.82 Staff Days/day 3TDS 1000 mg/L

Electrodialysis $ - $ - $ - $ 150,865 $ 0.00 $ 0.00

Membrane Area: 0 0Product TDS 500 mg/LNumber of Stages (1 or 2) 2 stagesRecovery per Stage 0.5 (decimal)Recovery 0.75 (decimal)

Sta

bil

iza

tio

n CO2

Outfall

Concentrate Disposal

De

-Ch

lori

na

tio

n

Free Chlorine Level 1.0Sodium Bisulfite: Cost 300 $/ $ 2,499,500 $ 6.60 $ 25.00 $ 2,462,340 $ 0.02 $ 0.07 Calculated Dose 1.5 mg/LAlternative Dose mg/L

Sodium Sulfite: Cost 300 $/ $ 480,299 $ 1.27 $ 4.80 $ 504,695 $ 0.00 $ 0.01 Calculated Dose 0.9 mg/LAlternative Dose mg/L

Sulfur Dioxide: Cost 300 $/ $ 480,299 $ 1.27 $ 4.80 $ 504,695 $ 0.00 $ 0.01 Calculated Dose 0.9 mg/L

m3/day

m3/year

$/m3 $/m3

m2 ft2

m2

m2 ft2

m2 ft2

lb/in2

$/m3 Cation Exchange Resin ft3

m3 ft3

$/m3 Anion Exchange Resin ft3

m3 ft3

m2 ft2

mg/L as Cl2

Page 18: Copy of WaTER

Cost reports for water treatment processes

Production Capacity

Average Daily Flow (for O&M) Peak Daily Flow (for capital)

378,500 3,785

138,244,097 1,382,441 99,989 1,000 kgal/day

36,520,244 365,202 kgal/year

Process Cost Parameter Units Alternative Units

Construction Cost Operating Cost

$ $/kgal $/yr $/kgal

m3/day

m3/year

$/m3 $/m3

De

sa

lin

ati

on

De

-Ch

lori

na

tio

n

Alternative Dose mg/L

Dis

infe

cti

on

Chlorine $ 371,544 $ 0.98 $ 3.72 $ 77,792 $ 0.00 $ 0.00 Residual; 2.5 mg/LCalculated Dose Rate: 2.5 mg/LAlternative Dose Rate: mg/L

Chloramines #VALUE! #VALUE! #VALUE! $ 57,885 $ 0.00 $ 0.00 Residual: 3 mg/LCalculated Chlorine Dose: 4.1 mg/LCalculated Ammonia Dose: 1.0 mg/LAlternative Chlorine Dose 6.0 mg/LAlternative Ammonia Dose 2.0 mg/L

Ozone $ 2,927,245 $ 7.73 $ 29.28 $ 233,064 $ 0.00 $ 0.01 Dose Rate (~5mg/L): 1.0 mg/LContact Time (~2 min): 2.0 min

Chlorine Dioxide $ - $ - $ - $ - $ - $ - Residual; 2.5 mg/LCalculated Dose Rate: % mg/LAlternative Dose Rate: mg/L

Ch

em

ica

l F

ee

d S

ys

tem

s (

Ma

in P

roc

es

s)

AcidificationFeed LSI (for TDS>5000) -1.77 Conc LSI 0.62

99.0 Conc LSI 0.32 w/Acid #NUM! #NUM! #NUM! $ 151,276 $ 0.00 $ 0.00 Alternative: 7 mg/L

Calc Dose 37% HCl (mg/L) 73.4 Conc LSI -1.43 w/Acid #NUM! #NUM! #NUM! $ 2,708,709 $ 0.02 $ 0.07 Alternative: mg/L

Alum (dry feed) $ 118,587 $ 0.31 $ 1.19 $ 198,162 $ 0.00 $ 0.01 Calculated Dose: 328 mg/LAlternative Dose: mg/LBased on: 64 kg/hr 141 lb/hr

Alum (liquid feed) Dose Rate $ 163,393 $ 0.43 $ 1.63 $ 371,823 $ 0.00 $ 0.01 Calculated: 655 mg/LAlternative: mg/LBased on: 128 kg/hr 282 lb/hr

Poly Aluminum Chloride Dose Rate $ 74,547 $ 0.20 $ 0.75 $ 260,653 $ 0.00 $ 0.01 Calculated: 98 mg/LAlternative: mg/LBased on: 16 kg/hr 36 lb/hr

Ferric Sulfate Dose Rate $ 445,537 $ 1.18 $ 4.46 $ 140,350 $ 0.00 $ 0.00 Calculated: 259 mg/LAlternative: mg/LBased on: 1212 kg/day 2667 lb/day

Ferric Chloride $ 455,307 $ 1.20 $ 4.55 $ 780,776 $ 0.01 $ 0.02 Calculated Dose 266 mg/L 5 - 150Alternative DoseBased on: 1245 kg/day 2740 lb/day

Lime & Soda Ash Dose Rate $ 240,456 $ 0.64 $ 2.40 $ 106,016 $ 0.00 $ 0.00 Leave out Soda Ash "Y" or "N"? YCalculated Lime: 6 mg/LCalculated Soda Ash: 0 mg/LAlternative Lime mg/LAlternative Soda Ash: mg/LBased on Lime dose: 118 kg/hr 259 lb/hrBased on Soda Ash: 0 kg/hr 0 lb/hr

AntiScalant Dose Rate $ 164,315 $ 0.43 $ 1.64 $ 182,717 $ 0.00 $ 0.01 Suggested: 0.5 mg/LAlternative: mg/LBased on: 222.6 kg/day 490 lb/dayCost of Chemical 990 $/500 lb

Polyelectrolyte Dose Rate $ 164,315 $ 0.43 $ 1.64 $ 182,717 $ 0.00 $ 0.01 Suggested: 0.5 mg/LAlternative: mg/LBased on: 222.6 kg/day 490 lb/dayCost of Chemical 990 $/500 lb

Potassium Permanganate Dose Rate $ 94,662 $ 0.25 $ 0.95 $ 1,309,257 $ 0.01 $ 0.04 Calculated: 0 mg/LAlternative: 2 mg/LBased on: 891 kg/day 1959 lb/day

Mis

c.

Eq

uip

me

nt

PumpsSingle Stage Tubine $ 9,003,237 $ 23.79 $ 90.04 $ 22,789,633 $ 0.16 $ 0.62 Variable Speed Turbine $ 4,748,362 $ 12.55 $ 47.49 Centrifugal, Singe Stage $ 1,728,164 $ 4.57 $ 17.28 Number of pumps: 1 pump(s)Height differential: 1 m 3.3 ftDischarge pressure: 1750 kPa 254 psi Operating Cost Depend on Number and Horsepower only.

Full flow rate: 5.154 81699 gal/min

Basis flow rate 5.154 81699 gal/minPump Efficiency: 75 %Pipe Diameter: 0.1 m 3.94 inMotor Efficiency: 87 %HP 111482Power consumption: 128140 kWhr

Dis

trib

. Clearwell

Below Ground Capacity: 60,000 15852 kgal $ 8,118,781 $ 21.45 $ 81.20

Ground Level Capacity: 55,000 14531 kgal $ 4,317,924 $ 11.41 $ 43.18

Daily Production: 3,785 1000 kgal

Calc Dose 96% H2SO4 (mg/L)

m3/s

m3/s

m3

m3

m3

D141
Saied Delagah: based on alk from S&DI calculates dosage required
Page 19: Copy of WaTER

{d}Cost Index

Water Treatment Cost Estimation Program

Project Name Date

Model Development 06/07/04

Cost Indices DataMonth Year

Date of Cost Indices Values November 2006

Desalination Costs

Cost Indices Categories: November 2006 Used ForENR Construction Cost IndexConstruction Cost 7910.81 Manufactured & Electrical Equipment 2.78 1.46Wage ($/hr) 29.05 Labor (for operating the plant - approximation) 2.81 0.91ENR Building Cost IndexBuilding Cost 4462.38 Housing 2.59 1.44Skilled Labor 7449.82 Excavation and Sitework, Labor 3.02 1.30ENR Materials Cost IndexMaterials 2637.27 Piping & Valves 2.08 1.19Materials 2637.27 Maintanace Materials 2.08 1.19Cement ($/ton) 94.42 Concrete 1.96 1.17

Steel ($/CWT) 40.40 Steel 2.57 1.43Other

0.0700 Power 2.33 1.00

Rates and LifecyclesInterest Rate (%) 6.00 On Construction & Bond MoneyAmortization time (yr) 30.00 For Bond Period

Water Rate ($/kgal) 0.00 Cost of Feed Source Water

Notes

ReferencesENR - Engineering News Record Construction Cost Index published monthly by McGraw Hill in New York City (212-512-2000)

See http://www.enr.com

http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.htmlhttp://www.eia.doe.gov/cneaf/electricity/epm/epm_sum.html

Ratio for October 1978 (1913 basis)

Ratio for 1995 (1913 basis)

Electricity Cost ($/kWHr) 3

http://www.enr.com/features/conEco/costIndexes/mostRecentIndexes.asp

2 EPA-600/2-79-162 "Estimating Water Treatment Costs"

3 DOE - Department of Energy "Electric Power Monthly"Source of DOE data: Energy Information Administration, Form EIA-826, "Monthly Electric Sales and Revenue Report with State Distributions Report."

B21
sdundorf: typically $0.07 to $0.12 per KWH in 2004 Reference 3 - DOE
B26
sdundorf: typically $2 in 2004
Page 20: Copy of WaTER

{e}H20 Analysis

Water Treatment Cost Estimation Program Page 20

Feed Water Analysis

Last check for accuracy of the MCL values 1/1/2000 Implement eH-pH diagrams to automatically change valence with pH

Component Secondary Eff Units MCL (mg/L)Aluminum mg/L 0.05 3 26.98 Antimony mg/L 0.006 3 121.75 Arsenic mg/L 0.010 3 74.92 Barium mg/L 2 2 137.34 Beryllium mg/L 0.004 2 9.01 Boron mg/L 0.5 Cadmium mg/L 0.005 2 112.41 Calcium 2.1000 mg/L --- 2 40.08 20.04 5.24E-5 1.05E-4 2.10E-4 5.24 Chromium, total mg/L 0.1 2 52 Copper mg/L 1 2 63.54 Iron mg/L 0.3 2 55.85 Lead mg/L 0.015 2 207.19 Magnesium mg/L --- 2 24.31 Manganese mg/L 0.05 2 54.94 Mercury mg/L 0.002 2 200.59 Nickel mg/L --- 2 58.71 Potassium 40.0000 mg/L --- 1 39.1 39.10 1.02E-3 1.02E-3 1.02E-3 102.30 Selenium mg/L 0.05 4 78.96 Silver mg/L 0.1 1 107.87 Sodium 140.0000 mg/L --- 1 22.99 22.99 6.09E-3 6.09E-3 6.09E-3 608.96 Strontium mg/L --- 2 87.62 Zinc mg/L 5 2 65.37 Alkalinity-Bicarbonate 180.00 mg/L --- -1 61 61.00 2.95E-3 2.95E-3 2.95E-3 295.08 Alkalinity-Carbonate 0.75 mg/L --- -2 60 30.00 1.25E-5 2.50E-5 5.00E-5 1.25 Carbon Dioxide (aq) 7.91 mg/L --- 0 44 1.80E-4 17.98 Chloride 150.00 mg/L 250 -1 35.45 35.45 4.23E-3 4.23E-3 4.23E-3 423.13 Cyanide, free mg/L 0.2 Fluoride mg/L 4 -1 19 Nitrate (as N) mg/L 10 -1 14 o-Phosphate mg/L --- -3 94 Sulfate mg/L 250 -2 96 Silica 7.60 mg/L pH 7.54 pH 6.5-8.5 1 1 1.00 2.88E-8 2.88E-11 2.88E-8 0.00 pOH 6.46 pOH -1 1 1.00 3.47E-7 3.47E-10 3.47E-7 0.03 Total Dissolved Solids (TDS) 500 mg/L 500 Total Suspended Solids (TSS) 22.00 mg/L --- Conductivity 23.00 uS/cm --- Temperature 11.75 ° C ---

Amount Over MCL

Valence Charges

Molecular Wt.

Equivalent Weight

Moles/Liter

Equiv./Liter

Ionic Strength

mg/L as CaCO3

Page 21: Copy of WaTER

{f}RO&NF Input

Water Treatment Cost Estimation Program

Project Name Date Stage

Model Development 06/07/04 A1

RO & NF INPUT 95.9 574 35.0853658537

7570Process Input Construction Cost Input Operations & Maintenance Cost Input

Applicable Range Applicable Range

Lower Limit Upper Limit Lower Limit Upper Limit

Flow & Water Quality Membrane & Unit Configuration

Membrane Capacity 342,666 90,532,544 gpd Electricity Rate 0.07 $/kWh

Primary Treatment Product Flow 4795.5 L/s 76019 gpm Bypass 35,834 9,467,456 gpd Chemical Costs

Plant Production Flow 4380.8 L/s 69444 gpm Total Capacity 378,500 100,000,000 gpd Citric Acid 0.14 $/kg

Feed TDS 500 mg/L Element Productivity 17 4,496 gpd 23.7 $/kg

Production TDS (target) 50 mg/L Flux 0.46 11.29 gfd NaOH 18 $/kg 50% Some Example Membrane SpecificationsPercent of Mono-valent ions 1.00 Decimal Number of Elements 20,137.0 elements Membrane Life 3 Years Date last checked: 9/24/2004 9/24/2004Percent of Multi-valent ions 0.00 Decimal Number of elements per vessel 7 elements / vessel Ave Intrinsic Rejection 0.996 Type NF NFAverage Molecular Weight 35.82 g/mol Number of Elements 20139 elements Ave Observed Rejection 0.996 Test Solution Membrane Manufacturer FilmTec FilmTec Hydranautics Koch/Fluid Systems Koch/Fluid Systems Koch/Fluid Systems DuPont Rowpu SW30M-6040 8040 HSY SWC NF 90 BW30Allow Blending Y Yes (Y) or No (N) Number of Pressure Vessels 2877 for 2:1 array Apparent Rejection 0.996 Site Concentrate Model # BW30-400 SW30-8040 8040LHYCPA2 FS8822HR400 Prem TFC-S4 (4920 S) TFC-SR2 8" (8723 SR2-400) 6880T B-10 Twin Rowpu SW30M-6040 8040 HSY SWC

Recovery Rate 0.85 Decimal Max Vessels per Skid 60 vessels / skid Productivity 23 Membrane Diameter (cm) 20.32 20.32 20.32 20.32 10.16 20.32 20.32 15.24 20.2Product TDS 3 mg/L Number of Skids (manual input) skids Cleaning Rate 6 per Year Productivity (m3/day) 40 23 41.6 32.2 7.6 45.4 60.5 8 23.5Product Flow 3966.0 L/s 62870 gpm Number of Skids (automatic calc) 48 skids Staff Days/day 30 Area per module (m2) 37 27.7 37.2 30.7 7.2 37.2 1810 4389.0 29.26NF/RO Feed Flow 4665.9 L/s 73964 gpm Recovery Rate 0.85 Decimal Labor Rate 29.05 $/hr 1550 5500 1550 1550 552 380 6890 5500 5500

Concentrate TDS 3317 mg/L Building Area 10934 117692 ft2 Lifetime 30 Years Test solution TDS 2000 35000 1500 2000 850 2000 35000 19000 32000

Concentrate Flow 699.9 L/s 11095 gpm Administrative Area 100 1076 Interest Rate 6 % Avg. MW of TDS, 58.44 58.44 58.4 58.4 58.4 58.4 58.44 58.44 58.44 90 99Bypass flow for blending 414.75 L/s 6575 gpm Odor Control? N Yes (Y) or No (N) Chloride Rejection 99.5 99.1 99 99.7 85 20 99.1 99 99.2 95 99.5% blending 9.5 % Emergency Generatore Size 0.7 MW Sulfate Rejection 99.8 99.8 99.8 99.9 98.5 97 99.8 99 99.8Membrane Manufacturer Specifications High Pressure Feed Pump Y Yes (Y) or No (N) Recovery Rate 15 10 15 10 15 15 35 8 10Membrane Manufacturer FilmTec Pump Style PD *PD, VST or CSS Temperature (oC) 25 25 25 25 25 25 25 25 25 8" size 8" sizeModel # BW30-400 Height DIfference 4 m 13.12 ftMembrane Diameter 20.32 (10.16 or 20.32 cm) 8.0 in Motor Efficiency 0.95

Productivity 23 6.1 kgal/day Pump Efficiency 0.90 Densities CostArea per module 37 398 Coupling Efficiency 1.00 Sufuric acid 1.84 g/mL 0.11 $/kg

1550 kPa 225 psi Number of Pumps 21 Sodium Hydroxide 2.13 g/mLTest solution TDS 1500 mg/L Differential Pressure 1542 kPa 224 psi Antiscalant 1.3 g/mL

Avg. MW of TDS, 58 mg/mmole NaCl Capacity per pump 0.245 3890 gpm Disinfectant 1 g/mL

Chloride Rejection 99.5 % 0.995 decimal Pipe X-Sectional Area 0.098 152.2 1.7 g/mL Sulfate Rejection 99.8 % 0.998 decimal Size 528.3 hpRecovery Rate 10 % Energy Recovery for Seawater n Yes (Y) or No (N) error error HCl 37% 0.14 $/kgTemperature 25 77 Efficiency 0.60NaCl dissociation constant 0.99 Efficiency 0.00 This number is the efficiency of the energy recovery device - it reduces the size of the High Pressure pump

Transfer Pumps (to HPP) Y Yes (Y) or No (N)

26 Pump Style css VST or CSS

0.13 Height DIfference 2 m 6.56 ft

Cr, conc. of salt in reject 29 Motor Efficiency 0.94

27 Pump Efficiency 0.75Osmotic pressure 146 kpa 21 psi Coupling Efficiency 1.00

1404 kpa 203.753 psi Number Transfer Pumps 20

A, water transport coefficient 4.64E-12 Pressure Differential 310 kPa 45.0 psi

Operating pressure Capacity per Pump 0.258 4085.0 gpm

1404 kPa 203.753 psi Pipe X-Sectional Area 0.103 1.11

Cf, conc. of salt in feed water 14 Size 163 hp

0.062 Product Water Pump Y Yes (Y) or No (N)

Cr, conc. of salt in reject 93 Pump Style CSS VST or CSS 3 350

53 Height DIfference 2 m 6.56 ft

Temperature 12 Length of Pipe 10 m 32.81 ftTemperature Coefficient =1.023^(-25+T) 0.740 Motor Efficiency 0.94

138 kpa 20 psi Pump Efficiency 0.75

1542 kPa 224 psi Coupling Efficiency 1.00 Number Pumps 20 Pressure Differential 310 kPa 45.0 psi

Capacity per Pump 0.219 3472.2 gpm Pipe X-Sectional Area 0.088 m2 0.29 ft Size 139 hp

3 350

m3/daym3/day

m3/day

m3/day H2PO4

m3/(m2 * day)

m3/module

Operating pressure, Papp (kPa)

m2

m2 ft2

m3/daym2 ft2

Operating pressure, Papp

m3/s

m2 in2 H2PO4

oC oF

Cf, conc. of salt in feed water mole/m3

Cp, conc. of salt in product water mole/m3

mole/m3

Cm, bulk conc. mole/m3

Net driving pressure, NDPo

m3m-2Pa-1sec-1

m3/s

Net driving pressure , NDPi m2 ft2

mole/m3

Cp, conc. of salt in product water mole/m3

mole/m3

Cm, conc. of mole/m3

oC

Osmotic pressure, Posm

Applied pressure, Papp

m3/s

A11
sdundorf: checked
A12
sdundorf: checked
A13
sdundorf: checked
A14
sdundorf: checked
A15
sdundorf: checked
A16
sdundorf: checked
A17
sdundorf: checked
P17
Steve Dundorf: From Rejection sheet, last iteration in iteration table. Equals same value in table.
A18
sdundorf: checked
A19
sdundorf: checked
X23
sdundorf: 700 for chloride with >45% monovalent AND 1000 MgSO4 for Sulfate rejection
X24
sdundorf: not listed in MFG info
Y24
sdundorf: not listed in MFG info
B25
sdundorf: Bypass
Y25
sdundorf: 10 - 30 range
I29
Michelle Chapman: from Pump to top of skid
I35
Saied Delagah: capacity per skid = flow rate per skid (based on user input)
I36
Saied Delagah: Ax = Q / v Be sure X-section is adequate for the flow. Maintain velocity ~ 8.2 ft/sec
I37
Saied Delagah: hp per skid hp = (Δhg + 0.5v^2 + Δp) * (1 - Erec) * Qf * 1000 / (746 * Eeff) pp 11.4 eqn 11.9 Δh: Height Difference v: Velocity = Qf (capacity/flow rate)/pipe area Δp: Press. Diff bet. Tank and operating press Erec: Energy recovery Qf: Membrane feed flow m3/s Eeff: Combine pump and motor eff.
I40
Also used in "RO&NF Output"
I42
CSS = Centrifugal Single Speed VST = Variable Speed Turbin
B46
Steve Dundorf: =[(NaCl Disocc conts) x 2 x 8.314 x (273.15 K + Temp) x (Cm - Cp) x (1 - Avg. Obs. Rejection)] / [(1 - Avg. Intrinsic Rejection)*1000)]
B47
Steve Dundorf: =Operating Pressure (Papp) - Osmotic Pressure
B50
= Net driving pressure (NDPo) from above unles specified otherwise
Page 22: Copy of WaTER

{g}RO&NF Output

Water Treatment Cost Estimation Program

Project Name Date Stage

Model Development 06/07/04 A1

RO & NF OUTPUT

Estimating Construction Costs for NF90 Membrane Treatment Plant Estimating O&M Costs

Membranes $ 10,069,500 @ $ 500 $/module Electricity $ 7,442,994 RO Skids $ 20,542,736 Steel @ $ 5,000 $/Vessel Labor $ 2,544,780

Building $ 17,124,107 Housing @ $ 1,076 $100/ft2 Membrane Replacement $ 3,988,841

Electrical $ 5,634,062 Manf & Elect With Base of $ 977 Cleaning Chemicals $ 261,376 Insturmentation & Controls $ 4,843,764 Manf & Elect add $300,000 for top of the $ 65,000 base cost Cartridge Filters $ 1,695,709

Repairs and Replacement $ 435,421 High Pressure Pumps $ 3,955,456 Piping 68,878,199 kWhr Insurance $ 174,169 Energy Recovery for Seawater $ - Manf & Elect Lab fees $ 547,612 Transfer Pumps $ 1,518,818 Piping 20,243,395 kWhr Total O&M Cost $ 17,090,902 Product Water Pumps $ 1,212,889 Piping 17,206,886 kWhr

Odor Control $ - Piping $ 50,000 base cost Total CostsProcess Piping $ 76,888 Piping $ 55,000 base costYard Piping $ 67,117 Piping $ 50,000 base cost Capital Recovery $ 6,757,079 Cartridge Filters $ 20,465 Maint Materials $ 15,000 base cost O&M $ 17,090,902 Membrane Cleaning Equip $ 97,574 Manf & Elect $ 67,000 From ReferenceContractor Engineering & Training $ 91,266 Labor $ 100,000 base cost

Concentrate Treatment & Piping $ 806,912 Piping $ 13 Concentrate Annual cost $ 23,847,981

Generators $ 73,271 Electrical 0.7 MW RO & Building $ 0.18 $/1000 gal Product $ 0.69

Sitework $ 7,144,179 Electrical $ 14.53 $/acre foot Product $ 224.12 Total Direct Capital Costs $ 73,279,004

Indirect Capital CostsInterest During Construction $ 3,663,950 5 % of TotalContingencies $ 4,379,095 6 % of TotalA&E Fees, Proj. Management $ 8,756,841 12 % of TotalWorking Capital $ 2,931,160 4 % of Total Total Indirect Captial Cost $ 19,731,046 27

Total Construction Cost $ 93,010,050

$ 246 Cost per gpd capacity $ 0.93

ReferencesBased on "Estimating the Cost of Membrane (RO or NF) Water Treatment Plants" By William B. Suratt, P.E., Camp Dresser & McKee Inc. Vero Beach Florida Presented at the AWWA Membrane Technology Conference, Reno, NV, 1995. also published as "Estimating the cost of membrane water treatment plants."

$/m2

$/m3

$/m3

$/m3 Product

$/m3

Cost per m3/day capacity

G14
Michelle Chapman: kWh = hp*# of pumps*0.746*hours The efficiencies are used to calculate hp on the input page.
G15
Michelle Chapman: Size of Hp pump is reduced by the energy recovery. Therefore we do not calculate an additional savings in energy.
Page 23: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Recarbonation Basins Not currently being used

Single Basin Volume

770 1375 2750 5630

22 39 78 159Excavation & Sitework $ 520 $ 620 $ 980 $ 1,390 Concrete $ 1,380 $ 1,860 $ 2,820 $ 4,050 Steel $ 2,250 $ 3,010 $ 4,670 $ 6,560 Labor $ 2,830 $ 3,800 $ 5,730 $ 8,090 Pipe & Valves $ 90 $ 130 $ 250 $ 480 Subtotal $ 7,070 $ 9,420 $ 14,450 $ 20,570 Miscellaneous & contingency $ 1,060 $ 1,410 $ 2,170 $ 3,090 Total $ 8,130 $ 10,830 $ 16,620 $ 23,660

Percent of SubtotalExcavation & Sitework 0.07 0.07 0.07 0.07Concrete 0.20 0.20 0.20 0.20Steel 0.32 0.32 0.32 0.32Labor 0.40 0.40 0.40 0.39Pipe & Valves 0.01 0.01 0.02 0.02 Subtotal 1.00 1.00 1.00 1.00Miscellaneous & contingency 0.15 0.15 0.15 0.15 Total 1.15 1.15 1.15 1.15

Construction Cost for Liquid CO2 as CO2 Source

Cost Category (Installed - lb/day) 380 750 1500 3750

Cost Category (ft3)

Cost Category (m3)

0 500 1000 1500 2000 2500 3000 $-

$20,000

$40,000

$60,000

$80,000

$100,000 f(x) = − 0.00772575132065311 x² + 90.969477979544 x + 7900.15376444089R² = 0.998135406286342

Construction Cost of Recarbonation Basins 1979 $

TotalPolynomial ( Total)

Volume - Cubic Meters

1979

$

Page 24: Copy of WaTER

Cost Category (Installed - kg/day) 173 341 682 1705Manufactured Equipment $ 27,000 $ 31,000 $ 35,250 $ 49,250 Labor $ 7,650 $ 8,780 $ 12,170 $ 17,330 Pipe & Valves $ 1,530 $ 2,340 $ 4,620 $ 8,710 Housing $ 7,360 $ 7,360 $ 7,360 $ 7,360 Subtotal $ 43,540 $ 49,480 $ 59,400 $ 82,650 Micsellaneous & Contingency $ 6,530 $ 7,420 $ 8,910 $ 12,400 Total $ 50,070 $ 56,900 $ 68,310 $ 95,050

Percent of SubtotalManufactured Equipment 0.62 0.63 0.59 0.60Labor 0.18 0.18 0.20 0.21Pipe & Valves 0.04 0.05 0.08 0.11Housing 0.17 0.15 0.12 0.09 SubtotalMicsellaneous & Contingency 0.15 0.15 0.15 0.15 Total 1.15 1.15 1.15 1.15

O&M Summary for Recarbonation - Liquid CO2 as CO2 source

Cost Category (Installed - lb/day) 380 750 1500 3750Cost Category (Installed - kg/day) 173 341 682 1705Energy kWhr/yr * $/kWhr $ 520 $ 728 $ 1,147 $ 2,290 Maintenance Material $/yr $ 2,860 $ 3,300 $ 4,400 $ 5,500 Labor Hr/yr * $/Hr $ 910 $ 910 $ 910 $ 1,820 Total Cost $ 4,290 $ 4,938 $ 6,457 $ 9,610

$/kWhr 0.03$/hr Labor 10

Energy kWhr/yr * $/kWhr 0.12 0.15 0.18 0.24Maintenance Material $/yr 0.67 0.67 0.68 0.57Labor Hr/yr * $/Hr 0.21 0.18 0.14 0.19Total Cost 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 $-

$100,000

$200,000

$300,000 f(x) = 55052.7549730458 exp( 0.000252394115622862 x )R² = 0.972736167991685

Construction Cost of Recarbonation - Liquid CO2 as a CO2 source

Installed Capacity (kg/day)

Constr

uction C

ost

1978$

Page 25: Copy of WaTER

assuming from qasim

0 1000 2000 3000 4000 5000 6000 7000 8000 $-

$5,000

$10,000

$15,000

$20,000

$25,000

f(x) = − 0.000136997446504986 x² + 3.48076265677602 x + 3878.7452482663R² = 0.999060378828706

Operation & Maintenance of Recarbonation - Liquid CO2 as a CO2 source

Installed Capacity (kg/day)

Constr

uction C

ost

1979$

Page 26: Copy of WaTER

Single Basin Volume

8800 17600 35200

249 498 997 $ 1,790 $ 3,050 $ 5,570 $ 5,190 $ 8,570 $ 15,320 $ 8,320 $ 13,960 $ 25,240 $ 10,240 $ 16,740 $ 29,730 $ 680 $ 1,360 $ 3,360 $ 26,220 $ 43,680 $ 79,220 $ 3,930 $ 6,550 $ 11,880 $ 30,150 $ 50,230 $ 91,100

Percent of Subtotal Average0.07 0.07 0.07 0.07 ENR Skilled Labor Index0.20 0.20 0.19 0.20 ENR Cement Cost ($/ton)0.32 0.32 0.32 0.32 ENR Steel Cost ($/cwt)0.39 0.38 0.38 0.39 ENR Labor Rate ($/hr)0.03 0.03 0.04 0.02 ENR Materials Index1.00 1.00 1.000.15 0.15 0.15 0.151.15 1.15 1.15

7500 15000

0 500 1000 1500 2000 2500 3000 $-

$20,000

$40,000

$60,000

$80,000

$100,000 f(x) = − 0.00772575132065311 x² + 90.969477979544 x + 7900.15376444089R² = 0.998135406286342

Construction Cost of Recarbonation Basins 1979 $

TotalPolynomial ( Total)

Volume - Cubic Meters

1979

$

Page 27: Copy of WaTER

3409 6818 $ 73,000 $ 141,000 $ 28,990 $ 58,010 $ 16,940 $ 37,540 $ 8,450 $ 8,900 $ 127,380 $ 245,450 $ 19,110 $ 36,820 $ 146,490 $ 282,270

Percent of Subtotal Average0.57 0.57 0.60 ENR Construction Cost Index0.23 0.24 0.21 ENR Labor Rate ($/hr)0.13 0.15 0.09 ENR Materials Index0.07 0.04 0.11 ENR Building Cost Index

0.15 0.15 0.151.15 1.15 1.15

7500 150003409 6818

$ 4,428 $ 8,549 $ 7,700 $ 10,000 $ 1,820 $ 2,730 $ 13,948 $ 21,279

Average0.32 0.40 0.23 Electricity Cost ($/kWhr)0.55 0.47 0.60 ENR Materials Index0.13 0.13 0.16 ENR Labor Rate ($/hr)

1 1 1.00

0 1000 2000 3000 4000 5000 6000 7000 8000 $-

$100,000

$200,000

$300,000 f(x) = 55052.7549730458 exp( 0.000252394115622862 x )R² = 0.972736167991685

Construction Cost of Recarbonation - Liquid CO2 as a CO2 source

Installed Capacity (kg/day)

Constr

uction C

ost

1978$

Page 28: Copy of WaTER

0 1000 2000 3000 4000 5000 6000 7000 8000 $-

$5,000

$10,000

$15,000

$20,000

$25,000

f(x) = − 0.000136997446504986 x² + 3.48076265677602 x + 3878.7452482663R² = 0.999060378828706

Operation & Maintenance of Recarbonation - Liquid CO2 as a CO2 source

Installed Capacity (kg/day)

Constr

uction C

ost

1979$

Page 29: Copy of WaTER

{i}Acid

Water Treatment Cost Estimation Program

Acid: Sulfuric & Hydrochloric AcidThis estimates the amount of acid addition which is depenedent on NF/RO feed flow rate.

Capital Calculations 37% HCLNF/RO Feed flow (peak day flow w/ OTF) (433.69) -433.69 L/sec.

(37.47) (37.47)Dose by mass 7.00 73.40 mg/LDensity 1.841 1.600 g/LPercent solution 0.96 0.37 decimal Applicable RangeDose by volume 0.0040 0.1240 mL/L Lower Limit Upper Limit

Dose Rate by volume (0.1484) (4.6461) 0.04 20

% #NUM! #NUM!Manufactured & Electrical Equipment 0.7 #NUM! #NUM!Housing 0.07 #NUM! #NUM!Excavation, Site Work & Labor 0.16 #NUM! #NUM!Piping and Valves 0.07 #NUM! #NUM!Steel 0 #NUM! #NUM!Concrete 0 #NUM! #NUM!November, 2006 Capital Cost $: 1.00 #NUM! #NUM!

O&M Calculations 37% HCLNF/RO Feed flow (average daily flow) 4,665.93 4665.93 L/sec.

403.14 403.14 Dose by mass 7.00 73.40 mg/LDensity 1.841 1.600 g/LPercent solution 0.96 0.37 decimalDose by volume 0.0040 0.1240 mL/L

Dose Rate by volume 1.5967 49.9858 Acid Cost ($/ton): $ 124 $ 72

O&M Cost: $ 1,630 $ 14,741 1978 Costs%

Materials 0.04 $ 136 $ 1,227 Energy 0.05 $ 190 $ 1,720 Labor 0.91 $ 4,173 $ 37,723 Chemical Cost $/yr: $ 146,778 $ 2,668,039 November, 2006 O&M $: 1.00 $ 151,276 $ 2,708,709

Sulfuric Acid feedCapital Cost

A= 6010.6

96% H2SO4

m3/day

m3/day Limits (From EPA-600/2-79-162b, figure 30-32)

1978 Capital Cost:

96% H2SO4

m3/day

m3/day

Today's Costs

General Form: (A)*(XB) + C

B8
sdundorf: IF (RO/NF bypass = Y) THEN (Plant Production flow - Bypass flow) / Recovery = Desal Feed flow IF NOT THEN (Plant Production flow) / Recovery = Desal Feed flow
B11
sdundorf: for 96 - 98%
B27
sdundorf: IF (RO/NF bypass = Y) THEN (Plant Production flow - Bypass flow) / Recovery = Desal Feed flow IF NOT THEN (Plant Production flow) / Recovery = Desal Feed flow
B30
sdundorf: for 96 - 98%
Page 30: Copy of WaTER

{j}IronCoag

Water Treatment Cost Estimation Program

Capital CalculationsNF/RO Feed flow (peak day flow w/ OTF) 54 54

4687307 4687307Molecular weight 526.0 270.2Bicarbonate Alkalinity: 180 180

2.95 2.95 Alternative dose 0.0 0.0 Calculated dose 258.6 265.7

Basis dose rate 1,212.2 1,245.4 Chemical Cost $/ton bulk $150 $1,420

Capital Cost: $ 164,585 %

Manufactured & Electrical Equipment 0.72 $ 328,850 Housing 0.21 $ 89,611 Excavation, Site Work & Labor 0.02 $ 9,948 Piping and Valves 0.05 $ 17,128 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.000 $ 445,537

O&M Cost: $ 24,704 %

Materials 0.07 $ 3,599 Energy 0.09 $ 5,188 Labor 0.84 $ 58,357 Ferric Sulfate Cost $/yr: $ 73,206 November, 2006 Operation & Maintenance $: 1.00 $ 140,350

Ferric Sulfate Feed Capital CostGeneral Form: A*X^B*e^(C*X)A = 10613B = 0.319C = 0.000393

O&M CostGeneral Form: A*e^(B*X)+CA = 1260926B = 0.00001394

Fe2(SO4)3-7H2O FeCl3 6H20

Fe2(SO4)3-7H2O

Page 31: Copy of WaTER

{j}IronCoag

Water Treatment Cost Estimation Program

UnitsL/sec.L/dayg/molmg/Lmmoles/Lmg/Lmg/L

kg/day

$ 168,194 1978 Costs

$ 336,061 $ 91,576 $ 10,166 $ 17,503 $ - $ - $ 455,307

$ 25,298 1978 Costs

$ 3,686 $ 5,313 $ 59,761 $ 712,017 $ 780,776

FeCl3 6H20

Today's Costs

Today's Costs

Page 32: Copy of WaTER

{k}Alum

Water Treatment Cost Estimation Program

Capital Calculations

UnitsNF/RO Feed flow (peak day flow w/ OTF) 54 L/sec

195Molecular weight of Alum 666.41 g/molCost $/100 lbs. $ 15 per 100 lbsBicarbonate Alkalinity 180 mg/L

2.95 mmoles/LAlternative dose 0 mg/LAlternative dose rate 0 kg/hrCalculated Alum Dose Rate (6 mmol/mmol HCO3) 0.492 mmoles/LCalculated dose 328 mg/L Lower Limit Upper LimitCalculated dose rate 64 kg/hr. 4 2300 Limits (From EPA-600/2-79-162b, figure 16)Basis dose rate 64 kg/hr.

Capital Cost: $ 48,335 1978 Costs%

Manufactured & Electrical Equipment 0.46 $ 61,701 Housing 0.03 $ 3,760 Excavation, Site Work & Labor 0.04 $ 5,843 Piping and Valves 0.47 $ 47,283 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 118,587

O&M Cost: $ 4,723 1978 Costs Applicable Range% Lower Limit Upper Limit

Materials 0.17 $ 1,671 4 2300 Limits (From EPA-600/2-79-162b, figure 16)Energy 0.03 $ 331 Labor 0.8 $ 10,625 Alum Cost: $ 185,535 November, 2006 Operation & Maintenance $: 1.00 $ 198,162

Coagulant: Aluminum Sulfate (Alum) (Liquid) Feed Cost Calculations

Capital CalculationsUnits

Liquid Alum dose rate 128 kg/hr. O&M cost (From EPA-600/2-79-162b, figure 19,20)Multiplier between dry and liquid 2Alternative dose 0 mg/LAlternative dose rate 0 kg/hr.Basis dose rate 128 kg/hr.

Capital Cost: $ 53,996 1978 Costs Applicable Range% Lower Limit Upper Limit

Manufactured & Electrical Equipment 0.71 $ 106,388 4 2500 Housing 0.15 $ 41,375 Excavation, Site Work & Labor 0.12 $ 15,005 Piping and Valves 0.02 $ 625 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 163,393

O&M Calculations

Units

Liquid Alum dose rate 128 kg/hr.Multiplier between dry and liquid 2Alternative dose 0 mg/L

Alternative dose rate 0 kg/hr.

Basis dose rate 128 kg/hr.

O&M Cost: $ 2,376 1978 Costs O&M cost (From EPA-600/2-79-162b, figure 17,18)%

Materials 0.04 $ 198 Applicable Range

Energy 0.59 $ 272 Lower Limit Upper LimitLabor 0.37 $ 283 4 2500 Alum Cost: $ 371,069 November, 2006 Operation & Maintenance $: 1.00 $ 371,823

Alum FeedCapital CostGeneral Form: A*X^(B)*e^(C*X)

Dry Feed Liquid Feed

A = 12333.4 13223.3B = 0.3205 0.285C = 0.000515 0.000377

O&M CostGeneral Form: A*e^(B*X)+C

Dry Feed Liquid Feed

Al2(SO4)3-18H2O

m3/hr.

Construction Cost Equations (From EPA-600/2-79-162b, figure 16)

Today's Costs

Today's Costs

Today's Costs

Construction Cost Equations (From EPA-600/2-79-162b, figure 16)

Today's Costs

Page 33: Copy of WaTER

{k}Alum

Water Treatment Cost Estimation Program

Limits (From EPA-600/2-79-162b, figure 16)

Limits (From EPA-600/2-79-162b, figure 16)

O&M cost (From EPA-600/2-79-162b, figure 19,20)

O&M cost (From EPA-600/2-79-162b, figure 17,18)

Construction Cost Equations (From EPA-600/2-79-162b, figure 16)

Construction Cost Equations (From EPA-600/2-79-162b, figure 16)

Page 34: Copy of WaTER

{L}PACl

Water Treatment Cost Estimation Program

Capital Calculations

UnitsPrimary Treatment Feed flow (peak day flow w/ OTF) 46 L/sec.

166MW of PACL 596.66 g/molCost $/100 lbs.: $ 80 per 100 lbs.Alternative dose rate 0 mg/L

0 kg/hrBicarbonate Alkalinity: 180 mg/L

2.95 mmoles/LPACl Dose Rate 98 mg/LPACl Dose Rate (18:1 HCO3:PACl) 0.164 mmoles/LCalculated dose rate 16 kg/hr.Basis dose rate 16 kg/hr.

% $ 30,385 1978 Costs

Manufactured & Electrical Equipment 0.46 $ 38,787 Housing 0.03 $ 2,363 Excavation, Site Work & Labor 0.04 $ 3,673 Piping and Valves 0.47 $ 29,723 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 74,547

% $ 3,603 1978 Costs

Materials 0.17 $ 1,275 Energy 0.03 $ 252 Labor 0.8 $ 8,107 Alum Cost: $ 251,020

November, 2006 Operation & Maintenance $: 1.00 $ 260,653

Alum FeedCapital CostGeneral Form: A*X^(B)*e^(C*X)

Dry Feed Liquid Feed

A = 12333.4 13223.3

B = 0.3205 0.285

C = 0.000515 0.000377

O&M Cost

General Form: A*e^(B*X)+C

Dry Feed Liquid Feed

A = 1205293 -6880.7

B = 0.000019433 -0.000659

C = -1202070 8700

Al6(OH)12Cl6

m3/hr.

1978 Capital Cost:

Today's Costs

1978 O&M Cost:

Today's Costs

Page 35: Copy of WaTER

{L}PACl

Water Treatment Cost Estimation Program

Applicable RangeLower Limit Upper Limit

4 2300

Page 36: Copy of WaTER

{m}De-Cl2

Water Treatment Cost Estimation Program

(not included here are: sodium thiosulfate, hydrogen peroxide, ammonia)

445,294

Free Chlorine Level (mg/L) 1 1 1

Default Free Chlorine Level (mg/L) 0.5 0.5 0.5

Calculated dose rate (mg/L) 1.47 0.9 0.9Alternative dose rate (mg/L) 0 0 0Basis dose rate kg/day: 654.6 400.8 400.8Water Usage (totally dissolved) 0.0 0.0 0.0Cost $/ton: $ 300 $ 300 $ 300

Relationship between ORP & Dose, see Membrane Manual 29

% $ 922,114 $ 177,192 $ 177,192 Manufactured & Electrical Equipment 0.72 $ 1,842,438 $ 354,039 $ 354,039 Housing 0.19 $ 454,246 $ 87,287 $ 87,287 Excavation, Site Work & Labor 0.04 $ 111,474 $ 21,421 $ 21,421 Piping and Valves 0.01 $ 19,192 $ 3,688 $ 3,688 Steel 0 $ - $ - $ - Concrete 0.04 $ 72,149 $ 13,864 $ 13,864 November, 2006 Capital Cost $: 1.00 $ 2,499,500 $ 480,299 $ 480,299

% $ 11,633 $ 6,879 $ 6,879 Materials 0.24 $ 460,617 $ 88,511 $ 88,511 Energy 0.1 $ 215,160 $ 41,345 $ 41,345 Labor 0.66 $ 1,711,491 $ 328,877 $ 328,877 Chemical Cost $/yr: $ 75,072 $ 45,963 $ 45,963 November, 2006 Operation & Maintenance $: 1.00 $ 2,462,340 $ 504,695 $ 504,695

Polymer Feed - Yes I know - This is a place holder equiation. I need to find out how these chemical injection systems differ from polymer.Capital CostGeneral Form: A*e^(B*X)+CA = 11760.71B = 0.00665C = 8200

O&M CostGeneral Form: A*e^(B*X)A = 3000.8B= 0.00207

NaHSO3 Na2SO3 SO2

Volume Treated ():

1978 Capital Cost:

1978 O&M Cost:

Page 37: Copy of WaTER

{m}De-Cl2

Water Treatment Cost Estimation Program

Chemical options:

mg/L

mg/L

mg/L Applicable Rangemg/L Lower Limit Upper Limitkg/day 0.5 100

$/ton

Polymer Feed - Yes I know - This is a place holder equiation. I need to find out how these chemical injection systems differ from polymer.

m3/day

Page 38: Copy of WaTER

{n}CL2

Water Treatment Cost Estimation Program

Units Alternative UnitsProduction Flow 4,380.79 L/sec.

Chromium (Cr 2+): 0.00 mg/L 0.00E+00 mMoles/LNickel (Ni 2+): 0.00 mg/L 0.00E+00 mMoles/LIron (Fe 2+): 0.00 mg/L 0.00E+00 mMoles/LManganese (Mn 2+): 0.00 mg/L 0.00E+00 mMoles/L

Total: 0.00E+00 mMoles/LDesired Residual 2.50 mg/L 3.52E-02 mMoles/L

2.50 mg/L 3.52E-02 mMoles/LAlternative Dose 0.00 mg/LBasis 946.25 kg/day

$ 20 per ton, tanks

% $ 137,974 Manufactured & Electrical Equipment 0.52 $ 199,102 Housing 0.38 $ 135,936 Excavation, Site Work & Labor 0.06 $ 25,019 Piping and Valves 0.04 $ 11,487 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 371,544

% $ 27,196 Materials 0.18 $ 10,189 Energy 0.18 $ 11,422 Labor 0.64 $ 48,947 Chemical Cost $/yr: $ 7,234 November, 2006 Operation & Maintenance $: 1.00 $ 77,792

Chlorine storage and feed with Cylinder storageCapital CostGeneral Form: A*X^B + CA= 680.75B= 0.763C= 11010

O&M CostGeneral Form: A*X^B+CA= 47.6B= 0.89C= 6000

Cl2 needed

Cl2 Cost

1978 Capital Cost:

1978 O&M Cost:

Page 39: Copy of WaTER

NHCL

Water Treatment Cost Estimation Program

Data from water analysis. Units Alternative Units The addition of Chlorine and Ammonia to water produces chloramines.Production Flow to be treated 4380.79 L/sec. Chloramines are the "combined chlorine residual." They are more persistent

in the water lines than "free chlorine," which is HOCl, and OCl-.Chromium (Cr): 0.00 mg/L 0.00E+0 mMoles/L If there is sufficient ammonia in the water already, it doesn't need to be added,Copper (Cu): 0.00 mg/L 0.00E+0 mMoles/L of course. If not, chlorine and aqueous ammonia should be added at the molar Iron (Fe): 0.00 mg/L 0.00E+0 mMoles/L ratio of 1:1, Cl2:NH3(aq). We will use the moles of divalent metal ions Manganese (Mn): 0.00 mg/L 0.00E+0 mMoles/L and NO2- to calculate a chlorine demand. The molar ratio is 1:2 Cl2 to divalent

cations, and 1:1 for Cl2:NO2-. The residual for Chloramines must be at least

3.00 mg/L 5.84E-2 mMoles/L 2 mg/L which translates to approximately .03 moles per liter at pH 7.

4.14 mg/L 5.84E-2 mMoles/L Applicable RangeAmmonia Needed/L: 0.99 mg/L 5.84E-2 mMoles/L Lower Limit Upper Limit

1568.49 kg/day 4 4500

2.15 kg/day Chlorine storage and feed with Cylinder storage

2.15 kg/day Applicable Range

$ 20 per ton Lower Limit Upper Limit General Form: A*X^B + CCalculated Aqua Ammonia 375.55 kg/day 110 2300 Capital CostAlternative Aqua Ammonia 757.00 kg/day A= 680.75Basis Ammonia kg/day: 757.00 kg/day 1665.4 lbs/day B= 0.763NH4OH Cost $/ton: $ 200 per ton C= 11010

Total Capital Cost #VALUE! O&M CostTotal O&M Cost $57,885 A= 47.6

B= 0.89C= 6000

Chlorine Feed

% $ 12,230 Manufactured & Electrical Equipment 0.52 $ 16,489 Anhydrous Ammonia FeedHousing 0.38 $ 10,844 same place and form.Excavation, Site Work & Labor 0.06 $ 2,036 X=kg/day ammonia feed capacityPiping and Valves 0.04 $ 957 Steel 0 $ - Capital Cost:Concrete 0 $ - A*X^B*e^(C*X)November, 2006 Capital Cost $: 1.00 $ 30,326 A= 3849.2

B= mg/L% C= -0.000035

Materials 0.18 $ - Energy 0.18 $ - O&M Cost:Labor 0.64 $ - A*e^(B*X) +CChemical Cost $/yr: $ 16 A= -28063November, 2006 Operation & Maintenance $: 1.00 $ 16 B= -2.41E-4

C= 36160

Ammonia Feed

% #VALUE!Manufactured & Electrical Equipment 0.66 #VALUE!Housing 0.09 #VALUE!Excavation, Site Work & Labor 0.15 #VALUE!Piping and Valves 0.1 #VALUE!Steel 0 #VALUE!Concrete 0 #VALUE!November, 2006 Capital Cost $: 1.00 #VALUE!

% $ 12,776 Materials 0.4 $ - Energy 0.06 $ - Labor 0.54 $ - Ammonia Cost: $ 57,869 November, 2006 Operation & Maintenance $: 1.00 $ 57,869

Desired NH2Cl Residual

Cl2 needed/L:

Calculated Cl2 Dose

Alternative Cl2 Dose Limits (From EPA-600/2-79-162b, figure 1-3)

Basis Cl2 Dose

Cl2 Cost $/ton:

Limits (From EPA-600/2-79-162b, figure 42-44)

Source: Qasim, et al, Aug. 1992, AWWA

1978 Capital Cost:

1978 O&M Cost:

1978 Capital Cost:

1978 O&M Cost:

Page 40: Copy of WaTER

{p} Ozone

Water Treatment Cost Estimation Program

Units Alternative UnitsProduction Flow to be treated 4380.79 L/sFlow Rate: 262847 L/min 69444 gpmOzone level required (typically 1-5 mg/L) 1 mg/LTotal ozone needed: 378.50 kg/day 832.7 lbs/dayContact time : 2 min

Contact chamber size: 525.7 18565.4Power (~26.5kWh per kg ozone): 22067 kWh

TOTAL CONSTRUCTION COSTS: $ 2,927,245

TOTAL OPERATING COSTS: $ 233,064

Ozone Generator: Contact Chamber:Applicable Range

Lower Limit Upper Limit

Ozone Requirements: 378.50 kg/day 4 1800

% $ 972,674 1978 Capital Cost: % $ 72,735 Manufactured & Electrical Equipment 0.81 $2,186,391 B) Manufactured Equipment 0.00 $ - Housing 0.03 $ 75,656 H) Housing 0.00 $ - Excavation, Site Work & Labor 0.16 $ 470,344 A) Excavation and Site Work 0.50 $ 109,912 Piping and Valves 0.00 $ - F) Piping and Valves 0.00 $ - Steel 0.00 $ - D) Steel 0.31 $ 57,911 Concrete 0.00 $ - C) Concrete 0.19 $ 27,032 November, 2006 Capital Cost $: 1.00 $2,732,391 Capital Cost: 1.00 $ 194,855

% $ 98,627 Materials 0.11 $ 22,580 Energy 0.77 $ 177,200 Labor 0.12 $ 33,283 November, 2006 Operation & Maintenance $: 1.00 $ 233,064

Ozone Generation Costs Ozone Contact Chamber CostsConstruction Costs: Construction Costs:General Form: A *X ^B*e^(C*X) General Form: A *X ^B+CA= 18631.2 A= 1771.4B= 0.674 B= 0.5967C= -0.000121 C= 1700

O & M Costs:General Form: A*X^B+CA= 392.4B= 0.919C= 6800

m3 ft3

Note: Ozone requirements (ozone demand) are based on water quality analysis outside of this program

Limits (From EPA-600/2-79-162b, figure 11-13)

1978 Capital Cost:

1978 O&M Cost:

O&M Costs: NONE

Source: Qasim, et al, Aug. 1992, AWWA Source: Qasim, et al, Aug. 1992, AWWA

B9
manual input in "Report"
B11
manual input in "Report"
B12
Minimum size is 1.05 m3
Page 41: Copy of WaTER

{q}LimeFeed

Water Treatment Cost Estimation Program

Volume Treated 5154 L/sec.

Purity 0.9

FROM WATER ANALYSIS Units Alternative UnitsCa (2+): 2.1 mg/L 0.1 mmoles/LMg (2+): 0.0 mg/L 0.0 mmoles/L 0.0 mg/LHCO3 (-): 180.0 mg/L 3.0 mmoles/L 0.0 mg/LCO2 (2-): 0.8 mg/L 0.0 mmoles/L 0.72 mg/LExcess: 5.0 mg/LTotal 6.4 mg/L

volume treated: 18554 Lime Dose: 118 mg/LLime Cost $/ton: $ 60 mg/LSoda Ash Cost $/ton: $ 160 per tonAlternative dosage rate Lime 0.0 kg/hr.Alternative dosage rate Soda 0.0 kg/hr. Applicable Range

Lower Limit Upper LimitBasis Lime: 117.8 kg/hr 4 4500 Basis Soda: 0.0 kg/hr 4 4500

% $ 88,611 Manufactured & Electrical Equipment 0.7 $ 172,131 Housing 0.25 $ 57,435 Excavation, Site Work & Labor 0.02 $ 5,356 Piping and Valves 0.03 $ 5,533 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 240,456

% $ 15,124 Materials 0.06 $ 1,889 Energy 0.09 $ 3,176 Labor 0.85 $ 36,151 Lime Cost: $ 64,799 November, 2006 Operation & Maintenance $: 1.00 $ 106,016

Updated from EPA-600/2-79-162b, Aug. 1979

Lime Requirement

m3/hr.

Limits (From EPA-600/2-79-162b, figure 24-26)

1978 Capital Cost:

1978 O&M Cost:

Page 42: Copy of WaTER

{q}LimeFeed

Water Treatment Cost Estimation Program

Mg Ca HCO3+CO2 Ca(OH)2 Mg and Ca react with Alkalinity and Lime to precipitate CaCO3 and Mg(OH)2 Ratio 1 1 4 3Limit 0.00 eq 0.00 0.00 0.00 0.00

0.58 mg/L 0.0 0.0 0.0 0.0

Mg Ca HCO3+CO2 Ca(OH)2 Remaining Mg or Ca react with remaining alkalinity 0.0 mg/L Ratio 1 1 2 1

eq 0.00 0.05 5.94 0.00mg/L 0.0 2.1 362.1 0.0

Mg Ca Na2CO3 Ca(OH)2 If Ca and/or Mg are in excess of Alkalinity, then add soda ash0.0 mg/L Ratio 1 1 1*mg+1*Ca 1*Mg

eq 0.000 0.000 0.000 0.000 0 mg/L mg/L 0.0 0.0 0.0 0.0

1000.09 mol/m3100 g/mol Calcium Carbonate

1.80 11.4 g CaCO3 /m3 treated19 g sludge/m3 treated assuming 30% solids

8,493 kg sludge per day18,684 lbs sludge per day

Soda Ash Requirement

Limits (From EPA-600/2-79-162b, figure 24-26)

Page 43: Copy of WaTER

{q}LimeFeed

Water Treatment Cost Estimation Program

Mg and Ca react with Alkalinity and Lime to precipitate CaCO3 and Mg(OH)2

Remaining Mg or Ca react with remaining alkalinity

If Ca and/or Mg are in excess of Alkalinity, then add soda ash

Page 44: Copy of WaTER

{r}Antiscalent

Water Treatment Cost Estimation Program

Units Alternative Units

Volume Treated 5,154 L/sec. 445,294Alternative dosage rate (default = 0.5 mg/L): 0 mg/LBasis Polymer Feed 222.6 kg/dayAmerican Water Chemicals $/500 lb.: $ 500 per 500 lbs.

% $ 59,895 Manufactured & Electrical Equipment 0.76 $ 126,323 Housing 0.19 $ 29,505 Excavation, Site Work & Labor 0.04 $ 7,241 Piping and Valves 0.01 $ 1,247 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 164,315

% $ 4,758 Materials 0.1 $ 990 Energy 0.24 $ 2,664 Labor 0.66 $ 8,830 AntiScalant Cost $/yr: $ 170,232 November, 2006 Operation & Maintenance $: 1.00 $ 182,717

Polymer Feed Capital CostGeneral Form: A*e^(B*X)+CA = 11760.71B = 0.00665C = 8200

O&M CostGeneral Form: A*e^(B*X)A = 3000.8B= 0.00207

1978 Capital Cost:

1978 O&M Cost:

Source: Qasim, et al, Aug. 1992, AWWA

Page 45: Copy of WaTER

{s}PolyElectrolyte

Water Treatment Cost Estimation Program

Units Alternative Units

Volume Treated 5154 L/sec. 445,294Alternative dosage rate (default = 0.5 mg/L): 0 mg/LBasis Polymer Feed 222.6 kg/dayAmerican Water Chemicals $/500 lb.: $ 500 per 500 lbs.

% $ 59,895 Manufactured & Electrical Equipment 0.76 $ 126,323 Housing 0.19 $ 29,505 Excavation, Site Work & Labor 0.04 $ 7,241 Piping and Valves 0.01 $ 1,247 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 164,315

% $ 4,758 Materials 0.1 $ 990 Energy 0.24 $ 2,664 Labor 0.66 $ 8,830 PolyElectrolyte Cost $/yr: $ 170,232 November, 2006 Operation & Maintenance $: 1.00 $ 182,717

Polymer FeedCapital CostGeneral Form: A*e^(B*X)+CA = 11760.71B = 0.00665C = 8200

O&M CostGeneral Form: A*e^(B*X)A = 3000.8B= 0.00207

1978 Capital Cost:

1978 O&M Cost:

Page 46: Copy of WaTER

{t}KMnO4

Water Treatment Cost Estimation Program

Units Alternative Units

Feed/Product Flow 5154 L/sec. 445,294 Mn 2+ 0.00 mg/LFe 2+ 0.00 mg/LCalculated KMnO4 Dose: 0.000 mg/LAlternative dosage rate 2 mg/LBasis KMnO4 890.6 kg/dayKMnO4 $/lb (hopper trucks): $ 1.9 per lb.

1978 Capital Cost: % $ 35,277 Manufactured & Electrical Equipment 0.66 $ 64,612 Housing 0.19 $ 17,378 Excavation, Site Work & Labor 0.05 $ 5,331 Piping and Valves 0.1 $ 7,342 Steel 0 $ - Concrete 0 $ - November, 2006 Capital Cost $: 1.00 $ 94,662

1978 O&M Cost: % $ 5,600 Materials 0.03 $ 350 Energy 0.05 $ 653 Labor 0.92 $ 14,488 KMnO4 Cost $/yr: $ 1,293,766 November, 2006 Operation & Maintenance $: 1.00 $ 1,309,257

Permanganate FeedCapital CostGeneral Form: A*X^B*e^(C*X)A = 9681.7B = 0.0304C = 0.00122

O&M CostGeneral Form: A*e^(B*X)+CA = -2125.9B= -0.01689C= 5600

m3/day

Source: Qasim, et al, Aug. 1992, AWWA

Page 47: Copy of WaTER

{v}Clearwell

Water Treatment Cost Estimation Program

Construction cost for clear well storage

Below Ground (concrete)Storage Capacity 15852 kgal

60000

% $ 3,169,927 Manufactured & Electrical Equipment 0.02 $ 175,936 Housing 0.13 $ 1,068,429 Excavation, Site Work & Labor 0.3173 $ 3,039,822 Piping and Valves 0 $ - Steel 0.2753 $ 2,241,342 Concrete 0.25695 $ 1,593,252 November, 2006 Capital Cost: 1.00 $ 8,118,781 November, 2006 Unit Cost ($/kgal) $512

Data from EPA-600/2-79-162b, August 1979, pg453-454. They are used in determining cost formula.

m3

1978 Capital Cost:

Page 48: Copy of WaTER

{v}Clearwell

Water Treatment Cost Estimation Program

Ground Level (steel)Storage Capacity 14531 kgal

55000

% $ 1,628,817 Manufactured & Electrical Equipment 0.6891 $ 3,114,799 Housing 0.13 $ 548,995 Excavation, Site Work & Labor 0.01 $ 49,227 Piping and Valves 0.07066 $ 239,546 Steel 0.044 $ 184,068 Concrete 0.0569 $ 181,289 November, 2006 Capital Cost: 1.00 $ 4,317,924 November, 2006 Unit Cost ($/kgal) $297

m3

1978 Capital Cost:

Page 49: Copy of WaTER

{w}GravityFilt

Water Treatment Cost Estimation Program

Units Alternative UnitsDesired Flow Rate 5153.87 L/s 81721 gpmTemperature 53.15 oF

Total Suspended Solids 22.0 mg/LWash Cycle 24 hrTSS Density 35 g/L*Media Depth 1.2 m 1.31 yd

Maximum Media Capacity 110

Required Media Volume 2,544.54 3328.26

Calculated Bed Area: 2,120.45 4156.08

Alternative Bed Area: 0.00 0.00Tank Depth 1.56 m 1.7 yd

Backwash rate 13.93Backwash duration 6 min.Backwash frequency times per dayLoading Rate 2.2 gpm/sqft

Media Cost Delivered

$ 540 $ 699

$ 540 $ 699

$ 1,620 $ 2,098

$ 1,215 $ 1,573

TOTAL CONSTRUCTION COSTS: $ 17,568,907 Rapid Sand: $ 1,797,258 Coal/ Sand: $ 1,797,258 Coal/ Sand/ Garnet: $ 2,546,115 Sand/Greensand/Coal $ 2,995,430 TOTAL OPERATING COSTS: $ 730,268 Media costs assume equal parts of each type.

*Media capacity based on information in 'Water Treatment and Plant Design',R.L. Sanks, Co: 1978, Ann Arbor Science Publishers, Inc.

Construction cost is 100% Manufactured EquipmentO&M costs are included with the structure.

L-TSS/m3*

m3 yd3

m2 yd2

m2 yd2

gpm/ft2

$/yd3 Sand $/m3

$/yd3 Coal $/m3

$/yd3 Greensand $/m3

$/yd3 Garnet $/m3

Page 50: Copy of WaTER

{w}GravityFilt

Water Treatment Cost Estimation Program

Gravity Filter

Backwashing Pump Gravity Filter Structure

ActualApplicable Range

ActualApplicable Range

Lower Limit Upper Limit Lower Limit Upper Limit

2,120.45 13 2600 2,120.45 13 2600

% $ 2,150,536 % $ 4,625,190

Manufactured & Electrical Equipment 0.69 $ 4,117,857 Manufactured & Electrical Equipment 0.26 $ 3,337,171

Housing 0 $ - Housing 0.18 $ 2,158,515

Excavation, Site Work & Labor 0.07 $ 454,960 Excavation, Site Work & Labor 0.22 $ 3,075,255

Piping and Valves 0.24 $ 1,074,241 Piping and Valves 0.23 $ 2,214,120 Steel 0 $ - Steel 0.05 $ 593,953

Concrete 0 $ - Concrete 0.06 $ 542,835 November, 2006 Capital Cost $: 1.00 $ 5,647,058 November, 2006 Capital Cost $: 1.00 $ 11,921,849

% $ 25,105 % $ 262,655 Materials 0.24 $ 12,540 Materials 0.12 $ 65,601 Energy 0.52 $ 30,460 Energy 0.36 $ 220,630

Labor 0.24 $ 16,944 Labor 0.52 $ 384,092

November, 2006 Operation & Maintenance $: 1.00 $ 59,945 November, 2006 Operation & Maintenance $: 1.00 $ 670,324

Backwash Pumping Costs Gravity Filter Structure Costs Construction Costs: Construction Costs:General Form: A + B*X + C*X^2 General Form: A *X^B*e^(CX)A= 36000 A= 35483.4B= 1254.21 B= 0.591C= -0.1212 C= 0.000162

O & M Costs: O & M Costs:General Form: A*X^B+C General Form: A*X^B+CA= 73.3 A= 359.5B= 0.75 B= 0.8568C= 2200 C= 8100

What is relationship of BW pump to filter area for min and max calcs

Filter area (m2): Filter area (m2):Limits (From EPA-600/2-79-162b, figure 67-69)

1978 Capital Cost: 1978 Capital Cost:

1978 O&M Cost: 1978 O&M Cost:

Source: Qasim, et al, Aug. 1992, AWWA Source: Qasim, et al, Aug. 1992, AWWA

0 500 1000 1500 2000 2500 30000

2000

4000

6000

8000

10000

12000

14000

16000

18000

f(x) = 53.3774118969911 x^0.700664241362944R² = 0.994123915558261 Column R

Power (Column R)

Page 51: Copy of WaTER

{w}GravityFilt

Water Treatment Cost Estimation Program

50100200300

400

600

800

10001200

140016001800200023002600

2800

0 500 1000 1500 2000 2500 30000

2000

4000

6000

8000

10000

12000

14000

16000

18000

f(x) = 53.3774118969911 x^0.700664241362944R² = 0.994123915558261 Column R

Power (Column R)

Page 52: Copy of WaTER

{x}UFSCC

Water Treatment Cost Estimation Program

Upflow Solids Contact Clarifier (UFSCC)

Units Alternative UnitsProduction Flow to be treated 4380.79 L/sec 69444 gpmRetention Time 180 min.Assumed Depth = 4.8 m 4.8 m

Calculated Settling Area 9856.8

Alternative settling Area 0

Basis: 9856.8

% $ 2,921,679 Manufactured & Electrical Equipment 0.516 $ 4,183,673 Housing 0 $ - Excavation, Site Work & Labor 0.293 $ 2,587,194 Piping and Valves 0 $ - Steel 0.11 $ 825,425 Concrete 0.081 $ 462,918 November, 2006 Capital Cost $: $ 8,059,211

% G=70 % G=110 % G=150 $ 58,325 $ 92,595 $ 128,007

Materials 0.17 $ 20,637 0.14 $ 26,981 0.11 $ 29,307 Energy 0.23 $ 31,301 0.38 $ 82,101 0.5 $ 149,342 Labor 0.6 $ 98,413 0.48 $ 124,989 0.39 $ 140,393 November, 2006 Operation & Maintenance $: $ 150,352 $ 234,071 $ 319,042

$ = a+b*x a b

62801.114 416.77163

132264.71 244.33215

$=a+b*x a bG = 70 5967.9519 5.3118202G = 110 5806.5744 8.80491G = 150 5939.8245 12.384121

m2

m2

m2

1978 Construction Cost

1978 O&M Cost:

Construction Cost Equations (From EPA-600/2-79-162b, figure 63)

<400 m2

>400 m2

O&M Cost (From EPA-600/2-79-162b figure 63 & 64)

Page 53: Copy of WaTER

{y}IX

Water Treatment Cost Estimation Program

Ion ExchangeRegeneration/Backwashing Pump

ActualApplicable Range

Lower Limit Upper Limit

Production Flow to be treated 4380.79 L/s 49.61 13 2600 Equiv/L , CATION >+1 1.05E-04 equiv/L Applicable RangeEquiv/L , ANION 7.21E-03 equiv/L Lower Limit Upper Limit

Service Flow Rate : 20 L/(hr*L resin) 16 40 % $ 97,922 Cation Equivalents/Liter of Resin 20 equiv/L Manufactured & Electrical Equipment 0.69 $ 187,501 Anion Equivalents/Liter of Resin 11 equiv/L Housing 0.00 $ - Desired Run Cycle: 1 days Excavation, Site Work & Labor 0.07 $ 20,716

Piping and Valves 0.24 $ 48,914 Medium: Cation Anion Steel 0.00 $ -

Min Volume: 788.5 788.5 Concrete 0.00 $ - Time until exhaustion of min volume: 397.6 3.2 days November, 2006 Capital Cost $: 1.00 $ 257,131

Resin for desired Run Cycle: 788.54 788.54Resin Expansion Coefficient 2 2 % $ 3,570

Total Vessel Volume 1,577 1,577 Materials 0.24 $ 1,783

$1,607 $6,250 Energy 0.52 $ 4,332 Resin Cost: $ 1,267,299 $ 4,928,385 Labor 0.24 $ 2,410

November, 2006 Operation & Maintenance $: 1.00 $ 8,525 Vessel:Aspect ratio: 4 height/dia

Bed area : 49.61Base pressure vessel correlation: % $ 2,208,278 Resin w/ Tank & Regeneration TankNumber of Vessels (Reality check) Height is 31.8 m Manufactured & Electrical Equipment 0.57 $ 1,845,612 (446 kPa/ 50 psig) b= 3.446 Housing 0.01 $ 31,839 log($) = b + m*log(m^3) m= 0.562 Excavation, Site Work & Labor 0.03 $ 86,053 Cost factor for operating pressure: 2 Piping and Valves 0.43 $ 1,118,253 Tank cost at base pressure: $ 174,786 Steel 0.00 $ -

TOTAL TANK COST: $ 349,572 Concrete 0.00 $ - November, 2006 Capital Cost $: 1.04 $ 3,081,756

Regeneration (with NaCl) Units Alternative Units % $ 820,280

Mass of NaCl /vol of resin: 150 9 Materials 0.24 $ 233,956 NaCl required: 236,563 kg 521,526 lb Energy 0.52 $ 426,546 Chemical cost per kg NaCl: $0.02 per kg $0.01 per lb. Labor 0.24 $ 179,673 TOTAL CHEMICAL COST PER YEAR: $ 820,280 November, 2006 Operation & Maintenance $: 1.00 $ 840,175

Chemical concentration: 10 percent

Regeneration fluid req'd : 2,366 625 kgalSTORAGE TANK COST: $ 591,406

Units Alternative Units 80,000 gallon 319,000.00Pumping 100,000 gallon 333,000.00 Height DIfference 32 m 104.3 ft Pipe Diameter 0.51 m 1.7 ft Length of Pipe 10 m 32.8 ft Efficiency 78 Number Transfer Pumps 1 Pressure Differential 200 kPa 29.0 psi

Capacity per Pump 5.154 81,699 gpm Size 6512.9 hp

Filter area (m2):

1978 Capital Cost:

m3

m3

1978 O&M Cost:

m3

Nominal Resin Price $/m3

m2

Total Construction Cost:

1978 O&M Cost:

kg/m3 lb/ft3

m3

m3/s

Page 54: Copy of WaTER

{z}MF-P input

Water Treatment Cost Estimation Program

Process input Units Alternative Units Alternative Units Lower Limit Upper Limit Process Flow Calculation Units Alternative UnitsDesign MF product flow rate 99,989,169 gpd Feed flow 4380.3 L/s 69430 gpmDesign MF product flow rate 100.0 MGD 0.01 Product flow 4351.1 L/s 68966 gpmDesign MF product flow rate 69437 gpm Backwash 908.4 L/hr 4 gpmDesign MF product flow rate 4380 L/s 378,459,004 L/day Recovery rate 99.3 %

Design MF product flow rate 378,459 Feed pump horsepower 1519 hpFeed pump (kwh) 9,429,856 kwh

Plant availability (%) 95 % Backflush (kwh) 62,866 kwhMembrane Module equipment cost $ 211,500 90M10C Number of Modules 103Cost per membrane $650 Number of Membranes 9270modular system flow rate 675 gpm 42.6 L/s 0.972 MGD Building Area 49995 ft2 4645 m2Flow per module 7.5 gpmNo. membranes per module 90Pump efficiency 80 %Motor efficiency 93 %Design feed pressure 30 psi 207 kpaBackflush pressure 29 psi 200 kpa 576Backwash Flow 600 gpm 37.9 L/sBackwash intervals 15 minutes 900 second 0.0104 daysBackwash and backflush duration 0.1 minutes 6 second 0.0001 days

Operations & Maintenance Cost Input

Electricity Rate 0.07 $/kWhSodium Hypochlorite Cost 0.43 $/LDesign dosage 200 mg/LSpecific gravity (NaOCl) 1.168Solution concentration 12 %Membrane Life 10 YearsStaff Days/day 3

m3/day

H9
Memcor literature
C15
US Filter - Memcor Model 90M10C
B37
5 MGD Microfiltration plant has 6 staff
Page 55: Copy of WaTER

O&M Cost EstimationDirect Capital CostsMembrane Modules $ 21,784,500 @ 211500 $ each Electricity $ 664,491 Membrane $ 6,025,500 @ 650 $ each Labor $ 254,000

Building $ 4,999,464 @ 100 1076 Chemicals (Sodium Hypochlorite) $ 215,000 Installation $ 7,210,000 @ 70000 $/90M10C Membrane Replacement $ 603,000 Miscellaneous $ 1,089,225 5 % of Module Cost Cleaning Chemicals(NaOCl) $ 43,000 Plant interconnecting piping $ 1,143,686 5 % of Module and misc. Repairs and Replacement and Misc. $ 891,000 Engineering $ 2,287,373 10 % of Module and misc. Total O & M Cost $ 2,670,491 Total Direct Capital Costs $ 44,539,748

Indirect Capital CostsInterest During Construction $ 2,672,000 6 % of Total directContingencies $ 8,908,000 20 % of Total directA&E Fees, Proj. Management $ 4,454,000 10 % of Total directWorking Capital $ 1,782,000 4 % of Total directTotal Indirect Captial Cost $ 17,816,000

Total Construction Cost $ 62,355,748 Total costs

$/ft2 $/m2

Page 56: Copy of WaTER

document.xls

{bb}Rejection

2.66E-04 3.97E+00

2.66E-03 3.97E+01Transmembrane pressure (Pa) 1,550,000 1,404,096

37 551245

1.00E-05 1.00E-05

25.68 13.96

1000 1000Viscosity (Pa s) 0.001 0.001

4908 4908

1.20E-09 1.20E-09

Calculated paramters determined by configuration and operating conditions

7.19E-06 7.19E-06 A

4.64E-12 5.12E-12 A

1.44E+01 1.44E+01 ASchmidt Number 837 837 AReynolds Number 143 143 Aa 0.875 0.875 Bb 0.250 0.250 Bc 0.065 0.065 Bk (m/s) for laminar flow in flat channel 3.23E-03 3.23E-03 A and B

Iterations neccessary for model convergence (pp 9.13 item 8, reference A)Solving the design equations 1 2 3 4 5 6 7 8

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Recovery 0.1000 0.0910 0.0911 0.0911 0.0911 0.0911 0.0911 0.0911

0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

0.9955 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956

28.5895 2.83E+01 2.83E+01 2.83E+01 2.83E+01 2.83E+01 2.83E+01 2.83E+01

0.1144 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01

28.5261 28.2444 28.2472 28.2472 28.2472 28.2472 28.2472 28.2472

6.55E-06 6.55E-06 6.55E-06 6.55E-06 6.55E-06 6.55E-06 6.55E-06 6.55E-06

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pure water permeability (m3/s)

Feed Flow (m3/s)

Area (m2)

Channel height dh(m)

Cf (mol/m3)

Density (kg/m3)

a (Pa m3mol-1)

Diffusivity of NaCl (m2/s)

Jv (m/s) 1st pass

Pv/tm (m3m-2s-1Pa-1)

Average Uc (m/s)

Jv/k

Intrinsic Rejection Ro

Appartent Rejection Ra

Cw (mol/L)

Cp (mol/L)

Cr (mol/L)

Jv Theoretical (m3m-2s)

Exp (Jv/k)

1 2 3 4 5 6 7 8 9 100.995

0.995

0.996

0.996

6.40E-06

6.45E-06

6.50E-06

6.55E-06

6.60E-06

6.65E-06

6.70E-06

6.75E-06

6.80E-06

6.85E-06

Ra Test Ri Test Ra Site Ri Site Jv Jv Site

C7
Saied Delagah: converts permeate flow from (M3/d) to (m3/s). Permeate flow given by user
B8
Saied Delagah: Feed Flow is Recovery (user input from RO&NF INPUT) mulitplied by pure water perm
C8
Saied Delagah: Feed Flow is Recovery (user input RO&NF INPUT) mulitplied by pure water perm
B9
Saied Delagah: Mftr's Osmotic pressure in (Pa) (from "RO&NF Input")
C9
Saied Delagah: Operating pressure calculated in RO&NF INPUT in (Pa) (NDP + osmotic pressure)
B10
Saied Delagah: Memb mftr membrane surface area from RO&NF INPUT
C10
Saied Delagah: Area of memb required based on permeate flow rate (Pure water permeability)
B12
Saied Delagah: Conc. of salt in feed water - Membrane Manufacturer Specifications (from "RO & NF Input") (Calculation based on two inputs)
C12
Saied Delagah: Conc. of salt in feed water from the User's raw water data
A19
Saied Delagah: Page 9.3 the sentence before eqn 9.1 describes Jv as Permeation of water through the membrane. Jv is describes as the overall volumetric flux through the membrane (page 9.7 of report 29 - The sentence below eqn 9.13 describes Jv).
B19
Saied Delagah: page 9.7 of report 29 - The sentence below eqn 9.13 describes this relationship; Jv = Vp / A water flux per unit area of membrane
C19
Saied Delagah: page 9.7 of report 29 - The sentence below eqn 9.13 describes this relationship; Jv = Vp / A water flux per unit area of membrane
B20
Saied Delagah: p 9.3 eqn 9.1 Coeff. of water transport
C20
Saied Delagah: p 9.3 eqn 9.1 Coeff. of water transport
B21
Saied Delagah: pp 9.12 - item number 6, following down to eqn 9.33 Average cross flow velocity
C21
Saied Delagah: pp 9.12 - item number 6, following down to eqn 9.33 Average cross flow velocity
B22
Saied Delagah: Report 29 - pp. 9.8, Eqn 9.18
C22
Saied Delagah: Report 29 - pp. 9.8, Eqn 9.18
B23
Saied Delagah: Report 29 - pp. 9.8, Eqn 9.17
C23
Saied Delagah: Report 29 - pp. 9.8, Eqn 9.17
B27
Saied Delagah: Boundary Layer Mass Transfer Coefficient, obtained from: Supplied by membrane manufacturer Estimatied from literature and the assumed conditions in the module
C27
Saied Delagah: Boundary Layer Mass Transfer Coefficient, obtained from: Supplied by membrane manufacturer Estimatied from literature and the assumed conditions in the module
B32
Saied Delagah: Pure water perm. / Feed Flow
B33
Saied Delagah: Calculated in RO&NF INPUT
B34
Saied Delagah: Calculated in RO&NF INPUT
A35
Saied Delagah: Boundary layer salt concentration (wall concentration) at the membrane interface caused by concentration polarization, assuming no el formation occurs Ref A page 9.10
A36
Saied Delagah: concentration of salt in permeate Ref A page 9.10
A37
Saied Delagah: concentration of salt in reject Ref A page 9.10
A38
Saied Delagah: Estimated flux using appropriate flux model, i.e., for RO Ref A page 9.10
Page 57: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

This sheet originally from EllenVelocity 2.3 m/sec

Outfall Length (enter "m" or "ft.") 100 m

Concentrate Flow 0.70Pipe Diameter 0.62 mdP 0.37 m

99.9 kPaSchedule 80 Pipe Cost 900 $/m

Total Pipe Cost $90,025

Use this one.

Velocity Length Diameter (m) dP1 kPa2.3 100 0.001 0.024 22.947

0.01 0.074 5.3790.02 0.105 3.4760.03 0.129 2.6920.04 0.149 2.2460.05 0.166 1.9520.06 0.182 1.7400.07 0.197 1.5790.08 0.210 1.4510.09 0.223 1.348

0.1 0.235 1.2610.11 0.247 1.1880.12 0.258 1.1240.13 0.268 1.0690.14 0.278 1.0200.15 0.288 0.9770.16 0.298 0.9380.17 0.307 0.9030.18 0.316 0.8710.19 0.324 0.842

0.2 0.333 0.8150.3 0.408 0.6310.4 0.471 0.5270.5 0.526 0.4570.6 0.576 0.4080.7 0.623 0.3700.8 0.666 0.3400.9 0.706 0.316

1 0.744 0.2961.1 0.781 0.278

m3/sec

Flow m3/s

What is purpose of graph?Show dp or diameter as a function of the other

Used for predicting optimum pipe diameter.

Two equations, one simpler (Darcy-Wisebeck) given to calculate dP, depending on pipe diameter size.

The other eqn which is used to calculate dP is Hazen Williams with HDPE pipe, Cf = 145

B10
Saied Delagah: V= Q/A D = SQRT(Q/.785V)
B11
Saied Delagah: Hazen William to calculate head loss
B12
270 is a max pressure drop factor for the pipe diameter to convert diam to pressure drop
B13
Saied Delagah: Cost for pipe, Must ask Michelle about source
E19
Saied Delagah: Hazen William, the preferred eqn for head loss calculation, as compared to dP2
Page 58: Copy of WaTER

1.2 0.815 0.2641.3 0.849 0.2511.4 0.881 0.2391.5 0.911 0.2291.6 0.941 0.2201.7 0.970 0.2121.8 0.998 0.2041.9 1.026 0.197

2 1.052 0.191

Page 59: Copy of WaTER

dP2 kPa4.4961.4221.0050.8210.7110.6360.5800.5370.5030.4740.4500.4290.4100.3940.3800.3670.3550.3450.3350.3260.3180.2600.2250.2010.1840.1700.1590.1500.1420.136

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

1

10

100

Pressure Drop vs Diameter - Two Versions

Eq III

Alt

Diameter (m)

dP

(K

pa

)

What is purpose of graph?Show dp or diameter as a function of the other

Used for predicting optimum pipe diameter.

Two equations, one simpler (Darcy-Wisebeck) given to calculate dP, depending on pipe diameter size.

The other eqn which is used to calculate dP is Hazen Williams with HDPE pipe, Cf = 145

F6
Saied Delagah: Where do these equations come from?? What is source
F19
Saied Delagah: Darcy-Wisebeck head loss calc
Page 60: Copy of WaTER

0.1300.1250.1200.1160.1120.1090.1060.1030.101

Page 61: Copy of WaTER

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

1

10

100

Pressure Drop vs Diameter - Two Versions

Eq III

Alt

Diameter (m)

dP

(K

pa

)

Page 62: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Ionics Formulas for USBR Pricing of an EDR System

Last Revision Date 7/6/2000

TDS 1000 mg/l 500Production Flow 105.25 mgdCapital Cost $ 35,326,384 Total Power 22.8 kWh/KgalMembrane Replacement $ 5,049,026 WATER RECOVERY 75%Staff days/day 3All cost numbers are only within +,- 15%

Estimate O&M Costs

Electricity $ 58,171,969 Labor $ 31,810 Membrane Replacement $ 5,049,026 Cleaning Chemicals $ 105,252 Cartridge Filters $ 2,024,874 Repairs and Replacement $ 176,632 Insurance $ 70,653 Lab fees $ 1,010,417 Total O & M Cost $ 66,640,633

Total Costs $ 35,326,384

Capital Recovery $ 2,566,423

Annual cost $ 69,207,056

$0.50

$/1000 gal Product $1.90

$/acre foot Product $617.99

Ms. Antonia von [email protected], personal communication.

$/m3 Product

Page 63: Copy of WaTER

{ee}ED2

Water Treatment Cost Estimation Program

First Stage

Input from Interface Value: Units Sample Values: Membrane ReplacementProduction Flow to be treated 4380.79 L/sec. Membrane Cost/m2: $ 25.00

Flow Rate 15771 Membrane Life Expectancy (yrs): 15Feed TDS 500 mg/LProduct TDS 500 mg/L Construction Cost ItemsAverage Equivalent Weight: 35.55 Construction Cost Factor (%): 1.65Percent Recovery: 0.5 Electricity Cost $/kWh: $ 0.07

Production Data Labor and OverheadDelta N eq/m3: 0.00 Labor cost, Lh ($/h) $ 29.05 Desal Ratio: 1.00 Shifts per day, S (number/day) 0.2

Workers per shift, Ws (number/shift) 1Membrane CharacteristicsTransport efficiencies Sum<=1.00 Capital RecoveryInsert rows after Na+ or Cl- System lifetime, r (yr) 30to add more ion efficiencies. Downtime, Dt (%) 0.05Na+: 0.470 0.400 Annual interest rate, i (%) 6

Sum cations efficiencies: 0.470 First Stage Capital Costs

Based on Membrane Cost @ $25/m2 $ - Cl-: 0.470 0.400

First Stage O&M Costs/ yearSum anions efficiencies: 0.470 Chemicals $ 1,249

Maintenance $ - Transport effieciency: 0.940 Membrane Replacement: $ - Sum of Anion & Cation Efficiency. Labor Cost: $ 16,965 Area/membrane pair Asahi is 0.85 m^2 0.850 m2 ED Electicity Cost/year @ $0.07/kWhr: $ 82,201 Dilute side resistance "Rd" 0 (ohms/cm)/cm2 Capital Recovery $ - Concentrate side resistance "Rc" 0 (ohms/cm)/cm2 November, 2006 O&M $: $ 100,415 Membrane resistance "Rm" 0.070 (ohms/cm)/cm2:Total resistance Rt = (Rd+Rc+Rm): 0.070 0.860 Current density 30 amps/m2 30 - 300Current Efficiency: 0.860 Membrane Voltage Potential "Vm" volts/pairVoltage per cell Vc = Rt*CD+Vm: 0.021 1.000

Energy RequirementsPower requirements 0.00 kWhr/m3:Pumping energy requirements 0.17 kWhr/m3 0.17Total 64345 kWh/day

Membrane RequirementsTotal Membrane Area 0 m2Number of cell pairs: 0

m3/Hr.

Page 64: Copy of WaTER

{ee}ED2

Water Treatment Cost Estimation Program

Second Stage

Input from Interface Value: Sample Values: Membrane ReplacementFlow Rate 2576.9 L/sec Membrane Cost/m2: $100.00 Flow Rate 9277 m3/hr. Membrane Life Expectancy (yrs): 15Feed TDS 500 mg/LProduct TDS 500 mg/L Construction Cost ItemsAve Equivalent Weight: 35.55 Construction Cost Factor (%): 1.65Percent Recovery: 0.50 Electricity Cost $/kWh: $0.07

Production Data Labor and OverheadDelta N 0.00 equiv/m3 Labor cost, Lh ($/h) 29.05Desal Ratio: 1.00 Shifts per day, S (number/day) 0.2

Workers per shift, Ws (number/shift) 1Membrane CharacteristicsTransport efficiencies Sum<=1.00 Capital RecoveryInsert rows after Na+ or Cl- System lifetime, r (yr) 30to add more ion efficiencies. Downtime, Dt (%) 0.05Na+: 0.470 0.400 Annual interest rate, i (%) 6

Sum cations efficiencies: 0.470

Second Stage Capital CostsCl-: 0.470 0.400 Based on Membrane Cost @ $100/m2 $ -

Sum anions efficiencies: 0.470 Second Stage O&M Costs/ yearChemicals $ 1,249

Transport effieciency: 0.940 Maintenance $ - Sum of Anion & Cation Efficiency. Membrane Replacement: $ - Area/membrane pair Asahi is 0.85 m^2 0.850 m2 Labor Cost: $ 848 Dilute side resistance "Rd" 0 (ohms/cm)/cm2 ED Electicity Cost/year @ $0.07/kWhr: $ 48,353 Concentrate side resistance "Rc" 0 (ohms/cm)/cm2 Capital Recovery $ - Membrane resistance "Rm" 0.070 (ohms/cm)/cm2 November, 2006 O&M $: $ 50,450 Total resistance Rt = (Rd+Rc+Rm): 0.070 0.860 Current density 30 amps/m2 30 - 300Current Efficiency: 0.860 Membrane Voltage Potential "Vm" 0.650 volts/pairVoltage per cell Vc = Rt*CD+Vm: 0.671 1.000

Energy RequirementsPower requirements 0.00 kWhr/m3Pumping energy requirements 0.17 kWhr/m3 0.17Total 37850 kWh/day

Membrane RequirementsTotal Membrane Area 0 m2Number of cell pairs: 0

TotalTotal capital cost (1st and 2nd stage) $0

Page 65: Copy of WaTER

{ee}ED2

Water Treatment Cost Estimation Program

Suggested Values $ 100.00

15

1.65 $ 0.08

$ 15.00 0.2

1

151510

Page 66: Copy of WaTER

{ee}ED2

Water Treatment Cost Estimation Program

Suggested Values100

15

1.650.08

150.2

1

151510

Page 67: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

PumpsUnits Alternative Units

Number of pumps: 1 pumpHeight differential: 100 m 328.1 ftDischarge pressure: 1750 kPa 254 psi

Full flow rate: 5.15 81,699 gal/min

Basis flow rate 5.15 81,699 gal/minPump Efficiency: 75 %Velocity (m/s) 2.4 m/s 8 ft/secMotor Efficiency: 87 %HP 24251Power consumption: 20795 kW

PD VST CentDirect Costs (material and labor) 3 - 300 HP 3 - 500 HP 3 - 1200 HPPump, drive, Piping and driver 7,275,306 3,016,431 234 Piping 1,727,931 1,727,931 1,727,931 Controls 4,000 Installed Capital Cost $9,003,237 $4,748,362 $1,728,164

Operating CostsPower Cost $/year 12,113,659 Lubrication ($/L oil) 0.7 59,483

0.075 9,559,752 Maintenance (hr/Hp) 1.5 1,056,738

$22,789,633

m3/s

m3/s

Cooling water ($/m3 water)

Source: "Pump Handbook" Karassik, Krutzsch, Fraser and Messina pg (9-66)

Page 68: Copy of WaTER

Required InformationPlant life expectancy, n 30Annual Interest Rate, i 6%Annual fixed-charge rate, AFC 10

Present-worth factor, PWF 13.76

Captial-recovery factor, CRF 0.073Operating factor, OF 0.95Annual levelized cost, ALC $0

hp calc may change if hp calc changes for RO sheet

6.31E-05 1 235.96136.31E-04 10 235.6133.15E-03 50 234.0656.31E-03 100 232.136.31E-02 1000 197.31.26E-01 2000 158.63.15E-01 5000 42.5

Page 69: Copy of WaTER

0 1000 2000 3000 4000 5000 60000

50

100

150

200

250f(x) = − 0.0387 x + 236R² = 1

Chart Title

gal/min

Linear (gal/min)

Page 70: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Stiff and Davis Saturation Index

For water with TDS > 15000 mg/L

5

148

7.91 Calculated from alkalinity & pH

2.88E-08Major Ions mg/L 500TDS Concentrate 3317

35

979

0.01

0.05pCa 4.28pAlk 2.55

9.21 2.38 K from 'Stiff&Davis'

-1.67

3.46

1.70

7.66 2.50 for concentrate Ionic Strength and Temperature

123.85

8.34

0.68For the Concentrate Stream with Acid

7.00 Guess mg HCl 73.40

972 879

14 97

68.4 9.1

8.09 7.24pAlk 1.70 1.75

7.67 7.71

8.09 7.24

0.42 -0.48

Ca+2 mg/L as CaCO3

Alkf mg/L as CaCO3

CO2 mg/L as CO2

H+

Cac=

Alkc=

Ionic Strengthf =

Ionic Strengthc =

pHs =

S&DSIf

pCac

pAlkc

pHsc =

Alkc/CO2

pHc =

S&DSIc

Guess mg H2SO4

Alk C acid

CO2 acid

Alk c acid/CO2 acid

pHc acid

pHs =

pHc =

S&DSI (c adjusted)

Page 71: Copy of WaTER

for concentrate Ionic Strength and Temperature

Page 72: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

From Water Analysis5

148500

7.54Temperature 12pHf 7.54

84.28

pAlkf 2.55"C" 2.48

9.31-1.77

From Report or RO&NFRecovery 0.85Rejection 0.995

Concentrate Values Product Values35

97933197.91

8.343.461.70

"C" 2.56 "C"7.720.62

Acidification H2SO4 HClGuess mg/L Acid 7.0 73.4 Could change this to a goal seek equation

140.4 46.94

14.2 96.73

9.88 0.49

7.3 6.00

Use pCa and pAlk and pH vs MO Alk/CO2 from 'Stiff&Davis' sheet

Caf in mg/L CaCO3

Alkf in mg/L CaCO3

TDSf

pHf

CO2f

pCaf

pHs

LSIf

Cac Cap

Alkc Alkp

TDSc TDSp

CO2c CO2p

pHc pHf

pCac pCap

pAlkc pAlkp

pHs pHs

LSIc LSIp

Alk acid

CO2 acid

Alkf/CO2

pHf acid

Page 73: Copy of WaTER

pAlk 2.58 2.22pCa 4.28 3.46

2.48 2.56

9.34 8.23

-2.07 -3.31

931.94 311.59

65.58 3.22

8.06 6.80

1.72 2.22

2.56 2.56

7.74 4.77

0.32 -1.43

Caustic Soda Soda Ash LimeProduct Stabilization 98% NaOH 90% CaOGuess mg/L 2.1 100 0.015105

3 95 1

0 0 0

5.6 -33.1 7.9

0.6 -2.9 0.1

6.1 Err:502 5.4pAlk 4.2 2.8 4.9pCa 6.5 6.5 5.9

7 145 3

2.3 2.4 2.3

13.1 11.7 13.1

-7.0 Err:502 -7.7

"C"acid

pHs =

LSIf

Alkc acid

Alkc/CO2

pHc =

pAlkc

"C"c

pHs

LSIc

99.16% NaHCO3

Alkstab

Ca stab

CO2 stab

Alkstab/CO2stab

pHp stab (actual pH after chem. addition)

TDS stab

"C"stab

pHs (theoretical pH of stabilized water)

LSIstab

B64
SDUNDORF: Change to optimize LSI
Page 74: Copy of WaTER

"C" Values dependent on Temperature and TDS in mg/L from figure 2 in ASTM D 3739Temperature °C

TDS (mg/L) 510 2.5120 2.5330 2.5450 2.55

100 2.58200 2.6300 2.62500 2.65

1000 2.682000 2.715000 2.73

Calculated Values10 2.4820 2.5130 2.5250 2.54

100 2.57200 2.59300 2.61500 2.63

Product Values 1000 2.650 2000 2.681 5000 2.713

7.91 x = TDS in mg/L

5.37 C (45) = 0.0368Ln(x) + 1.58256.51 C (40) = 0.0371Ln(x) + 1.66784.86 C (35) = 0.0383Ln(x) + 1.75812.29 C (30) = 0.0372Ln(x) + 1.865

13.66 C (25)= 0.0372Ln(x) + 1.965-8.29 C (20) = 0.0372Ln(x) + 2.0658

C (15) = 0.037Ln(x) + 2.1775C (10) = 0.0362Ln(x) + 2.2963C (5) = 0.0377Ln(x) + 2.412

TempCould change this to a goal seek equation 45

40

35

30

25

Page 75: Copy of WaTER

2015

10

5

A =

B =- 0.0207*Temp + 2.491

Incomplete

Calcium Hydraded Lime Gas Lime & Soda ashHypochlorite

0.0666 0 1.00 Could change this to a goal seek equation

1 1 2 95

0 0 0 0

7.9 7.9 8.9 -33.09

0.1 0.1 0.2 -2.9

5.4 5.4 5.6 Err:5024.9 4.9 4.5 2.86.0 6.5 6.5 6.5

3 3 5 118

2.3 2.3 2.3 2.4

13.2 13.7 13.4 11.7

-7.8 -8.3 -7.8 Err:502

93% Ca(OH)2 CO2(g)

Page 76: Copy of WaTER

"C" Values dependent on Temperature and TDS in mg/L from figure 2 in ASTM D 3739Temperature °C

10 15 20 25 30 35 40 452.39 2.28 2.17 2.07 1.97 1.86 1.77 1.682.41 2.29 2.18 2.08 1.98 1.87 1.78 1.692.42 2.3 2.19 2.09 1.99 1.88 1.79 1.712.43 2.31 2.2 2.1 2 1.9 1.8 1.722.45 2.34 2.22 2.12 2.02 1.93 1.83 1.742.48 2.37 2.26 2.15 2.05 1.96 1.86 1.77

2.5 2.38 2.27 2.17 2.07 1.98 1.88 1.792.52 2.41 2.3 2.2 2.1 2 1.9 1.812.56 2.44 2.33 2.23 2.13 2.03 1.93 1.852.58 2.47 2.36 2.26 2.16 2.05 1.96 1.87

2.6 2.49 2.38 2.28 2.18 2.08 1.98 1.89Calculated Values

2.38 2.27 2.17 2.06 1.96 1.85 1.75 1.642.40 2.30 2.19 2.09 1.98 1.88 1.78 1.672.42 2.31 2.21 2.10 2.00 1.89 1.79 1.692.44 2.33 2.23 2.12 2.02 1.91 1.81 1.702.46 2.36 2.25 2.15 2.04 1.94 1.84 1.732.49 2.38 2.28 2.17 2.07 1.97 1.86 1.762.50 2.40 2.29 2.19 2.09 1.98 1.88 1.772.52 2.42 2.31 2.21 2.10 2.00 1.90 1.792.55 2.44 2.34 2.23 2.13 2.03 1.92 1.822.57 2.47 2.37 2.26 2.16 2.05 1.95 1.842.61 2.50 2.40 2.30 2.19 2.09 1.98 1.88

x = TDS in mg/L

C (45) = 0.0368Ln(x) + 1.5825 R2 = 0.9871C (40) = 0.0371Ln(x) + 1.6678 R2 = 0.987C (35) = 0.0383Ln(x) + 1.7581 R2 = 0.9923C (30) = 0.0372Ln(x) + 1.865 R2 = 0.9785C (25)= 0.0372Ln(x) + 1.965 R2 = 0.9785C (20) = 0.0372Ln(x) + 2.0658 R2 = 0.9811C (15) = 0.037Ln(x) + 2.1775 R2 = 0.9854C (10) = 0.0362Ln(x) + 2.2963 R2 = 0.9862C (5) = 0.0377Ln(x) + 2.412 R2 = 0.9882

A B C (x) = A Ln (x) +B0.0368 1.5825

0.0371 1.6678

0.0383 1.7581

0.0372 1.865

0.0372 1.965

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

f(x) = − 0.0207103333333333 x + 2.49109166666667R² = 0.995085610084689

Coefficients for Calculated "C"

B

Linear (B)

A

Temperature

B A

Page 77: Copy of WaTER

0.0372 2.03580.037 2.1775

0.0362 2.2963

0.0377 2.412

0.037189

B =- 0.0207*Temp + 2.491 R2 = 0.9983

C (x,T)= 0.0372*Ln(x)-0.0209*T+2.499

TDS FactorCould change this to a goal seek equation

1.22

0.8

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

f(x) = − 0.0207103333333333 x + 2.49109166666667R² = 0.995085610084689

Coefficients for Calculated "C"

B

Linear (B)

A

Temperature

B A

Page 78: Copy of WaTER

10 100 1000 100001.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

f(x) = 0.0367723976795819 ln(x) + 1.58246227186501R² = 0.987123486028975

f(x) = 0.0377390602913234 ln(x) + 2.41195829687206R² = 0.988200691595297

5Loga-rithmic (5)1015202530Loga-rithmic (30)354045Loga-rithmic (45)

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

f(x) = − 0.0207103333333333 x + 2.49109166666667R² = 0.995085610084689

Coefficients for Calculated "C"

B

Linear (B)

A

Temperature

B A

Page 79: Copy of WaTER

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

f(x) = − 0.0207103333333333 x + 2.49109166666667R² = 0.995085610084689

Coefficients for Calculated "C"

B

Linear (B)

A

Temperature

B A

Page 80: Copy of WaTER

10 100 1000 100001.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

f(x) = 0.0367723976795819 ln(x) + 1.58246227186501R² = 0.987123486028975

f(x) = 0.0377390602913234 ln(x) + 2.41195829687206R² = 0.988200691595297

5Loga-rithmic (5)1015202530Loga-rithmic (30)354045Loga-rithmic (45)

Page 81: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Temp 50 40 30 25Ionic Strength K

0 1.5 1.7 1.85 1.970.2 2.27 2.45 2.65 2.750.4 2.57 2.77 2.95 3.070.6 2.7 2.92 3.14 3.250.8 2.8 3.04 3.25 3.36

1 2.82 3.1 3.32 3.421.2 2.85 3.1 3.33 3.441.4 2.85 3.09 3.32 3.421.6 2.82 3.09 3.3 3.41.8 2.81 3.08 3.28 3.38

2 2.8 3.05 3.24 3.35

Curve Fits: x = ionic strengthTemp x3 x2 x a

50 0.634 -2.5651 3.2205 1.593140 0.6053 -2.508 3.2522 1.780930 0.6061 -2.5612 3.3709 1.938725 0.615 -2.5826 3.3744 2.052720 0.5679 -2.4127 3.1941 2.213410 0.576 -2.4149 3.1519 2.38730 0.5466 -2.2635 2.9032 2.616

Page 82: Copy of WaTER

From Feed Water AnalysisT 11.75I 0.01 Curve fit: T = Temperature, I = Ionic Strength

K =K = 2.3788520254

From Concentrate AnalysisT 11.75I 0.05

K =K = 2.504296137

Source: ASTM Method for S&DSI

(.0016*T+.5528)I3+(.0002T^2-.0142T-2.2695)*I2+(-.0004T^2+.0266T+2.9072)I+(-.0206T+2.598)

(.0016*T+.5528)I3+(.0002T^2-.0142T-2.2695)*I2+(-.0004T^2+.0266T+2.9072)I+(-.0206T+2.598)

Page 83: Copy of WaTER

20 10 0K

2.12 2.3 2.522.9 3.05 3.25

3.18 3.35 3.53.35 3.5 3.633.47 3.6 3.7

3.5 3.65 3.753.55 3.68 3.783.54 3.68 3.783.52 3.65 3.753.49 3.62 3.723.45 3.6 3.7

r20.97380.98210.98130.98320.97710.97840.9681

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

2

2.5

3

3.5

4

f(x) = 0.546571484071484 x³ − 2.26354895104895 x² + 2.90322455322455 x + 2.61601398601399R² = 0.968054230828351

f(x) = − 0.5554341492 x⁴ + 2.8557206682 x³ − 5.3422931235 x² + 4.3314005439 x + 1.5291608392R² = 0.993272168184924

50Polynomial (50)40302520100Polynomial (0)

Ionic Strength

K

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

f(x) = − 0.0205954285714286 x + 2.59804285714286R² = 0.994110018024602

f(x) = − 0.000413310924369747 x² + 0.0265632605042017 x + 2.90716554621849R² = 0.898667128342362

f(x) = 0.000172829131652662 x² − 0.0141723137254902 x − 2.26948907563025R² = 0.831629978410272

f(x) = 0.00160885714285714 x + 0.552764285714286R² = 0.814720209213579

x3Linear (x3)x2Polynomial (x2)xPolynomial (x)aLinear (a)

Page 84: Copy of WaTER

Curve fit: T = Temperature, I = Ionic Strength

+(.0002T^2-.0142T-2.2695)*I2+(-.0004T^2+.0266T+2.9072)I+(-.0206T+2.598)

+(.0002T^2-.0142T-2.2695)*I2+(-.0004T^2+.0266T+2.9072)I+(-.0206T+2.598)

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

f(x) = − 0.0205954285714286 x + 2.59804285714286R² = 0.994110018024602

f(x) = − 0.000413310924369747 x² + 0.0265632605042017 x + 2.90716554621849R² = 0.898667128342362

f(x) = 0.000172829131652662 x² − 0.0141723137254902 x − 2.26948907563025R² = 0.831629978410272

f(x) = 0.00160885714285714 x + 0.552764285714286R² = 0.814720209213579

x3Linear (x3)x2Polynomial (x2)xPolynomial (x)aLinear (a)

Page 85: Copy of WaTER

pCa54321

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

2

2.5

3

3.5

4

f(x) = 0.546571484071484 x³ − 2.26354895104895 x² + 2.90322455322455 x + 2.61601398601399R² = 0.968054230828351

f(x) = − 0.5554341492 x⁴ + 2.8557206682 x³ − 5.3422931235 x² + 4.3314005439 x + 1.5291608392R² = 0.993272168184924

50Polynomial (50)40302520100Polynomial (0)

Ionic Strength

K

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

f(x) = − 0.0205954285714286 x + 2.59804285714286R² = 0.994110018024602

f(x) = − 0.000413310924369747 x² + 0.0265632605042017 x + 2.90716554621849R² = 0.898667128342362

f(x) = 0.000172829131652662 x² − 0.0141723137254902 x − 2.26948907563025R² = 0.831629978410272

f(x) = 0.00160885714285714 x + 0.552764285714286R² = 0.814720209213579

x3Linear (x3)x2Polynomial (x2)xPolynomial (x)aLinear (a)

1 10 100 1000 10000

0

1

2

3

4

5

6

f(x) = − 0.434294481903252 ln(x) + 5R² = 1f(x) = − 0.438637426722284 ln(x) + 4.73

Conversion of Ca and Alk to pCa and pAlk

AlkLoga-rithmic (Alk)CaLoga-rithmic (Ca)

Ca and Alk as mg/L CaCO3

pC

a a

nd

pA

lk

Page 86: Copy of WaTER

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

f(x) = − 0.0205954285714286 x + 2.59804285714286R² = 0.994110018024602

f(x) = − 0.000413310924369747 x² + 0.0265632605042017 x + 2.90716554621849R² = 0.898667128342362

f(x) = 0.000172829131652662 x² − 0.0141723137254902 x − 2.26948907563025R² = 0.831629978410272

f(x) = 0.00160885714285714 x + 0.552764285714286R² = 0.814720209213579

x3Linear (x3)x2Polynomial (x2)xPolynomial (x)aLinear (a)

Page 87: Copy of WaTER

pAlk Fig 3 D 4582 1998 Annual Book of ASTM Standards Volume 11.02 Water (II)4.75 1

3.7 10 pH of Water2.7 100 5.3 0.0981.7 1000 5.4 0.120.7 10000 5.6 0.19

5.8 0.3056 0.5

6.2 0.7756.4 1.256.6 26.8 3.2

7 57.2 87.4 137.5 177.6 21.57.8 34

8 548.2 1008.3 1000

pH vs Alk/CO2

MO Alk/CO2 Expressed as mg/L CaCO

pH=0.423 Ln(Alk/CO

1 10 100 1000 10000

0

1

2

3

4

5

6

f(x) = − 0.434294481903252 ln(x) + 5R² = 1f(x) = − 0.438637426722284 ln(x) + 4.73

Conversion of Ca and Alk to pCa and pAlk

AlkLoga-rithmic (Alk)CaLoga-rithmic (Ca)

Ca and Alk as mg/L CaCO3

pC

a a

nd

pA

lk

0.01 0.1 1 10 1000123456789

f(x) = 0.423011190061762 ln(x) + 6.30216587304321R² = 0.999709034895022

pH vs Alk/CO2

MO Alk/CO2

pH

of

Wat

er

Page 88: Copy of WaTER

Fig 3 D 4582 1998 Annual Book of ASTM Standards Volume 11.02 Water (II)

Expressed as mg/L CaCO3/mg/L CO2

pH=0.423 Ln(Alk/CO2) + 6.3022

0.01 0.1 1 10 1000123456789

f(x) = 0.423011190061762 ln(x) + 6.30216587304321R² = 0.999709034895022

pH vs Alk/CO2

MO Alk/CO2

pH

of

Wat

er

Page 89: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

UV

Units Alternative UnitsVolume treated: 69437 gal/min 99,989,169Power consumption per lamp: 0.05 kWAlternative power consumption per lamp: 0.00 kWLamp replacement time: 1.0 year 12Alternative lamp replacement time: 0.0 year 0Required UV lamps: 4907 lampsLamp replacement cost: $48.00 per lampAnnual lamp replacements: 4907 lampsAnnual power consumption: 2,149,266 kWhRequired annual labor hours: 834 hours

Units Alternative UnitsCapital cost: $2,009,031Annual lamp replacement cost: $235,536Annual power cost: $150,449Annual labor cost $24,219Total annual operating cost: $410,204

data from Irvine Moch, 5/2/2000

Page 90: Copy of WaTER

Alternative Unitsgal/day

monthsmonths

Alternative Units

Page 91: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Double Wall Fiberglass Tanks

Units Alternative UnitsRequired Tank Capacity 500,000 gallons 1,892,700

% $ 546,043 Material 0.901 $ 603,206 Labor 0.089 $ 62,239 Equipment 0.010 $ 6,881 November, 2006 Capital Cost $: $ 672,326

$ = a+b*x a b2842.7 1.0864

Nov 2000 Construction Cost

Construction Cost Equations (From http://www.get-a-quote.net)

Page 92: Copy of WaTER

Alternative Unitsliters

Page 93: Copy of WaTER

Project Name Date Stage

Model Development 06/07/04 A1

Microfiltration / Ultrafiltration

Units Alternative UnitsProduction Flow to be treated 99.99 mgd 69437

% $ 50,374,732 Manufactured & Electrical Equipment 1.00 $ 62,915,209 Housing 0.00 $ - Excavation, Site Work & Labor 0.00 $ - Piping and Valves 0.00 $ - November, 2006 Capital Cost $: $ 62,915,209

$ 3,083,396 Materials 0.13 $ 514,167 Energy 0.12 $ 359,730 Labor 0.75 $ 2,839,634 November, 2006 Operation & Maintenance $: $ 3,713,531

$ = a*x^b a b2.4914 -0.3471

$ = a*x^b a b1.0451 -0.5462

AWWA Membrane Conference Proceedings, 2001

AWWA Membrane Conference Proceedings, 2001

2001 Construction Cost

2001 O&M Cost: %1

Construction Cost2

O&M Cost2

1 from Oneby, Nordgren, and Ericson, Membrane Microfiltration As A Cost Effective Solution For A Small Utility

2 from Elarde & Bergman, The Cost of Membrane Filtration for Municipal Water Supplies,

Page 94: Copy of WaTER

Alternative Unitsgpm

Membrane Microfiltration As A Cost Effective Solution For A Small Utility,

The Cost of Membrane Filtration for Municipal Water Supplies,

Page 95: Copy of WaTER

{gg}StdAnalyses

Water Treatment Cost Estimation Program

Brackish 1 Brackish 2 Brackish 3 Hi Brackish Seawater Municipal Secondary EffAluminum 0.35 0.01Antimony 3.30E-04Arsenic 0.0029 0.0025Barium 0.050 0.0983 0.03 0.11Beryllium 6.00E-07 0.0005Boron 0.2230 0.1300Cadmium 0.001 1.10E-04Calcium 100.000 182 110 637 406 22.2 64.0000 1.1000Chromium 0.010 0.023 5.00E-05Copper 0.050 0.09 3.00E-03Iron 0.050 0.019 0.01Lead 0.005 0.006 3.00E-05Magnesium 35.000 85 80 283 1.29E+03 7.3 24.0000Manganese 0.550 0.0811 2.00E-03 0.03 0.0285Mercury 3.00E-05Nickel 5.40E-03 0.004Potassium 1.800 4.78 10 131 385 2 14.3000 1.3000Selenium 0.005 9.00E-05 0.005Silver 0.005 3.00E-04Sodium 110.900 175.8 815 3284 10741 25 62.5000 3.1500Strontium 1.300 2.71 5 15 14 0.61 0.2600

Zinc 0.050 0.01 0.02 0.0593Alkalinity-Bicarbonate 232.000 189.00 125.00 163.00 144.00 25 345.00 11.60Alkalinity-Carbonate 0.000 0.5 16.60Carbon Dioxide (aq) 10.100 13 13.7 44.8 2.50E+00 2.7Chloride 95.000 560 811 6545 19333 71.7 55.00 5.30CyanideFlouride 0.640 0.31 1 1 1.3 0.5 0.30Nitrate (as N) 1.000 10.7 0.5 12.50o-Phosphate 0.37 0.07 0.04 3.70 1.22

Sulfate 300.000 231 1100 680 2688 20 39.50Silica 17.000 11.9 12 18 10 27.00pH 7.620 7.39 7.2 6.8 8 7.2 7.50 6.80pOH 6.50 7.20Solids (TDS) 905.000 1453 3070 11757 35005 184 425 18Total Suspended Solids: 1.000 1.3 1 1 1 1Conductivity 1560.000 2758 5232 19604 54534 362 790.00 25.00

Temperature 25.000 25 25 25 25 25 25.00 25.00

2nd Eff RO Perm