20
Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Embed Size (px)

DESCRIPTION

Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring Energy Conservation in Oscillatory Motion The Pendulum

Citation preview

Page 1: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

Chapter 13

Oscillations about Equilibrium

Page 2: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

Page 3: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

Units of Chapter 13

• Periodic Motion

• Simple Harmonic Motion

• Connections between Uniform Circular Motion and Simple Harmonic Motion

• The Period of a Mass on a Spring

• Energy Conservation in Oscillatory Motion

• The Pendulum

Page 4: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-1 Periodic Motion

Period: time required for one cycle of periodic motion

Frequency: number of oscillations per unit time

This unit is called the Hertz:

Page 5: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-2 Simple Harmonic MotionA spring exerts a restoring force that is proportional to the displacement from equilibrium:

Page 6: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-2 Simple Harmonic MotionA mass on a spring has a displacement as a function of time that is a sine or cosine curve:

Here, A is called the amplitude of the motion.

Page 7: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-2 Simple Harmonic MotionIf we call the period of the motion T – this is the time to complete one full cycle – we can write the position as a function of time:

It is then straightforward to show that the position at time t + T is the same as the position at time t, as we would expect.

Page 8: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

An object in simple harmonic motion has the same motion as one component of an object in uniform circular motion:

Page 9: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

Here, the object in circular motion has an angular speed of

where T is the period of motion of the object in simple harmonic motion.

Page 10: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

The position as a function of time:

The angular frequency:

Page 11: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

The velocity as a function of time:

And the acceleration:

Both of these are found by taking components of the circular motion quantities.

Page 12: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-4 The Period of a Mass on a SpringSince the force on a mass on a spring is proportional to the displacement, and also to the acceleration, we find that .

Substituting the time dependencies of a and x gives

Page 13: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-4 The Period of a Mass on a Spring

Therefore, the period is

Page 14: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-5 Energy Conservation in Oscillatory Motion

In an ideal system with no nonconservative forces, the total mechanical energy is conserved. For a mass on a spring:

Since we know the position and velocity as functions of time, we can find the maximum kinetic and potential energies:

Page 15: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-5 Energy Conservation in Oscillatory Motion

As a function of time,

So the total energy is constant; as the kinetic energy increases, the potential energy decreases, and vice versa.

Page 16: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-5 Energy Conservation in Oscillatory Motion

This diagram shows how the energy transforms from potential to kinetic and back, while the total energy remains the same.

Page 17: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-6 The PendulumA simple pendulum consists of a mass m (of negligible size) suspended by a string or rod of length L (and negligible mass).

The angle it makes with the vertical varies with time as a sine or cosine.

Page 18: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-6 The Pendulum

Looking at the forces on the pendulum bob, we see that the restoring force is proportional to sin θ, whereas the restoring force for a spring is proportional to the displacement (which is θ in this case).

Page 19: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-6 The PendulumHowever, for small angles, sin θ and θ are approximately equal.

Page 20: Copyright © 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium

Copyright © 2010 Pearson Education, Inc.

13-6 The Pendulum

Substituting θ for sin θ allows us to treat the pendulum in a mathematically identical way to the mass on a spring. Therefore, we find that the period of a pendulum depends only on the length of the string: