33
Copyright © 2010 Pearson Education, Inc. Chapter 8 Potential Energy and Conservation of Energy

Copyright © 2010 Pearson Education, Inc. Chapter 8 Potential Energy and Conservation of Energy

Embed Size (px)

Citation preview

Copyright © 2010 Pearson Education, Inc.

Chapter 8

Potential Energy and Conservation of Energy

Copyright © 2010 Pearson Education, Inc.

Reading and Review

Copyright © 2010 Pearson Education, Inc.

Force and Work

a) one force

b) two forces

c) three forces

d) four forces

e) no forces are doing work

A box is being pulled up a rough

incline by a rope connected to a

pulley. How many forces are

doing work on the box?

Copyright © 2010 Pearson Education, Inc.

Force and Work

N

f

T

mg

displacementAny force not perpendicular

to the motion will do work:

N does no work

T does positive work

f does negative work

mg does negative work

a) one force

b) two forces

c) three forces

d) four forces

e) no forces are doing work

A box is being pulled up a rough

incline by a rope connected to a

pulley. How many forces are

doing work on the box?

Copyright © 2010 Pearson Education, Inc.

Free Fall I

a) quarter as much

b) half as much

c) the same

d) twice as much

e) four times as much

Two stones, one twice the

mass of the other, are dropped

from a cliff. Just before hitting

the ground, what is the kinetic

energy of the heavy stone

compared to the light one?

Copyright © 2010 Pearson Education, Inc.

Consider the work done by gravity to make the stone

fall distance d:

KE = Wnet = F d cos

KE = mg d

Thus, the stone with the greater mass has the greater

KE, which is twice as big for the heavy stone.

Free Fall I

a) quarter as much

b) half as much

c) the same

d) twice as much

e) four times as much

Two stones, one twice the

mass of the other, are dropped

from a cliff. Just before hitting

the ground, what is the kinetic

energy of the heavy stone

compared to the light one?

Follow-up: How do the initial values of gravitational PE compare?

Copyright © 2010 Pearson Education, Inc.

In the previous question, just

before hitting the ground, what is

the final speed of the heavy stone

compared to the light one?

a) quarter as much

b) half as much

c) the same

d) twice as much

e) four times as much

Free Fall II

Copyright © 2010 Pearson Education, Inc.

In the previous question, just

before hitting the ground, what is

the final speed of the heavy stone

compared to the light one?

a) quarter as much

b) half as much

c) the same

d) twice as much

e) four times as much

All freely falling objects fall at the same rate, which is g.

Because the acceleration is the same for both, and the

distance is the same, then the final speeds will be the same for

both stones.

Free Fall II

Copyright © 2010 Pearson Education, Inc.

Topics of Chapter 8

• Conservative and Nonconservative Forces

• Potential Energy and the Work Done by Conservative Forces

• Conservation of Mechanical Energy

• Work Done by Nonconservative Forces

• Potential Energy Curves and Equipotentials

Copyright © 2010 Pearson Education, Inc.

8-1 Conservative and Nonconservative Forces

Conservative force: the work it does is stored in the form of energy that can be released at a later time

Example of a conservative force: gravity

Example of a nonconservative force: friction

Also: the work done by a conservative force moving an object around a closed path is zero; this is not true for a nonconservative force

Copyright © 2010 Pearson Education, Inc.

8-1 Conservative and Nonconservative Forces

Work done by gravity on a closed path is zero:

Copyright © 2010 Pearson Education, Inc.

8-1 Conservative and Nonconservative Forces

Work done by friction on a closed path is not zero:

Copyright © 2010 Pearson Education, Inc.

8-1 Conservative and Nonconservative Forces

The work done by a conservative force is zero on any closed path:

Copyright © 2010 Pearson Education, Inc.

8-2 The Work Done by Conservative Forces

If we pick up a ball and put it on the shelf, we have done work on the ball. We can get that energy back if the ball falls back off the shelf; in the meantime, we say the energy is stored as potential energy.

(8-1)

Copyright © 2010 Pearson Education, Inc.

8-2 The Work Done by Conservative Forces

Gravitational potential energy:

Copyright © 2010 Pearson Education, Inc.

Is it possible for the

gravitational potential

energy of an object to

be negative?

a) yes

b) no

Sign of the Energy II

Copyright © 2010 Pearson Education, Inc.

Is it possible for the

gravitational potential

energy of an object to

be negative?

a) yes

b) no

Gravitational PE is mgh, where height h is measured relative to

some arbitrary reference level where PE = 0. For example, a

book on a table has positive PE if the zero reference level is

chosen to be the floor. However, if the ceiling is the zero level,

then the book has negative PE on the table. Only differences (or

changes) in PE have any physical meaning.

Sign of the Energy II

Copyright © 2010 Pearson Education, Inc.

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on?

a) only B

b) only C

c) A, B, and C

d) only A and C

e) only B and C

Question 8.2 KE and PE

A) skier’s PE B) skier’s change in PE C) skier’s final KE

Copyright © 2010 Pearson Education, Inc.

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on?

a) only B

b) only C

c) A, B, and C

d) only A and C

e) only B and C

The gravitational PE depends upon the reference level, but

the difference PE does not! The work done by gravity

must be the same in the two solutions, so PE and KE

should be the same.

Question 8.2 KE and PE

A) skier’s PE B) skier’s change in PE C) skier’s final KE

Follow-up: Does anything change physically by the choice of y = 0?

Copyright © 2010 Pearson Education, Inc.

8-2 The Work Done by Conservative Forces

Springs: (8-4)

Copyright © 2010 Pearson Education, Inc.

8-3 Conservation of Mechanical Energy

Definition of mechanical energy:

(8-6)

Using this definition and considering only conservative forces, we find:

Or equivalently:

Copyright © 2010 Pearson Education, Inc.

8-3 Conservation of Mechanical Energy

Energy conservation can make kinematics problems much easier to solve:

Copyright © 2010 Pearson Education, Inc.

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on?

a) only B

b) only C

c) A, B, and C

d) only A and C

e) only B and C

Question 8.2 KE and PE

A) skier’s PE B) skier’s change in PE C) skier’s final KE

Copyright © 2010 Pearson Education, Inc.

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on?

a) only B

b) only C

c) A, B, and C

d) only A and C

e) only B and C

The gravitational PE depends upon the reference level, but

the difference PE does not! The work done by gravity

must be the same in the two solutions, so PE and KE

should be the same.

KE and PE

A) skier’s PE B) skier’s change in PE C) skier’s final KE

Follow-up: Does anything change physically by the choice of y = 0?

Copyright © 2010 Pearson Education, Inc.

Example: Two water slides are shaped differently, but start at the same height h and are of equal length. Two rides, Paul and Kathy, start from rest at the same time on different slides.a)Which is travelling faster at the bottom?b)Which makes it to the bottom first?

Copyright © 2010 Pearson Education, Inc.

8-4 Work Done by Nonconservative Forces

In the presence of nonconservative forces, the total mechanical energy is not conserved:

Solving,

(8-9)

Copyright © 2010 Pearson Education, Inc.

8-4 Work Done by Nonconservative Forces

In this example, the nonconservative force is water resistance:

Copyright © 2010 Pearson Education, Inc.

8-5 Potential Energy Curves and Equipotentials

The curve of a hill or a roller coaster is itself essentially a plot of the gravitational potential energy:

Copyright © 2010 Pearson Education, Inc.

8-5 Potential Energy Curves and Equipotentials

The potential energy curve for a spring:

Copyright © 2010 Pearson Education, Inc.

8-5 Potential Energy Curves and Equipotentials

Contour maps are also a form of potential energy curve:

Copyright © 2010 Pearson Education, Inc.

Summary of Chapter 8

• Conservative forces conserve mechanical energy

• Nonconservative forces convert mechanical energy into other forms

• Conservative force does zero work on any closed path

• Work done by a conservative force is independent of path

• Conservative forces: gravity, spring

Copyright © 2010 Pearson Education, Inc.

Summary of Chapter 8

• Work done by nonconservative force on closed path is not zero, and depends on the path

• Nonconservative forces: friction, air resistance, tension

• Energy in the form of potential energy can be converted to kinetic or other forms

• Work done by a conservative force is the negative of the change in the potential energy

• Gravity: U = mgy

• Spring: U = ½ kx2

Copyright © 2010 Pearson Education, Inc.

Summary of Chapter 8

• Mechanical energy is the sum of the kinetic and potential energies; it is conserved only in systems with purely conservative forces

• Nonconservative forces change a system’s mechanical energy

• Work done by nonconservative forces equals change in a system’s mechanical energy

• Potential energy curve: U vs. position