Corrosion on Weldment

Embed Size (px)

Citation preview

  • 8/11/2019 Corrosion on Weldment

    1/5

    o rro s io n o f W e l d m e n t s

    A . W a h i d D . L . O l so n a n d D . K . Ma t l o ck C o l o r a d o S ch o o l o f M i n e s

    C .E . C r o ss Ma r t i n Ma r i e t t a A s t r o n a u t i cs G r o u p

    WELDMENTS exhibit special microstruc-

    tural features that need to be recognized and

    understood in order to predict acceptable corro-

    sion service life of welded structures (Ref 1).

    This article describes some of the genera l char-

    acteristics associated with the corrosion of weld-

    ments. The role of macrocompositional and mi-

    croeompositional variat ions , a feature common

    to weldments, is emphasized in this article to

    bring out differences that need to be realized in

    comparing corrosion of weldments to that of

    wrought materials. A more extensive presenta-

    tion, with data for specific alloys, is given in

    Volume 13 of the

    SM Handbook

    (Ref 2).

    Weldments inherently possess compositional

    and microstructural heterogeneities, which can

    be classified by dimensional scale. On the larg-

    est scale, a weldment consists of a transition

    from wrought base metal through a heat-affected

    zone and into solidified weld metal and includes

    five microstructurally distinct regions normally

    identified (Ref 3) as the fusion zone, the un-

    mixed region, the partially melted region, the

    heat-affected zone, and the base metal. This mi-

    crostructural transi tion is illustrated in Fig. 1.

    The unmixed region is part of the fusion zone,

    and the partially melted region is part of the

    heat-affected zone, as described below. Not all

    five zones are present in any given weldment.

    For example, autogenous (that is, no filler

    metal) welds do not have an unmixed zone.

    T h e f u s io n z o n e

    is the result of melting

    which fuses the base metal and filler metal to

    produce a zone with a composition that is most

    Weld nugge t

    We ld i n te r face

    /

    Unmixed reg ion

    P a r t i a l l y mel ted ~ /

    reg ion

    Una f fec ted base meta l

    S c h e m a t ic s h o w i n g t h e r e g i o ns o f a h e t e r o g e -

    F i g 1 n e o u s w e l d . S o u r c e : R e f 3

    often different from that of the base metal. Th is

    compositional difference produces a galvanic

    couple, which can influence the corrosion proc-

    ess in the vicinity of the weld. This dissimilar-

    metal couple can produce macroscopic galvan ic

    corrosion.

    The fusion zone itself offers a microscopic

    galvanic effect due to microstructural segrega-

    tion resulting from solidification (Ref 4). The

    fusion zone also has a th in region adjacent to the

    fusion line, known as the unmixed (chilled) re-

    gion, where the base metal is melted and then

    quickly solidified to produce a composition sim-

    ilar to the base metal (Ref 5). For example,

    when type 304 stainless steel is welded using a

    filler metal with high chromium-nickel content,

    steep concen tration gradients of chromium and

    nickel are found in the fusion zone, whereas the

    unmixed zone has a composition similar to the

    base metal (Fig. 2).

    Heat-Affected Zone. Every position in the

    heat-affected zone relative to the fusion line ex-

    periences a unique thermal experience during

    welding, in terms of both maximum temperature

    and cooling rate. Thus, each position has its own

    microstructural features and corrosion suscepti-

    bility.

    The partially melted region is usually one or

    two grains into the heat-affected zone relative to

    the fusion line. It is characterized by grain

    boundary liquation, which may result in liqua-

    tion cracking. These cracks, which are found in

    the grain boundaries one or two grains below the

    3 0

    D 28

    2 4

    0 2 2

    2O

    1 6

    . . . . . . . . + o o i = : 0 1 , : z H A z I. . . . . . . .

    CHROMIUM

    2

    18

    16 ~

    14 z

    12 o

    NICKEL 10 m

    I

    0 500 1000 1500

    DISTANCE MICRONS)

    C o n c e n t r a t i o n p r o f i l e o f c h r o m i u m a n d

    F i g . 2 n i c k e l a c ro s s t h e w e l d f u s i o n b o u n d a r y r e -

    g ion o f t ype 304 s ta inless s tee l . Source : Re f 5

    fusion line, have bee n identified as potentia

    tiation sites for hydrogen-promoted unde

    cracking in high-strength steel.

    M i c r o s t r u c t u r a l G r a d i e n t s

    On a fine s

    microstructural gradients exist with in the

    affected zone due to different time-temper

    cycles experienced by each element of mat

    Gradients on a similar scale exist within s

    fied multi-pass weld metal due to bead-to

    variations in thermal experience. Composi

    gradients on the scale of a few microns, ref

    to as microsegregation, exist within indiv

    weld beads due to segregation of major and

    elements during solidification (Ref 4).

    F o r m s o f W e l d o r r o s i on

    Weldments can experience all the cla

    forms of corrosion, but they are particularly

    ceptible to those affected by variations in m

    structure and composition. Specifically,

    vanic corrosion, pitting, stress corro

    intergranular corrosion, and hydrogen cra

    must be considered when designing w

    structures.

    Galvanic C ouples.Although some alloy

    be autogenously welded, fill er metals are

    commonly used. The use of filler metals

    compositions different from the base ma

    may produce an electrochemical potent ial d

    ence that makes some regions of the weld

    more active. For example, Fig. 3 depicts

    metal deposits that have different corrosio

    havior from the base metal in three alum

    alloys (Ref 6).

    For the majority of aluminum alloys, the

    metal and the heat-affected zone become

    noble relative to the base metal, as demonst

    in Fig. 3(a) and (b) for a saltwater environ

    (Ref 6). Certain aluminum alloys, how

    form narrow anodic regions in the heat-affe

    zone and are prone to localized attack. A

    7005 and 7039 are particularly susceptib

    this problem (Fig. 3c).

    There are a number of other common

    deposit/base metal combinations that are k

    to form galvanic couples. It is common pra

    to use austenitic stainless steel welding con

    ables for field repair of heavy machinery, p

    ularly those fabricated from high-strength

    ASM Handbook, Volume 6: Welding, Brazing,and Soldering

    D.L. Olson, T.A. Siewert, S. Liu, and G.R. Edwards,editors,p 1065-1069

    Copyright 1993ASM InternationAll rights reser

    www.asminternationa

  • 8/11/2019 Corrosion on Weldment

    2/5

    1 0 6 6 / S p e c i a l W e l d i n g a n d J o in i n g T o p i c s

    Distance from we ld centerl ine, in.

    o

    1 2

    3 4

    o 900 ' I Edg~ o f we l~ l bead ' =

    ,

    I Hardness

    i= f - -

    ~-E

    7 5 0

    ~I~

    Co~oslon po ten t ia l

    70C I I

    0 25 50 50 1O0

    Distance from we ld centerl lne, mm

    65 =

    5 5 -r

    5

    ~

    5

    Distance from we ld centertine, in.

    O 1 2 3 4

    800

    =-~mm 75 0 llLIIEdge l o f w e l d = b e a d l 1 5 m

    e= n Hardnes s :=

    ~ 60 0 If t I I I I 5

    0 25 50 50 1O0

    Distance from weld center l ine

    mm

    Distance from we ld centerl lne, in.

    1 2 3 4

    uo 10500 ,

    [ I E d o e ' w ' d ' a d ' 1

    1DO0 ~ Hardness

    / , . . . . . . . . . . .

    o

    = 950

    iT 90 0 Cor rosion po ten t ia l

    o 8 5 0 I J I

    0 25 50 50 100

    Distance from weld center line mm

    a) b) c)

    E f f ec t o f we l d i n g h e a t o n m i c r o s t r u c t u r e , h a r dn e s s , a n d c o r r o s i o n p o t e n t i a l o f t h r e e a l u m i n u m a l l o y we l d e d a s s e m b li e s . ( a) A l l o y 5 4 56 -H3 2 1 b a s e m e t a l w i t h

    Fig 3

    5556 i l l e r . ( b ) A l lo y 2219-T87 base me ta l w i th a l loy 2319 i l l e r . ( c ) A l loy 7039-T651 base me ta l w i th a l loy 5183 i l l e r . S ou rce : Re f 6

    i n t r a g r a n u l a r ~ g ra in b o u n da r y

    ~ E 2 , , ~ ~ d e p l e t i o n

    ~ 3 E I ~

    El: potentia l for ppt. boundary

    E 2 : p o t en t ia l f o r d e p le t e d z o n e p r e c i p i t a t e

    E3: potentia l for matr ix

    Dep le ted reg ions ad jacen t to p rec ip i ta tes .l a

    4

    = '~ These reg ions cause an e lec t rochemica l po -

    ten t ia l (E) d i f fe rence tha t can p rom ote loc a l i zed co r ro -

    s ion a t the micros t ruc tu ra l leve l .

    a l l o y s t e e l . T h i s p r a c t i c e l e a v e s a c a t h o d i c

    s t a i n l e s s s te e l w e l d d e p o s i t i n e l e c t r i c a l c o n t a c t

    w i t h t h e s t e e l . I n t h e p r e s e n c e o f c o r r o s i v e e n v i -

    r o n m e n t s , h y d r o g e n i s g e n e r a t e d a t t h e a u s t e n -

    i t i c w e l d m e t a l c a t h o d e , w h i c h i s c a p a b l e o f

    m a i n t a i n i n g a h ig h h y d r o g e n c o n t e n t w i t h o u t

    c r a c k i n g . H o w e v e r , t h e c a t h o d i c b e h a v i o r o f t h e

    a u s t e n i t i c w e l d d e p o s i t m a y i n c r e a s e t h e s u s c e p -

    t i b i l i t y f or s t r e s s - c o r r o s io n c r a c k i n g i n t h e h e a t -

    a f f e c t e d z o n e o f t h e h i g h - s tr e n g t h s t e el . A 4 0 %

    t h e r m a l e x p a n s i o n m i s m a t c h b e t w e e n t h e a u s t e -

    n i t i c s t a i n l e s s s te e l a n d f e r r it i c b a s e m e t a l p r o -

    d u c e s a s i g n i f i c a n t r e s i d u a l s t r e ss f i e l d i n t h e

    w e l d m e n t ; t h i s r e s i d u a l s t re s s f i e l d a l s o c o n t r i b -

    u t e s t o c r a c k i n g s u s c e p t i b i l i t y . A s i m i l a r , b u t

    m o r e l o c a l i z e d , b e h a v i o r m a y e x p l a i n t h e c o r r e -

    l a t i o n b e t w e e n s t r e s s - co r r o s i o n c r a c k i n g s u s c e p -

    t i b i l i t y a n d t h e p r e s e n c e o f r e t a i n e d a u s t e n i t e i n

    h i g h - s t r e n g t h s t e e l w e l d d e p o s i t s.

    A n o t h e r c o m m o n d i s s i m i l a r m e t a l c o m b i n a -

    t i o n i n v o l v e s t h e u s e o f h i g h - n i c k e l a l l o y s f o r

    w e l d r e p a i r o f c a s t i r o n . F e - 5 5 N i w e l d i n g e l e c -

    t r o d e s a r e u s e d t o m a k e w e l d d e p o s i t s t h a t c a n

    h o l d i n s o l i d s o l u t i o n m a n y o f t h e a l l o y i n g e l e -

    m e n t s c o m m o n t o c a s t i r o n . F u r t h e rm o r e , w e l d

    d e p o s i t s m a d e w i t h F e - 5 5 N i w e l d i n g c o n s u m -

    a b l e s h a v e a n a c c e p t a b l e t h e r m a l e x p a n s i o n

    m a t c h t o t h e c a s t i r o n . B e c a u s e c a s t i r o n i s a n -

    o d i c t o t h e h i g h - n i c k e l w e l d d e p o s i t , c o r r o s i v e

    a t t a c k o c c u r s i n t h e c a s t i r o n a d j a c e n t t o t h e w e l d

    d e p o s i t . I t i s s u g g e s t e d t h a t c a s t i r o n w e l d s m a d e

    w i t h h i g h - n i c k e l d e p o s i t s b e c o a t e d ( p a i n t ed ) t o

    r e d u c e th e su sc e p t ib i l i t y to s e l e c t iv e c o r r o s io n

    a t t ac k .

    P l a i n c a r b o n s t e e l w e l d m e n t s c a n a l s o e x h i b i t

    g a l v a n i c a t ta c k . F o r e x a m p l e , t h e E 6 0 1 3 w e l d -

    i n g e l e c t r o d e i s k n o w n t o b e h i g h l y a n o d i c t o

    A 2 8 5 b a s e m e t a l i n a s e a w a t e r e n v i r o n m e n t ( R e f

    7 ) . I t i s i m p o r t a n t t o s e l e c t a s u i t a b l e f il l e r m e t a l

    w h e n a n a p p l i c a t i o n i n v o l v e s a h a r s h e n v i r o n -

    m e n t .

    W e l d D e c a y o f S t a i n l e s s Stee l . D u r i n g

    w e l d i n g o f s t a i n l e s s s t e e l s , l o c a l s e n s i t i z e d

    z o n e s ( i . e . , r e g i o n s s u s c e p t i b l e t o c o r r o s i o n ) o f-

    t e n d e v e l o p . S e n s i t i z a t i o n i s d u e t o t h e f o r m a -

    t i o n o f c h r o m i u m c a r b i d e a l o n g g r a i n b o u n d -

    a r i e s , r e s u l t i n g i n d e p l e t i o n o f c h r o m i u m i n t h e

    r e g i o n a d j a c e n t t o t h e g r a i n b o u n d a r y ( R e f

    8 - 1 4 ) . T h i s c h r o m i u m d e p l e t i o n p r o d u c e s v e r y

    l o c a l i z e d g a l v a n i c c e l ls ( F i g . 4 ) . I f t h is d e p l e t i o n

    d r o p s t h e c h r o m i u m c o n t e n t b e l o w t h e n e c e s s a r y

    1 2 w t % t h a t i s r e q u i r e d t o m a i n t a i n a p ro t e c t i v e

    p a s s i v e f i l m , t h e r e g i o n w i l l b e c o m e s e n s i t i z e d

    t o c o r r o s i o n , r e s u l t i n g i n i n t e r g r a n u l a r a t t a c k .

    T h i s t y p e o f c o r r o s i o n m o s t o f t e n o c c u r s i n t h e

    h e a t - a f f e c t ed z o n e . I n t e r g r a n u l a r c o r r o s i o n

    c a u s e s a l o s s o f m e t a l i n a r e g i o n t h a t p a r a l l e l s

    t h e w e l d d e p o s i t ( F i g . 5 ) . T h i s c o r r o s i o n b e h a v -

    io r i s c a l l e d w e ld d e c ay (R e f 1 3 ) .

    T h e f o r m a t i o n o f s u f f ic i e n t c h r o m i u m c a r b i d e

    t o c a u s e s e n s i t i z a t i o n c a n b e d e s c r i b e d b y t h e

    C - s h a p e d c u r v e s o n t h e c o n t i n u o u s c o o l i n g d i a -

    g r a m i l l u s t r a t e d i n F i g . 6 . T h e f i g u r e s h o w s s u s -

    c e p t i b i l i t y t o s e n s i t i z a t i o n a s a f u n c t i o n o f t e m -

    p e r a t u r e , t i m e , a n d c a r b o n c o n t e n t ( R e f 1 5 ). I f

    t h e c o o l i n g r a t e i s s u f f i c i e n t l y g r e a t ( c u r v e A i n

    F i g . 6 ) , t h e c o o l i n g c u r v e w i l l n o t i n t e r s e c t t h e

    g i v e n C - s h a p e d c u r v e f o r c h r o m i u m c a r b i d e a n d

    t h e s t a i n l e s s s t ee l w i l l n o t b e s e n s i t iz e d . B y d e -

    c r e a s i n g t h e c o o l i n g r a t e , t h e c o o l i n g c u r v e

    ( c u r v e B ) e v e n t u a l l y i n te r s e c t s t h e C - s h a p e n u -

    c l e a t i o n c u r v e , i n d i c a t i n g t h a t s e n s i t i z a t i o n m a y

    o c c u r . A t v e r y l o w c o o l i n g r a t e s , t h e fo r m a t i o n

    o f c h r o m i u m c a r b i d e o c c u r s a t h i g h e r t e m p e r a -

    t u r e a n d a l l o w s f o r m o r e n u c l e a t i o n a n d g r o w t h ,

    r e s u l t i n g i n a m o r e e x t e n s i v e c h r o m i u m - d e -

    p l e t e d r e g i o n .

    T h e m i n i m u m t i m e r e q u i re d f o r s e n s i t i za t i o n

    a s a f u n c t i o n o f c a r b o n c o n t e n t i n a t y p i c a l s t a i n -

    l e s s s t e el a l l o y i s d e p i c t e d i n F i g . 7 . B e c a u s e t h e

    W E L D D E C A Y

    In te rg ran u la r co r ros ion (we ld decay) o f

    F i g . 5 l e s s s t e e l we l d m e n t s . F Z , f u s i o n z o n e

    n o r m a l w e l d i n g t h e r m a l c y c l e i s c o m p l e t e

    a p p r o x i m a t e l y t w o m i n u t e s , f o r t h i s e x a m p l

    c a r b o n c o n t e n t m u s t n o t e x c e e d 0 . 0 7 w t

    a v o i d s e n s i t i z a t i o n . N o t i c e t h a t t h e c a r b i d

    c l e a t i o n c u r v e s o f F i g . 6 m o v e d o w n a n

    l o n g e r t i m e s w i t h d e c r e a s i n g c a r b o n c o n

    m a k i n g i t m o r e d i f f i c u l t t o f o r m c a r b i d e s

    g i v e n c o o l i n g r a t e .

    T h e c o n t r o l o f s t a in l e s s s t e e l s e n s i t i z

    m a y b e a c h i e v e d b y u s i n g :

    A p o s t w e l d h i g h - t e m p e r a t u r e a n n e a l

    q u e n c h t o r e d i s s o l v e t h e c h r o m i u m a t

    b o u n d a r i e s , a n d h i n d e r c h r o m i u m c a r b i d

    m a t i o n o n c o o l i n g

    A l o w - c a r b o n g r a d e o f s t a i n l e s s s t e e l (

    3 0 4 L o r 3 1 6 L ) t o a v o i d c a r b i d e f o rm a t i o

    A s t a b i l i z e d g ra d e o f s t a i nl e s s s t e e l c o n t a

    t i t a n i u m ( a l l o y 3 2 1 ) o r n i o b i u m ( a l l o y 3

    w h i c h p r e f e r e n t i a l l y f o r m c a r b i d e s a n d l

    c h r o m i u m i n s o l u t i o n . ( T h e r e i s t he p o s

    i t y o f k n i f e - l i n e a t t a c k i n s t a b i l i z e d g r a d

    s t a in l e s s s t e e l . )

    A h i g h - c h r o m i u m a l l o y ( e . g . , a l l o y 3 1 0 )

    Ro le o f D e l ta F er r i te in S tain less

    W e l d D e p o s i t s . A u s t e n i t i c w e l d d e p o s it

    f r e q u e n t l y u s e d t o j o i n v a r i o u s f e r r o u s a l l o

    h a s b e e n w e l l e s t a b l i s h e d t h a t i t i s n e c e s s a

    h a v e a u s t e n i t i c w e l d d e p o s i t s s o l i d i f y a s p r i

    f e r r it e , a l s o k n o w n a s a ~ f e r r it e , i f h o t c r a c k

    t o b e m i n i m i z e d ( R e f 1 6 , 1 7 ) . T h e a m o u n

  • 8/11/2019 Corrosion on Weldment

    3/5

    C o r r o s i o n o f W e l d m e n t s / 1

    9 0 0

    8O0

    P

    7

    o

    E 6 0 0

    5 0 0

    4 0 0

    10

    ~ o . o s o , t

    \ o 0

    1 min 10 min 1 h 10 h

    Tim e to sen s i t iza t ion

    - 1 6 o o

    1 4 0 0

    1 2 0 0 ~ .

    E

    1 9 C - l O O O ~

    8 0 0

    100 h 1000 h

    T i m e - t e m p e r a t u r e - s e n s i t i z a t i o n c u r v e s f o r t y p e 3 0 4 st ai n le s s s t e e l i n a m i x t u r e o f C u S O 4 a n d H S O 4

    F i g . 6 c o n t a i n i n g c o p p e r . S o u r c e : R e f 1 5 . C u r v e s A a n d B i n d ic a t e h i g h a n d m e d i u m c o o l i n g r a te s , r e s p e c -

    t i ve ly .

    104

    ~ 103

    d

    E

    1 02

    p

    . - 1 0

    i-

    \

    0.1

    0 . 0 1 0 . 0 3 0 . 0 5 0 . 0 7 0 . 0 9 0 . 1 1

    C a r b o n c o n t e n t , w t

    M i n i m u m s e n s i t i z a t i o n t i m e f r o m

    a t ime- tem-

    =::nr,~. 7 pe ra tu re -se ns i t i za t i on d iag ram as a func t i on

    o f ca rbo n co n ten t fo r a t yp i ca l 300-se r ies s tain less s tee l

    a l l oy . Source : Re f 15

    form of ferrite in the weld metal can be con-

    trolled by selecting a filler metal with the appro-

    priate chr omium and ni ckel equivalent. A high

    chromium/nickel ratio favors primary ferrite for-

    mation, whereas a low ratio promotes primary

    austenite (Fig. 8). An optimum condition can be

    attained for ferrite contents between 3 and 8

    vol in the weld deposit. Ferrite contents above

    3 vol usual ly guarantee primary ferrite forma-

    tion and thus reduce hot cracking susceptibility.

    However, ferrite above 10 vol can degrade

    mechanical properties at low- or high-tempera-

    ture service. At low temperatures, excess ferrite

    can promote crack paths when the temperature is

    below the ductile-brittle transition temperature.

    At high temperatures, continuous brittle sigma

    phase may form at the interface between the

    austenite and the ferrite. The ferrite content can

    be confirmed using magnetic measuring equip-

    ment (Ref 16, 17).

    Figure 8 can be used to predict the type of

    ferrite (primary or eutectic) and the ferrite con-

    tent when a difference exists between the stain-

    less steels being joined, such as when welding

    type 304 to type 310 stainless steel (Ref 18).

    This diagram shows the compositional range for

    the desirable primary solidification mode. The

    dotted lines on the diagram indicate the various

    transitions in the primary solidification phase.

    Because not all ferrite is primary ferrite (i.e.,

    some is a phase compone nt of a ferrite-austenite

    eutectic), this diagram can be used to ensure that

    ferrite is the first solid (primary) phase to form.

    This condition occurs when the weld deposit has

    a composition in the range labeled FA in Fig.

    8. Because primary ferrite is the preferable mi-

    crostructure, use of this diagram should re-

    duce problems of hot cracking during welding.

    Also, the corrosion behavior of stainless steel

    weld deposits and castings is measurably dif-

    ferent depending on whether the stainless steel

    has a microstructure generated with primary

    ferrite or primary austenite (Ref 19-25). Thus,

    knowledge of the weld metal ferrite content

    and form is necessary in order to be able to

    properly characterize and predict corrosion be-

    havior.

    Pitt ing is a form of localized attack caused by

    a breakdown in the thin passive oxide fi lm that

    protects material from the corrosion process.

    Pits are commonly the result of a concentration

    cell established by a variation in solution com-

    position that is in contact with the alloy material.

    Such compositional variations result when the

    solut ion at a surface irregularity is different from

    that of the bulk solution composition. Once a pit

    has formed, it acts as an anode supported by

    relatively large cathodic regions. Pitting has a

    delay time prior to nucleation and growth, and

    nucleation is very site-selective and microstruc-

    ture-dependent. Pits are often initiated at spe-

    cific microstructural features in the weld deposit

    (Ref 26). Pitting occurs when the material/

    solution combination achieves a potential that

    exceeds a critical value, known as the pitting

    potential. The tendency for a given alloy/

    solution combination to pit can often be charac-

    terized by critical potentials for pitting and

    repassivation determined by a cyclic potent

    namic polarization technique.

    Pits develop more readily in metallurg

    heterogeneous materials. For example, w

    austenitic stainless steel is heated to temp

    tures where sens itizat ion takes place (Re

    27), the resulting chromium-depleted regi

    subject to pitting. Pits may also initiate a

    austenite-ferrite interfaces in stainless steel

    metal.

    Although weld metal has a higher proba

    of being locally attacked because of micros

    gation in the dendritic structure, filler meta

    now available that have better pitting resist

    than their respective base metals; inform

    about these filler metals can be obtained

    consumable suppliers. However, even whe

    proper filler metal is used, pitting may still o

    in the unmixed zone.

    Duplex stainless steels, with ferrite con

    in the range of 40 to 50 vol , are often us

    decrease the tendency of stress-corrosion c

    ing in chromium-nickel high-alloy steels.

    welding practice for duplex stainless steels

    be given special attention (Ref 20-22, 24

    27) to avoid reduction in corrosion resista

    The combination of a low carbon content a

    carefully specified nitrogen addition have

    reported to improve resistance to pit ting c

    sion, stress-corrosion c racking, and interg

    lar corrosion in the as-welded condition.

    low carbon content helps avoid sensitiza

    while the addition of nitrogen slows the pre

    tation kinetic s associated with the segregati

    chromium and molybdenum during the we

    process (Ref 1). On rapid cooling from

    temperature, nitrogen also has been report

    form deleterious precipitates (for exam

    Cr2N) in the ferrite, thus reducing the corr

    resistance (Ref 28). Nitrogen also increase

    formation of austeni te in the heat-affected

    and weld metal during cooling. A mi nimum

    ting corrosion rate is achieved at a ferrite co

    of about 50 vol .

    Stress Corros ion Cracking. Weldment

    be susceptible to stress-corrosion cracking

    specific environmental conditions. This c

    ing requires the proper combination of corr

    media, susceptible microstructure, and te

    stress. Welds are often loaded in tension (d

    residual stress) to a level approaching the

    strength of the base metal. A weld, with its

    ious heterogeneous microstructural fea

    thus becomes an excellent candidate for s

    corrosion cracking.

    Stress-corrosion cracks have an anodic

    tip and often leave apparent corrosion pro

    along the fracture. Cracking is often chara

    ized by crack branching and usually has a

    time prior to crack initiation, with i nitiatio

    curring at corrosion pits. Increasing the f

    content in stainless steel weld metal red

    stress-corrosion cracking susceptibility.

    proximately 50 vol ferrite gives opt

    stress-corrosion cracking resistance.

    Welding parameters influence the amoun

    distribution of residual stress, because the e

    of the stressed region and the amount of d

  • 8/11/2019 Corrosion on Weldment

    4/5

    1 0 6 8 / S p e c i a l W e l d i n g a n d J o in i n g T o p i c s

    18

    / /

    17 / /

    12 ; , /

    13 / / /

    5

    / .o.~z ~ /

    1 7 18 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

    Chromium equ iva len t (Creq = Cr + M o + 0 .7Nb)

    Weld ing Research Counc i l (WRC-1988) d iag ram used to p red ic t we ld meta l fe r r i te con ten t . Source : Re f

    F i g . 8 1 8

    t i o n a r e d i r e c t l y p r o p o r t i o n a l t o t h e s i z e o f t h e

    w e l d d e p o s i t ; t h i s d e p o s i t i s d i r e c t l y r e l a t e d t o

    t h e h e a t in p u t . T h e t h e r m a l e x p e r i e n c e o f w e l d -

    i n g i s o f t en v e r y l o ca l i zed , r e s u l t i n g i n s t r a i n s

    t h a t ca n ca u s e d i s t o r t i o n a n d r es i d u a l s t r e s s .

    T h e s e r e s i d u a l s t r e s s e s c a n b e i m p o r t a n t i n t h e

    i n i t ia t i o n a n d p r o p a g a t i o n o f e n v i r o n m e n t a l l y

    a s s i st e d c r a c k i n g . T h e u s e o f s m a l l w e l d d e p o s -

    i t s r ed u ces t h e s t r e s s a n d t h u s r ed u ces t h e s u s -

    c e p t i b i l i t y o f e n v i r o n m e n t a l l y e n h a n c e d c r a c k -

    i n g .

    I t i s k n o w n t h a t p o s t w e l d h e a t t r e a t m e n t c a n

    r e d u c e s t r e s s - c o r r o s i o n c r a c k i n g b y r e d i s t r i b u t -

    i n g t h e l o c a l i z e d l o a d a n d b y r e d u c i n g t h e m a g -

    n i t u d e o f t h e r es i d u a l t en s i l e s t r e s s a v a i l a b l e t o

    i n d u c e c o r r o s i o n c r a c k i n g ( R e f 2 9 ) . I n a r e c e n t

    s t u d y o n a ca s t a u s t en i t i c s t a i n l es s s t ee l , p o s t s o -

    l i d i f i c a t io n h e a t t r e a tm e n t s w e r e a l s o s h o w n t o

    m o d i f y t h e l o c a l c o m p o s i t i o n g r a d i e n t s , s i g n i f i -

    c a n t l y a l t e r i n g t h e s u s c e p t i b i li t y o f t h e s o l i d i f i e d

    m i c r o s t r u c t u r e t o s t r e s s- c o r r o s i o n c r a c k i n g ( R e f

    30) .

    H y d r o g e n d a m a g e r e s u l t s f r o m t h e c o m -

    b i n e d a c t i o n s o f h y d r o g e n a n d s t r e s s ( R e f 3 1 ) ;

    t h e s t r e s s c a n b e r e s i d u a l o r a p p l i e d . T h e w e l d

    p o o l i n t h e l i q u i d s t a t e h a s a m u c h h i g h e r s o l u -

    b i l i t y f o r h y d r o g e n t h a n s o l i d m e t a l , a n d d u r i n g

    s o l i d i f i c a t i o n t h e h y d r o g e n c o n t e n t b e c o m e s s u -

    p e r s a t u r a t e d i n t h e w e l d p o o l a s h y d r o g e n a t -

    t e m p t s t o t r a n sp o r t f r o m t h e w e l d d e p o s i t. W h i l e

    s o m e o f t h e h y d r o g e n l e a v e s t h e w e l d m e n t , s i g -

    n i f i c a n t a m o u n t s t r a n s p o r t t h r o u g h t h e f u s i o n

    l i n e a n d i n t o t h e h e a t - a f f e c t e d z o n e .

    T h e f u s i o n l i n e r e g i o n a l s o h a s t h e h i g h e s t

    c o o l i n g r a t e , w h i c h m a y l e a d i n s o m e a l l o y s t o

    f r a c t u r e - s e n s i t iv e m i c r o s t r u c t u r e s ( e . g . , m a r t e n -

    s i te ) . T h e c o m b i n a t i o n o f h i g h h y d r o g e n c o n t e n t

    a n d b r i t t l e m i c r o s t r u c t u r e s c a n p r o d u c e c r a c k -

    i n g . T h e r e s u l t i s u n d e r b e a d c r a c k i n g , c h a r a c t e r -

    i z e d b y d e l a y e d s l o w p r o p a g a t i n g c r a c k s t h a t

    t r a v e l a d ja cen t t o t h e f u s i o n l i n e i n t h e h ea t -

    a f f e c t e d z o n e . T h e t y p i c a l h y d r o g e n c r a c k t r a v -

    e l s o n e o r t w o g r a i n s f r o m t h e f u s i o n l i n e i n th e

    h e a t - a f f e c t e d z o n e .

    W e l d m e t a l h y d r o g e n c r a c k i n g o f t e n t a k e s t h e

    f o r m o f c h e v r o n c r a c k s ( R e f 3 2 - 3 4 ) . C h e v r o n

    c r a c k f o r m a t i o n a n d p r o p a g a t i o n a r e i n f l u e n c e d

    b y t h e c o m b i n a t i o n o f s t r e s s a n d o r i e n t a t i o n o f

    t h e c o l u m n a r g r a i n b o u n d a r i e s . C h e v r o n c r a c k -

    i n g o c c u r s a t h i g h h y d r o g e n c o n t e n t l e v e l s a n d

    a p p e a r s t o b e i n a c t i v e a t l o w l e v e l s . T h i s t y p e o f

    c r a c k i n g a p p e a r s t o b e s e n s i t i v e t o r e h e a t in g d u r -

    i n g m u l t i - p a s s d e p o s i t i o n o f w e l d i n g b e a d s .

    C h e v r o n c r a c k i n g i s m o s t l i k e l y f o u n d w i t h f l u x -

    r e l a t e d w e l d i n g p r o c e s s e s .

    M i c r o b i o l o g i c a l l y I n f l u e n c e d C o r r o s i o n

    ( M I C ) i s a p h e n o m e n o n i n w h i c h m i c r o o r g a n -

    i s m s p l a y a r o l e i n t h e c o r r o s i o n o f m e t a l s . T h i s

    r o l e m a y b e t o i n i t i a te o r a c c e l e r a t e t h e c o r r o s i o n

    p r o c e s s . F o r e x a m p l e , w a t e r a n d s o m e o r g a n i c

    m e d i a m a y c o n t a i n c e r t a i n m i c r o o r g a n i s m s t h a t

    c a n p r o d u c e a b i o f i l m w h e n e x p o s e d t o a m e t a l

    s u r f a c e . T h e r e s u l t in g n o n u n i f o r m c o v e r a g e m a y

    l e a d t o a c o n c e n t r a t i o n c e l l a n d e v e n t u a l l y i n i -

    t i a t e c o r r o si o n . I n a d d i t i o n , t h e m e t a b o l i c p r o c -

    e s s o f th e m i c r o o r g a n i s m c a n p r o d u c e a l o c a l -

    i z e d a c i d e n v i r o n m e n t t h at c h a n g e s t h e c o r r o s i o n

    b e h a v i o r o f t h e e x p o s e d m e t a l b y , f o r e x a m p l e ,

    a l t e r i n g a n o d i c a n d c a t h o d i c r e a c t i o n s , d e s t r o y -

    i n g p r o t e c t i v e f i l m s , o r c r e a t i n g c o r r o s i v e d e p o s -

    i t s ( R ef 35 ) .

    I n a u s t en i t i c s t a i n l es s s t ee l w e l d m en t s , t h e e f -

    f e c t s o f M I C a r e u s u a l l y o b s e r v e d a s p i t t i n g o n

    o r a d j a c e n t t o w e l d s ( R e f 3 6 , 3 7 ) . M I C a t t a c k s

    e i t h e r y o r oL p h a s es , a n d ch l o r i d es a r e s o m e-

    t i m e s f o u n d i n a p i t , e v e n w h e n t h e w a t e r h a s

    e x t r e m e l y l o w c h l o r i d e c o n t e n t . P i t s a r e fo u n d i n

    r e g i o n s o f t h e h e a t - a f f e c t e d z o n e a t t h e f u s i o n

    l i n e , a n d i n t h e b a s e m e t a l n e a r t h e w e l d f o r

    r e a s o n s n o t w e l l u n d e r st o o d . T h e r e i s s o m e e v i -

    d e n c e t h a t M I C t a k e s p l a c e a l o n g w i t h s t

    c o r r o s i o n c r a c k i n g i n w e l d m e n t s o f a u s te

    s t a i n le s s s t e e l . W e l d i n g d e s i g n a n d p l a n t o

    t i o n c a n m i n i m i z e M I C a t t a c k , m a i n l y b y

    v e n t i n g a n a c c e p t a b l e e n v i r o n m e n t f o r m i c

    g a n i s m s .

    Heat -T int Oxide Format ion . T h e w e

    p r o c e s s , e s p e c i a l l y w i t h p o o r g a s s h i e ld i n g

    p r o d u c e a v a r i a t i o n i n t h e t h i c k n e s s o f t h e p

    v a t i n g o x i d e . T h e v a r i a t i o n i n o x i d a t i o n w i

    s u l t i n a g r a d i e n t i n t h e d e g r e e o f c h r o m

    d ep l e t i o n a d ja cen t t o a s t a i n l es s s t ee l w e l d .

    b e h a v i o r w i l l c a u s e s o m e t e n d e n c y f o r l o c a

    c o r r o s i o n ( R e f 1 ). A n i n d i c a t io n o f t h i s

    l e m c a n b e s e e n b y t h e h e a t - t i n t o x i d e f o r m

    ( R e f 3 8 ) .

    Welding Pract ice to

    Min imize orros ion

    S e v e r a l m e t h o d s a r e a v a i l a b l e t o m i n

    c o r r o s i o n i n w e l d m e n t s ( R e f 3 9) . T h e m o s

    p o r t a n t o f t h e s e a r e d i s c u s s e d b e l o w .

    M a t e r i a l a n d W e l d i n g C o n s u m a b l e S

    t i o n . C a r e f u l s e l e c t i o n o f m a t e r i a l s a n d w e

    c o n s u m a b l e s c a n r e d u c e t h e m a c r o - a n d m

    c o m p o s i t i o n a l d i f f e r e n c e s a c r o s s t h e w e l d

    a n d t h u s r e d u c e t h e g a l v a n i c e f f e c ts .

    Surface Preparat ion . A p r o p er l y s e l

    c l e a n i n g p r o c e s s c a n r e d u c e d e f e c t s t h a t a

    t en s i t e s f o r co r r o s i v e a t t a ck i n a g g r es s i v e

    r o n m e n t s . H o w e v e r , t h e c l e a n i n g p r o c e s s

    a l s o b e a s o u r c e o f t r o u b l e . F o r e x a m p l e

    m e c h a n i c a l l y c l e a n e d s u r f a c e ( i . e . , c l e a n e

    s a n d b l a s t i n g o r g r i n d i n g ) ca n l ea v e i m p u

    o n t h e s u r f a c e . T h e t y p e o f w i r e b r u s h u s e

    a l s o b e a n i m p o r t a n t c o n s i d e r a t i o n ( R e f

    S t a i n l es s s t ee l b r u s h es a r e g en er a l l y p r e f

    b e c a u s e t h e y d o n o t f o r m c o r r o s i o n p r o d u c

    p a b l e o f h o l d i n g m o i s t u r e .

    W e l d i n g d e s ig n

    s h o u l d p r o m o t e d e p o s i t

    h a v e r e l a t i v e l y fl a t b e a d s w i t h l o w p r o f i l e

    h a v e m i n i m a l s l a g e n t r a p m e n t . A p o o r d

    ca n g en er a t e c r ev i ces t h a t t r a p s t a g n a n t

    t i o n s , l e a d i n g t o p i t t i n g a n d c r e v i c e c o r r o

    I r r e g u l a r w e l d d e p o s i t s h a p e s c a n p r o m o t e

    b u l en t f l o w i n a t u b u l a r p r o d u c t a n d r es u

    e r o s i o n c o r r o s i o n .

    W e l d i n g P r a c t i c e . C o m p l e t e p e n e t r a t i

    p r e f e r r e d t o a v o i d u n d e r b e a d g a p s . S l a g s h

    b e r e m o v e d a f t e r e a c h p a s s w i t h a p o w e r g r

    o r p o w e r c h i p p i n g t o o l . I f t h e w e l d i n g m e

    u s e s f l u x , t h e g e o m e t r y o f t h e j o i n t m u s t p

    t h o r o u g h f l u x r e m o v a l , b e c a u s e m a n y f l u x

    d u e s a r e h y d r o p h i l i c a n d c o r r o s i v e .

    W e l d Surface Finishing. T h e w e l d d e

    s h o u l d b e i n s p e c t e d v i s u a l l y i m m e d i a t e l y

    w e l d i n g . M a x i m u m c o r r o s i o n r e s i s t a n c e u s

    d e m a n d s a s m o o t h u n i f o r m l y o x i d i z e d s u

    t h a t i s f r ee f r o m f o r e i g n p a r t i c l e s a n d i r r eg u

    t i e s ( R e f 3 7 ) . D e p o s i t s n o r m a l l y v a r y i n r o

    n e s s a n d i n d e g r e e o f w e l d s p a t t e r , a c o n c e r n

    c a n b e m i n i m i z e d b y g r in d i n g . F o r sm o o t h

    d e p o s i t s , w i r e b r u s h i n g m a y b e s u f f i c i e n t

    s t a i n l es s s t ee l , h o w ev er , b r u s h i n g d i s t u r b

    e x i s t i n g p a s s i v e f i l m a n d m a y a g g r a v a t e c

    s i v e a t t a ck .

  • 8/11/2019 Corrosion on Weldment

    5/5

    C o r r o s io n o f W e l d m e n t s 1

    S u r f a c e C o a t i n g . W h e n a v a r i a t i o n i n c o m -

    pos i t i on ac ros s the w e l d m e t a l c an c aus e l oc a l -

    i z e d a t t ac k , i t m ay be de s i rab l e t o us e pro t e c t i ve

    c oa t i ngs . The c oa t i ng ne e ds t o c ove r bo t h t he

    w e l dm e nt and t he pa re n t m e t a l and of t e n re -

    qui re s s pe c i a l s ur f ac e pre pa r a t i on .

    P o s t w e l d H e a t T r e a t m e n t A p o s t w e l d h e a t

    t re a t m e nt c an be an e f f e c t i ve w ay t o re duc e c or -

    ros i on s us c e pt i b i l i t y . Thi s i m prove d c or ros i on

    re s i s t anc e i s ac c om pl i s he d t hrough a re duc t i on

    i n re s i dua l s t re s s grad i e n t s t ha t i n f l ue nc e s t re s s -

    c or ros i on c rac ki ng grow t h . Pos t w e l d he a t t re a t -

    m e n t c a n a s s i st i n t h e t r a n s p o r t o f h y d r o g e n f r o m

    t h e w e l d m e n t a n d r e d u c e s u s c e p t ib i l i ty o h y d r o -

    ge n c rac ki ng . The t re a t m e nt c an a l s o re duc e

    c om p os i t i ona l g rad i e n t s ( i . e . , m i c ros e gre ga t i on )

    a n d c o r r e s p o n d i n g m i c r o g a l v a n i c c e l l s .

    P r e h e a t a n d I n l e r p a s s T e m p e r a t u r e T h e

    s e l e c t i o n a n d u s e o f p r o p e r p r e h e a t t r e a t m e n t

    a n d i n t e r p a ss t e m p e r a t u r e m a y p r e v e n t h y d r o g e n

    c r a c k i n g i n c a r b o n a n d l o w - a l l o y s t ee l .

    P a s s i v a ti o n T r e a t m e n t A

    pas s i va t i on t re a t -

    m e n t m a y i n c r e a s e t h e c o r r o s i o n r e s i s t a n c e o f

    s t a i n l e s s s t e e l w e l de d c om pone n t s .

    A v o i d a n c e o f F o r m i n g C r e v ic e s Sl ag t ha t i s

    s t i l l adhe r i ng t o t he w e l d de pos i t and de fe c t s

    s u c h a s l a c k o f p e n e t r a t io n a n d m i c r o f i ss u r e s c a n

    re s u l t in c re v i c e s tha t c an prom ot e a l oc a l i z e d c on-

    c e nt ra t i on c e l l , re s u l t i ng i n c re v i c e c or ros i on .

    Prope r s e l ec ti on o f w e l d i ng c ons um abl e s , p ro pe r

    w e l d i ng prac t ic e , and t horough s l ag re m ova l c an

    a l l e v i a te h i s form of c or ros i on dam age .

    R e m o v i n g S o u r c e s o f H y d r o g e n T h r o u g h

    p r o p e r s e l ec t i o n o f w e l d i n g c o n s u m a b l e s ( t h a t

    i s , l o w - h y d r o g e n s h i e l d e d m e t a l a r c w e l d i n g

    e l e c tr o d e s ) , p r o p e r d r y i n g o f f l u x , a n d w e l d i n g

    c l e a n s u r f a ce s , t h e h y d r o g e n p i c k u p c a n b e d r a s -

    t i c a l l y re duc e d .

    REFERENCES

    1 . O . I . S t e k l ov

    e t a l . ,

    M e t h o d o f E v a l u a t i n g

    t h e I n f lu e n c e o f N o n - U n i f o r m i t y o f W e l d e d

    J oi n t Prope r t i e s on Corros i on ,

    S va r . Pro i z , ,

    Vo l 19 (No. 9) , 1972, p 34-36

    2 . K , F . K r y s i a k

    e t a l . , M e ta l s Ha n d b o o k ,

    V o l

    1 3 , 9 t h e d . , A S M , 1 987, p 3 4 4 -3 6 7

    3 . W . F . S a v a g e , N e w I n s ig h t i n to W e l d

    C r a c k i n g a n d a N e w W a y o f L o o k i n g a t

    W e l d s ,

    W eld . Des . En g . ,

    D e c 1 96 9

    4 . R . G . B u c h h e i t, J r . , J. P . M o r a n , a n d G . E .

    S t o n e r , L o c a l i z e d C o r r o s i o n B e h a v i o r o f

    A l l o y 2 0 9 0 - - - T h e R o l e o f M i c r o s tr u c t u r a l

    H e t e r o g e n e i t y ,

    Co rro s io n ,

    V ol 4 6 (N o. 8) ,

    1990, p 610-617

    5 . W . A . B a e s l a c k H I , J . C . L i p p o l d , a n d W . F .

    S a v a g e , U n m i x e d Z o n e F o r m a t i o n i n A u s -

    t e n i t i c S t a i n l e s s S t e e l We l dm e nt s ,

    W eld . J . ,

    Vo l 58 (No, 6) , 1979, p 168s-176s

    6 . J . E . H a t c h , Ed , ,

    Alu min u m: P ro p er t i e s a n d

    Ph ys ica l M e ta l lu rg y ,

    A S M , 1 984, p 2 83

    7 . C . A . A r n o l d , G a l v a n i c C o r r o s i o n M e a s -

    u r e m e n t o f W e l d m e n t s , p r e s e n t e d a t

    N A C E C o r r o s i o n / 8 0 , C h i c a g o , M a r c h 1 9 8 0

    8 . M . W . M a r s h a l l , C o r r o s i o n C h a r a c t e r is t i cs

    o f T y p e s 3 0 4 a n d 3 0 4 L W e l d m e n t s ,

    W eld .

    J . , V ol 3 8 (N o. 6 ) , 1 959, p 2 4 7s -2 50 s

    9 . M . E . C a r r u t h e r s , W e l d C o r r o s i o n i n T y p e

    3 1 6 a n d 3 1 6 L S t a i n l e s s S t e e l a n d R e l a t e d

    P r o b l e m s ,

    W e l d . J . ,

    V ol 3 8 (N o. 6 ) , 1 959,

    p 2 59s -2 6 7s

    1 0 . K . E . P i n n o w a n d A . M o s k o w i t z , C o r r o s i o n

    R e s i s t a n c e o f S t a i n l e s s S t e e l W e l d m e n t s ,

    W eld . J . ,

    V ol 4 9 (N o. 6 ) , 1 970 , p 2 78s -

    2 84 s

    1 1 . T . J . M o o r e , T i m e - T e m p e r a t u r e P a r a m e t e r s

    A f f e c t i n g C o r r o s i o n o f 1 8 C r - 8 N i W e l d

    M e t a l s ,

    W eld . J . ,

    Vol 39 (No. 5) , 1960, p

    1 99s -2 0 4 s

    1 2. J . H o n e y c o m b e a n d T . G . G o o c h , In t e rg r a n -

    u l a r A t t a c k i n W e l d e d S t r e s s - C o r r o s i o n R e -

    s i s t an t S t a i n l e s s S t e e l ,

    W eld . J . ,

    V o l 5 6

    (No. 11) , 1977, p 339s-353s

    1 3 . T . G . G o o c h a n d D . C . W i l l i n g h a m , W e l d

    D e c a y i n A I S I 3 0 4 S t a i n l e s s S t e e l ,

    M e t .

    Co n s t . Br i t . W e ld . J . ,

    V ol 3 (N o. 1 0 ) ,

    1971, p 366

    1 4 . T . G . G o o c h , C o r r o s i o n o f A I S I T y p e 3 0 4

    A us t e n i t i c S t a i n l e s s S t e e l ,

    Br i t . W e ld . J . ,

    Vol 15 (No. 7) , 1968, p 345

    1 5 . R . M . D a v i d s o n , T . D e B o l d , a n d M . J .

    J o h n s o n .

    M eta ls Ha n d b o o k ,

    Vol 13 . 9th

    e d . . A SM In t e rna t i on a l . 1 987, p 551

    1 6 . D . J . K o t e c k i , U n d e r s ta n d i n g D e l t a F e r r i te .

    W eld . Des . Fa b r . ,

    Vo163 (No. 12) , 1990. p

    3 3 - 3 6

    1 7. D . J . K ot e c k i . Fe r r i t e Cont ro l i n D upl e x

    S t a i n l e ss S t e e l W e l d M e t a l ,

    W eld . J . .

    V o l

    65 (No. 10) , 1987, p 273s-2 78s

    1 8 . T . A . S i e w e r t , C . N . M c C o w a n . a n d D . L .

    O l s o n , F e r r i t e N u m b e r P r e d i c t i o n t o 1 0 0F N

    i n S t a i n l e s s S t e e l W e l d M e t a l ,

    Weld. J . ,

    V ol 6 7 (N o. 1 2 ) , 1 988, p 2 89s -2 98s

    1 9. W . A . Ba e s l ac k I I1 , D . J . D u que t t e , and

    W . F . S a v a g e . T h e E f f e c t o f F e r r i t e C o n t e n t

    o n S t r e s s C o r r o s i o n C r a c k i n g i n D u p l e x

    S t a i n l es s S t e e l W e l d M e t a l s a t R o o m T e m -

    pe ra t ure ,

    Co rro s io n ,

    V ol 3 5 (N o. 2 ) . 1 979,

    p 4 5 - 5 4

    2 0 . W . A . B a e s l a c k I II . D . J . D u q u e t t e , a n d

    W . F . S a v a g e , T e c h n i c a l N o t e: S t r e s s C o r -

    r o s i o n C r a c k i n g i n D u p l e x S t a i n l e s s S te e l

    W e l d m e n t s ,

    W eld . J . ,

    V ol 57 (N o. 6 ) ,

    1978, p 175s-177s

    2 1 . D . H . S h e r m a n , D . J . D u q u e t t e , a n d W . F .

    S a v a g e , S t r e s s C o r r o s i o n C r a c k i n g B e h a v -

    i o r o f D u p l e x S t a i n l e s s S te e l W e l d m e n t s i n

    B o i l i n g M g C 1 2 ,

    Co rro s io n .

    V ol 3 1 (N o.

    10) , 1975. p 376-380

    2 2 . T . G . G o o c h . W e l d a b i l i t y o f D u p l e x

    Fe r r i t i c -A u s t e n i t i c S t a i n l e s s S t e e l s ,

    D u -

    p lex S ta in le s s S tee l s ,

    A SM, 1 983 , p 573 -

    6 0 2

    2 3 . A . B a c k m a n a n d B . L u n d q v i s t. P r o p e r t i e s

    o f a F u l l y A u s t e n i t i c S t a in l e s s S t e el W e l d

    M e t a l f o r S e v e r e C o r r o s i o n E n v i r o n m e n t s ,

    W eld . J . ,

    V ol 56 , 1 977, p 2 3 s -2 8s

    2 4 . H . M e n e n d e z a n d T . M . D e v i n e , T h e I n f l u -

    e n c e o f M i c r o s t r u c t u re o n t h e S e n s i t i z a ti o n

    B e h a v i o r o f D u p l e x S t a i n l es s S t e e l W

    Co rro s io n ,

    V ol 4 6 (N o. 5) , 1 990 , p

    4 1 7

    2 5 . T . O g a w a a n d T . K o s e k i , E ff e c t o f C o

    s i t io n P r o f i l e s o n M e t a l l u r g y a n d C o r r

    B e h a v i o r o f D u p l e x S t a i n l e s s S t e e l

    Me t a l s ,

    W eld . J . ,

    V ol 6 8 (N o. 5) , 1 9

    181s-191s

    2 6 . A . G a r n e r , T h e E f f e c t o f A u t o g e n

    W e l d i n g o n C h l o r i d e P i t t i n g C o r r o s i

    A us t e n i t i c S t a i n l e s s S t e e l s ,

    Co rro s io n

    35 (No. 3) , 1979, p 108-114

    2 7 . T . A . D e B o l d , J . W . M a r t i n , a n d J . C .

    b e r g , D u p l e x S t a i n l es s O f f er s S t r e n g t

    C o r r o s i o n R e s i s t a n c e ,

    Du p lex S ta i

    S tee l ,

    A SM, 1 983 , p 1 6 9-1 89

    2 8 . N . S r i d h a r an d J . K o l t s , E f fe c t s o f N i t

    o n t h e S e l e c t iv e D i s s o lu t i o n o f a D

    St a i n l e s s S t e e l ,

    Co rro s io n ,

    V ol 4 3

    11) , 1987, p 646-651

    2 9 . K . N . K r i s h n a n a n d K . P . R a o , R o o m -

    p e r a t u r e S t r e s s C o r r o s i o n C r a c k i n g R

    t a n c e o f P o s t - W e l d H e a t - T r e a t e d A u s t e

    W e l d M e t a l s ,

    Co rro s io n ,

    V ol 4 6 (N o

    1 990 , p 73 4 -74 2

    3 0 . G . L . B e r r y , J r . , D . L . O l s o n , a n d

    M a t l o c k . I n f l u e n c e o f M i c r o c o m p o s i t

    G r a d i e n t s o n S t r e s s C o r r o s i o n C r a c k P

    ga t i on ,

    M a t . En g . S c i . ,

    V ol A 1 4 8. 1 9

    1-6

    3 1 B . C r a i g , H y d r o g e n D a m a g e ,

    M eta ls H

    book.

    V ol 1 3 , 9 t b e d . . A SM , 1 987. p

    164

    3 2 . R . A . F a r r a r . T h e N a t u r e o f C h e v r o n C

    i n g i n S u b m e r g e d A r c W e l d M e t a l s ,

    W

    Res . In t . .

    V ol 7 (N o. 2 ) , 1 987, p 85-89

    3 3 . B . R . K e vi l l e , A n Inve s t i ga t i on t o D

    m i n e t h e M e c h a n i s m s I n v o l v e d in t h e

    m a t i o n a n d P r o p a g a t i o n o f C h e v r o n C

    i n S u b m e r g e d A r c W e l d m e n t s ,

    W eld .

    In t . ,

    V ol 6 (N o. 6 ) , 1 976 , p 4 7-6 6

    3 4 . D . J . A l l e n , B . Che w , and P . H a r r i s ,

    F o r m a t i o n o f C h e v r o n C r a c k s i n

    m e r g e d A r c W e l d M e t a l .

    W e l d . J . ,

    V

    (N o. 7) , 1 982 , p 2 1 2 s -2 2 1 s

    3 5 . S . C . D e x t e r . L o c a l i z e d B i o l o g i c a l C

    s i on .

    M eta ls Ha n d b o o k .

    V ol 1 3 , 9 t h

    A SM. 1 987. p 1 1 4 -1 2 0

    3 6 . G . J . L i c i na ,

    S o u rceb o o k o f M ic ro b io

    ca Uy In f lu en ced Co rro s io n m Nu

    P o w e r P l a n t s ,

    N P 5 5 8 0 , E l e c tr i c P o w e

    s e a rc h Ins t i t u t e , 1 988

    3 7 . S . W . B o r e n s t ei n , M i c r o b i o l o g i c a l l y

    e n c e d C o r r o s i o n F a i l u r e s o f A u s t e

    S t a i n l es s S t e e l W e l d s , P a p e r 7 8 ,

    C

    sio n 8 8 ,

    N A C E , 1 9 8 8

    3 8 . S . T u r n e r a n d F . P . A . R o b i n s o n , T h e E

    o f t h e S u r f a c e O x i d e s P r o d u c e d D

    W e l d i n g o n t h e C o r r o s i o n R e s i s t a n

    St a i n l e s s S t e e l s ,

    Co rro s io n ,

    V o1 4 5 (N

    1989, p 710-716

    3 9 . F . C . B r a u t i g a m , W e l d i n g P r a c t i c e s

    M i n i m i z e C o r r o s i o n ,

    C h e m . E n g . ,

    1

    1977. p 145-147