21
Regina Soufli [email protected] Corrosion-resistant Mg-based multilayer coatings for sources > 25 nm Regina Soufli Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. EUVL Workshop, LBNL, June 13-14, 2018 LLNL-PROC-754006

Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 [email protected] EUV Lithography: ETS1, ETS2, MET2,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Corrosion-resistant Mg-based multilayer coatings for sources > 25 nm

Regina SoufliLawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

EUVL Workshop, LBNL, June 13-14, 2018

LLNL-PROC-754006

Page 2: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Technical contributors

• Jeff C. Robinson, Monica Fernández-Perea, Christopher C. Walton,

Sherry L. Baker, Jennifer Alameda (LLNL)

• Eric M. Gullikson, Julia Meyer-Ilse (CXRO/LBNL)

• Luis Rodríguez-De Marcos, Jose A. Méndez, Manuela Vidal-Dasilva,

Juan I. Larruquert (Instituto de Óptica, Consejo Superior de

Investigaciones Científicas (CSIC), Madrid, Spain)

Page 3: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Overview

➢ Motivation: applications at = 25 – 80 nm that benefit from Mg/SiC

multilayers

➢ Design and experimental performance of Mg/SiC multilayers

➢ Origins, propagation mechanisms and impact of Mg/SiC corrosion

➢ Al-Mg corrosion barriers for Mg/SiC

• Al-Mg spontaneous intermixing and amorphization

• Lifetime properties and performance optimization of Mg/SiC with

Al-Mg corrosion barriers

Page 4: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Multilayer coatings with stability > 10 years are needed for space-borne EUV solar physics telescopes

6 EUV wavelengths (94 - 304 Å) on a single telescope.

4 telescopes 2 wavelengths per telescope7 EUV wavelengths, 94 - 335 Å. 1 arcsec resolution41x41 arcmin FOV12 sec cadence 2 Tbytes / day

Soufli, Proc. SPIE 59010M (2005)

Soufli, Appl. Opt. 46, 3156-3163 (2007)

Boerner, Solar Physics 275, 41-66 (2012)

Lemen, Solar Physics 275, 17-40 (2012)

Soufli, Proc. SPIE 8443R (2012)

Martinez-Galarce, Opt. Eng. 52, 095102 (2013).

94 131

171

195284

304

NASA/NOAA’s GOES-R,-S,-T,-U space weather satellites. Launch: 2016 - 2020

Multilayer-coated SDO telescope mirror pair

193Å

193

211Å

211

NASA’s Solar Dynamics Observatory (SDO). Launched: February 11, 2010.

GOES-R secondary mirror

131 Å 93.9 Å 335.4 Å 211.3 Å

1600 Å 303.8 Å171.1 Å193.5 Å

Page 5: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Laser Pumped SXRL λ= 8.8– 32.6 nm

Discharge Pumped SXRL λ=46.9 nm

100 nm lines

82 nm holes

Chemical spectroscopies

Microscopy

Nanomachining

Interferometry

Compact plasma-based EUV laser sources and applications need efficient multilayer coatings

Plasma diagnostics

58 nm pillars

Nanopatterning

• High pulse energy (µJ-mJ)

• High monochromaticity (λ/Δλ < 10-4)

• High peak spectral brightness

Courtesy: Profs. Jorge Rocca and Carmen Menoni,

Colorado State University

Page 6: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

EUV Lithography: ETS1, ETS2, MET2, MET5 EUV solar missions and laser sources

Hard x-ray /gamma-ray astrophysics, radiation detection, target diagnostics

Our group at LLNL has participated in the development of short-wavelength optics for various applications

X-ray optics for the LCLS free-electron laser

NASA’s NuSTAR

Page 7: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

LLNL facilities for thin film deposition and characterization

DC- and RF-magnetron sputtering deposition

systems ZYGO AFM SEM

Precision surface metrology

Also (not pictured):

o Contact profilometers

o Thin film stress measurement apparatus

o Full-aperture interferometers

Custom cleaning facility for optical

substrates

X-Ray Diffractometer

Page 8: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Calibration and standards ALS beamline 6.3.2 λ = 1-90 nm

Light sources employed for at-wavelength testing of multilayer optics in this presentation

GOLD facility, λ = 50-200 nm

Page 9: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

10-3

10-2

10-1

100

10 20 30 40 50 60 70 80 90 100

SiSc

Al

Mg

wavelength (nm)

exti

nct

ion

coef

fici

ent,

kMg exhibits low absorption in an extended wavelength range for > 25 nm (Mg L2,3 edge)

Refractive index = n + i*k

Extinction coefficient k values

obtained from:

1. Mg: M. Vidal-Dasilva, et al, J. Appl.

Phys. 108, 063517 (2010).

2. Al: E. Shiles, et al, Phys. Rev. B

22, 1612-1628 (1980), as compiled by

E. D. Palik, Handbook of optical

constants of solids (Academic Press,

1985).

3. Si: R. Soufli and E. M. Gullikson,

Appl. Opt. 36, 5499-5507 (1997).

H. R. Philipp, J. Appl. Phys. 43, 2835-

2839 (1972), compiled by E. D. Palik,

Handbook of optical constants of

solids (Academic Press, 1985).

4. Sc: M. Fernández-Perea, et al, J.

Opt. Soc. Am. A 23, 2880-2887

(2006).

Page 10: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

0

0.1

0.2

0.3

0.4

20 50 100 200

measured

model

= 85a

wavelength (nm)

Ref

lect

an

ce

10-6

10-5

10-4

10-3

10-2

10-1

10 20 50 100 200

measured

model

= 85

b

wavelength (nm)

Ref

lect

an

ce

Mg/SiC achieves the highest narrowband peak reflectance at = 76.9 nm: R = 40.6% at near-normal incidence

d=52.4 nm

Mg=0.77

N=10

❑ Mesurements performed at:

• Beamline 6.3.2., Advanced Light Source, LBNL, for < 50 nm

• GOLD facility, Instituto de Óptica, Madrid, Spain, for = 50-200 nm

❑ Model = IMD software by D. L. Windt, Computers in Physics 12, 360–370 (1998)

Standard Mg/SiC (no corrosion barriers)

1st

2nd

3rd

4th

1st2nd

3rd

4th

M. Fernández-Perea, R. Soufli, J. C. Robinson, L. Rodríguez-de Marcos, J. A. Mendez, J. I. Larruquert and E.

M. Gullikson, “Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak

reflectance in the 25-80 nm wavelength region”, Optics Express 20, 24018-24029 (2012).

Page 11: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Mg/SiC is the best multilayer for the 25-80 nm wavelength region, except ….

H. Takenaka et al., J.of El. Spectr. and Rel.

Phen. 144-147, 1047 (2005).

Calculated ideal reflectivity (roughness=0)

for different multilayers Mg/SiC deposited at LLNL, measured at

ALS beamline 6.3.2

Mg/SiC exhibits a unique combination of high reflectivity, near-zero stress,

thermal stability to ~350 C and good spectral selectivity compared to other

candidate multilayer pairs in the 25-80 nm region

0

0.1

0.2

0.3

0.4

0.5

25 30 35 40 45 50

Measured

Fit

Wavelength (nm)

Ref

lect

ivit

y

measured

model

LLNL-PROC-754006

Page 12: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

(a) (b)

(c) (d)

50 m

50 m

25 m

25 m

b2b1

d1

d3

d2

R. Soufli, M. Fernández-Perea, S. L. Baker, J. C. Robinson, J. Alameda, C.

C. Walton, App. Phys. Lett. 101, 043111 (2012).

M. G. Pelizzo, A. J. Corso, P. Zuppella, P.

Nicolosi, S. Fineschi, J. Seely, B.

Kjornrattanawanich, and D. L. Windt, Opt.

Eng. 51, 023801 (2012).

Top-surface SEM of Mg/SiC with advanced corrosion

aged for 2.7 years

Mg/SiC with advanced corrosion

aged for 4 years

…atmospheric corrosion prevents Mg/SiC from being used in applications requiring long lifetime stability

Corrosion has prevented Mg/SiC use in

EUV solar telescopes, free-electron

lasers, and HHG sources

Page 13: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Mg/SiC with advanced, eruptive stages of corrosion aged for 3 years.

4 top bilayers (out of 20) have been consumed and are missing

Advanced corrosion exhibits eruptive effects due to formation and volume expansion of corrosion products

0.4 m

(a)

(c)

(b)

100 m

(d)

10 m 0.1 m

Mg corrosion products

Mg SiC

Binding energy (eV) Orbital Species

50.8 Mg 2p MgO, Mg(OH)2, Mg(CO)3

532.8 O 1s OH-, Mg(OH)2

Mg /SiC multilayer

TEM and XPS analysis performed at EAG Labs, Sunnyvale, California

SEM image, top surface SEM image, top surface

TEM image, cross-section

LLNL-PROC-754006

Page 14: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

We have elucidated the origins and propagation mechanisms of corrosion in Mg/SiC multilayers

(a) (b)

(c)

0.2 m

200 m 1 m 20 nm

(d) (e)

10 nm

Mg

SiC

Mg corrosion products

Mg /SiC multilayer

Mg

SiC

Mg corrosion products

Mg/SiC aged for 3 years, with early, pre-eruptive stages of corrosion

Atmospheric corrosion attacks Mg/SiC from the top surface via localized

entry points such as pinholes and defects, inherent in sputtered thin films

SEM image, top surface SEM image

top surface

TEM image, cross-section

LLNL-PROC-754006

Page 15: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Al-Mg corrosion barrier structures for Mg/SiCmultilayers

0

1000

2000

3000

4000

30 35 40 45

2 days

68 days

Mg(002)

Al(111)

Al-Mg layer

2 (deg)

Inte

nsi

ty (

a.u

.)

Days after deposition

Bragg peak, 2(deg)

Lattice spacing(nm)

Crystallite size(nm)

Al(111) 2 38.44 0.23 15.13

” 68 38.41 0.23 4.57

Mg(002) 2 34.41 0.26 16.7

” 68 35.14 0.25 9.15

(b)

Mg SiC Al-MgSiC

SiCAlMg

200 m

(a)

Mg crystallites

(c)

Al-Mg

SiC

SiC

Mg

SiC

Mg

Sparse Al, Mg crystallites

(d)

(e)

Polycrystalline Al (20 nm) and Mg (19 nm) layers spontaneously intermix to produce partially

amorphous Al-Mg layer.

Sample aged for 2.5 years

R. Soufli, M. Fernández-Perea, S. L. Baker, J. C. Robinson, J. Alameda, C. C. Walton, App. Phys. Lett. 101, 043111 (2012).

LLNL-PROC-754006

LLNL-PROC-754006

Page 16: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

We are investigating in detail the physics of the Al-Mg intermixing and amorphization process

SiC

Al-Mg

20 nm

TEM image, cross-section

d(Al)= 20 nm, d(Mg)= 19 nm

SiC

Nano-Beam Diffraction

▪ Intermixed region of Mg layer

(bottom) exhibits higher degree of

“crystallinity” than Al layer (top)

LLNL-PROC-754006

Page 17: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Triple-wavelength Mg/SiC multilayers with corrosion barriers can be employed in EUV imaging or spectrometer instruments

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

20 50 100 200

= 85 deg

a)measured

model

wavelength (nm)

Ref

lect

an

ce

O IV / Ne VIII

(78 nm)Ne VII

(46.5 nm)

1st2nd

3rd

4th

Fe XVI

(33.5 nm) d=52.2 nm

Mg=0.78

N=9

Al-Mg=15.3% wt. Al

Refractive index values

obtained from:

1. Mg: M. Vidal-Dasilva, et al, J.

Appl. Phys. 108, 063517 (2010).

2. SiC: J. B. Kortright and D. L.

Windt, Appl. Opt. 27, 2841-2846

(1988).

3. Al: E. Shiles, et al, Phys. Rev.

B 22, 1612-1628 (1980), as

compiled by E. D. Palik,

Handbook of optical constants of

solids (Academic Press, 1985).

LLNL-PROC-754006

Page 18: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Reflectance loss after 3 years of aging appears to increase with Al thickness

-0.05

0

0.05

0.10

0.15

0 10 20 30 40d

Al(nm)

R

(R

fres

h-R

ag

ed/R

fres

h)

Mg/SiC samples reflecting at 28 and 46 nm, with and without Al-Mg corrosion barrier layers

LLNL-PROC-754006

Page 19: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

• Insertion of 6 barrier layers in a Mg/SiC stack of 35 layers has minimal impact in reflectance

• Significant reflectance can be achieved even with corrosion barriers in all 35 layers

• In addition to corrosion protection, AlMg barriers improve out-of-band suppression

Performance optimization of Mg/SiC coatings with and without AlMg corrosion barriers

Measured at ALS beamline 6.3.2

0

0.1

0.2

0.3

0.4

0.5

25 26 27 28 29 30 31 32 33

Mg/SiC, N=35

= 85 deg

AlMg barriers in all 35 layers

AlMg barriers in 6 layers

No corrosion barriers

Wavelength, (nm)

Ref

lecta

nce

LLNL-PROC-754006

Page 20: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Summary

➢ Atmospheric corrosion has prevented the use of Mg/SiC multilayers in

applications requiring good lifetime stability, such as EUV laser sources

and solar physics

➢ We have developed Al-based barrier layers that dramatically reduce

corrosion in Mg/SiC multilayers, while preserving high reflectance

➢ Corrosion barrier layers can be customized specifically for each

multilayer design and environmental conditions

➢ Mg/SiC with Al-based corrosion barriers has been implemented in

upcoming EUV solar physics missions

➢ Investigation of the physics of spontaneous intermixing and

amorphization of sputtered Al and Mg layers is ongoing

Page 21: Corrosion-resistant Mg-based multilayer coatings for sources > 25 … · 2018. 7. 15. · Regina Soufli LLNL-PROC-754006 regina.soufli@llnl.gov EUV Lithography: ETS1, ETS2, MET2,

Regina Soufli

[email protected]

Funding acknowledgements

• Funding for the Mg/SiC corrosion barrier work was provided by the

LLNL Laboratory Directed Research and Development program

• GOLD acknowledges financial support from the National Program

for Space Research, Subdirección General de Proyectos de

Investigación, Ministerio de Ciencia y Tecnología, project number

AYA2010-22032

• Additional funding was provided by Lockheed Martin Corporation

Internal Research and Development

LLNL-PROC-754006