41
Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investi University of Colorado Hubble 4 th -generation instrument for Servicing Mission 4 Replaces COSTAR in Bay 4 New ultraviolet spectrograph with more than 10 times greater sensitivity than previous or existing UV instruments Will probe the formation of structure and evolution of matter in the Universe by studying the furthest objects and the intervening material Principal Investigator: Prof. James Green, University of Colorado, Boulder Industrial Partner: Ball Aerospace, Boulder, Colorado Additional partners: NASA-GSFC, STScI, UC-Berkeley, U. Wisconsin, SwRI

Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Embed Size (px)

Citation preview

Page 1: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• Hubble 4th-generation instrument for Servicing Mission 4

• Replaces COSTAR in Bay 4• New ultraviolet spectrograph with more

than 10 times greater sensitivity than previous or existing UV instruments

• Will probe the formation of structure and evolution of matter in the Universe by studying the furthest objects and the intervening material

• Principal Investigator: Prof. James Green, University of Colorado, Boulder

• Industrial Partner: Ball Aerospace, Boulder, Colorado

• Additional partners: NASA-GSFC, STScI, UC-Berkeley, U. Wisconsin, SwRI

Page 2: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Instrument Rationale and Philosophy• The HST & Beyond (Dressler) Committee (May 1996) emphasized

the uniqueness of HST for conducting UV studies during this decade and that HST “should have excellent, unprecedented UV capability for imaging and spectroscopy, capabilities completely unavailable from the ground or from space with such a large collecting area.”

• COS was designed to maximize sensitivity for medium-resolution (R~20,000) spectroscopy– “Break the 1 × 10-14 ergs/cm2/s/Å flux barrier”

• SM4 instrumentation AO released December 1996• COS proposal submitted for peer review April 1997• COS selected in August 1997• HST Project requested addition of NUV channel using STIS spare

MAMA Band 2 detector during Fall 1997• COS Critical Design Review April 2000• COS Complete: November 2003

Page 3: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS Science Themes What is the large-scale structure

of matter in the Universe?

How did galaxies form out of the intergalactic medium?

How were the chemical elements for life created in massive stars and supernovae?

How do stars and planetary systems form from dust grains in molecular clouds in the Milky Way?

What are planetary atmospheres and comets in our Solar System made of?

“Spectroscopy lies at the heart ofastrophysical inference.”

Page 4: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• COS has 2 channels to provide low and mediumresolution UV spectroscopy– FUV: 1150-1775Å, NUV: 1700-3200Å

• FUV gratings: G130M, G160M, G140L

• NUV gratings: G185M, G225M, G285M, G230L– M gratings have spectral resolution of R ~ 20,000

NUV MAMADetector

(STIS spare)

CalibrationPlatform

FUV XDLDetector

OSM2: G185M, G225M,G285M, G230L, TA1

OSM1: G130M,G160M, G140L,NCM1

Aperture Mechanism:Primary Science Aperture,Bright Object Aperture

Optical bench(not shown):

re-use of GHRSbench

Page 5: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Target Acquisition• COS is a “slitless” spectrograph, so the precision of target acquisition (placement

of target relative to calibration aperture) is the largest uncertainty for determining the absolute wavelength scale.

• Goal is to center targets routinely in science apertures to a precision of+/- 0.1 arcsec (= +/- 10 km/s).

• Throughput is relatively insensitive to centering due to large size of science apertures; centering of +/- 0.3 arcsec necessary for >98% slit throughput.

• The aberrated HST PSF centered in the COS Primary Science Aperture.

Page 6: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS FUV Spectroscopic Modes

Nominal Wavelength Resolving Power

Grating Wavelength Range (R = b

Coverage a per Exposure

G130M 1150 - 1450 Å 300 Å 20,000 - 24,000

G160M 1405 - 1775 Å 375 Å 20,000 - 24,000

G140L 1230 - 2050 Å > 820 Å 2400 - 3500

a Nominal Wavelength Coverage is the expected usable spectral range delivered by each grating mode. The G140L grating disperses the 100 - 1100 Å region onto one FUV detector segment and 1230 - 2400 Å onto the other. The sensitivity to wavelengths longer than 2050 Å or shorter than 1150 Å will be very low.

b The lower values of the Resolving Power shown are delivered at the shortest wavelengths covered, and the higher values at longer wavelengths. The resolution increases roughly linearly between the short and long wavelengths covered by each grating mode.

Page 7: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS NUV Spectroscopic Modes Nominal Wavelength Resolving Power

Grating Wavelength Range (R = b

Coverage a per Exposure

G185M 1700 - 2100 Å 3 x 35 Å 16,000 - 20,000 G225M 2100 - 2500 Å 3 x 35 Å 20,000 - 24,000 G285M 2500 - 3200 Å 3 x 41 Å 20,000 - 24,000 G230L 1700 - 3200 Å (1 or 2) x 400 Å 1500 - 2800 a Nominal Wavelength Coverage is the expected usable spectral range delivered by each grating

mode, in three non-contiguous strips for the medium-resolution modes. The G230L grating disperses the 1st-order spectrum between 1700 - 3200 Å along the middle strip on the NUV detector. G230L also disperses the 400 - 1400 Å region onto one of the outer spectral strips and the 3400 - 4400 Å region onto the other. The shorter wavelengths will be blocked by an order separation filter and the longer will have low thruput on the solar blind detector. The G230L 2nd-order spectrum between 1700 - 2200 Å will be detected along the long wavelength strip.

b The lower values of the Resolving Power shown are delivered at the shortest wavelengths covered, and the higher values at longer wavelengths. The resolution increases roughly linearly between the short and long wavelengths covered by each grating mode.

Page 8: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 9: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

For Comparison - COS Throughputs: STIS (no slit loss)

G130M @ 1216 Å (peak) = 19.7%, @ 1430 Å = 9.0% @1216 A = 0.7% E140M G160M @ 1430 Å = 11.7%, @ 1669 Å = 5.8% @1669 Å = 0.15% E140M G140L @ 1248 Å = 10.7%, @ 1723 Å = 0.65%G185M @ 1777 Å = 3.9%, @ 2085 Å = 2.3%G225M @ 2262 Å = 2.7%, @ 2497 Å = 2.8% @2500 A = 0.8% E230MG285M @ 2659 Å = 2.2%, @ 2998 Å = 1.0%G230L @ 1846 Å = 3.0%, @ 2998 Å = 0.8%

Page 10: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 11: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 12: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 13: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 14: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Increasing Wavelength

Point source Spectra Calibration Stripes

25.60 square

2.80 2.80

NCM3a

NCM3a

NCM3b

NCM3b

NCM3c

NCM3c

1.45 2.255.75 4.95

All dimensions in mm

• NUV spectra projected onto the NUV MAMA detector

Page 15: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 16: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

* NUV G285M PtNe Wavecal Spectra - N2 Purge Data

Single grating tilt yields 3 stripes

ResolutionR ~ 20,000

Page 17: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

* NUV G230L PtNe Wavecal Spectra - N2 Purge Data

Wavelength (Å) Three grating tilts required to cover the full range shown

Resolution ~ 1.2 Å

Page 18: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 19: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS and STISObserving modes

Page 20: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS Imaging

Page 21: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 22: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS Imaging

Plate scale = 0.024″ / pixelFWHM resolution (radial) 2.7 pixels =

0.064″ (FWHM is ~ 78% encircled energy)Field of View = 2.5″ - 3″ (fuzzy edge)(40 resol diameter - 105 pixel diameter image)

For comparison, ACS WFC/HRC has 80/82% encircled energy in 0.25″ @ 6328 Å

Page 23: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 24: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 25: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 26: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 27: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

COS Flat Fielding

• FUV detector show hex pattern consistent with MCP manufacturing process –

• Stable geometric distortion map can be developed and applied

• Classic flat field techniques applied at the illuminated averaged pixel level have allowed S/N = 70 data (limited by statistics)

Page 28: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 29: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Tag Flash• The grating select mechanism exhibits very

small drifts after movement – which can degrade spectral resolution and wavelength accuracy.

• This can be addressed by flashing the cal lamps during a science exposure to track the drift.

Page 30: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 31: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• Back up Slides

Page 32: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Comparison to STIS

Page 33: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

Page 34: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• Visualization concept from Schiminovich & Martin• Numerical simulation from Cen & Ostriker (1998)• Songaila et al. (1995) Keck spectrum adapted by Lindler & Heap

COS will study:• Large-scale structure by tracing Hydrogen Lyman absorptions• Formation of galaxies• Chemical evolution of galaxies and the intergalactic medium• Hot stars and the interstellarmedium of the Milky Way• Supernovae, supernova remnants and the origin of the elements• Young Stellar Objects and theformation of stars and planets• Planetary atmospheres in the Solar System

Quasar Absorption Linestrace the “Cosmic Web” ofmaterial between the galaxies

Page 35: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• STIS G140M spectrum (resolution ~ 19 km/s) from Penton et al. (2001) showing low-redshiftintergalactic Lyman absorbers along the sight-line to QSO TON-S180, including a pair of Ly pairs. Significantly lower resolution would mistake the “pair of Ly pairs” as just two broad components, leading to over-estimates of the gas temperature and under-estimates of the true H I column density.

• Comparison of Chandra, HST-STIS, and FUSE spectra of an absorber along the sight-line to PKS2155-304 (from Shull et al. 2003, Fang et al. 2002). COS will obtain complementary spectra toward the ~150 QSO sight-lines observed by FUSE where O VI absorption has been detected. COS will extend the characterization of Ly absorbers and associated metal lines to higher redshifts for measuring abundances and metal production rates.

1. Large-scale structure, the IGM, and the origin of the elements

Page 36: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

1. Large-scale structure, the IGM, and the origin of the elements

• The Lyman Forest

– conduct baryon census of the IGM

– derive space density, column density distribution, Doppler widths, and two-point correlation functions

– test association with galaxies and consistency with models of large-scale structure formation and evolution

– tomographic mapping of cloud sizes and structure, requiring multiple nearby QSO sight-lines

• From Stocke (1997)

Page 37: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

• The distribution of the frequency, dN/dz, of strong and weak Lyman absorbers with redshift (from Shull et al. 2001). Strong absorbers (log NHI > 14) were studied in the UV with FOS at low spectral resolution, but virtually nothing is known about the distribution of the far more numerous weak absorbers at far-UV and near-UV wavelengths.• High signal-to-noise COS UV spectra are needed to determine the distribution of weak absorbers (log NHI 13) over the redshift range z = 0.1 - 1.6.

HST-FOSresults

Ground-basedresults

HST-COSto come

Page 38: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

1. Large-scale structure, the IGM, and the origin of the elements

• He II Gunn-Peterson effect– trace the epoch of reionization via

redshifted He II Ly (304 Å ) absorption in low-density IGM at redshifts z > 2.8

– determine whether He II absorption is discrete or continuous

– allows estimates of “ionization correction” in order to count baryons in the IGM

– allows estimate of flux and spectral shape of background ionizing radiation from quasars and starbursts

• He II and H I absorption toward HE2347-4342 (fromShull et al. 2003). The high He II opacities indicate that theepoch of reionization of He is significantly delayed from thatof H.

Page 39: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

1. Large-scale structure, the IGM, and origin of the elements

• Origin of the elements

– measure the primordial D/H to test Big Bang nucleosynthesis

– track evolution of D/H with redshift and metallicity

– track star formation rate and heavy element abundances with redshift

Page 40: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

2. Formation, evolution, and ages of galaxies

• QSO sight-lines will probe hot gas associated with galaxy halos

– measure abundances in halos and energy content of gaseous outflows

– study interface between halos and IGM

– connect abundances to star formation rates and feedback to galaxies

• Origin of young stellar systems and the heavy elements

– local counterparts to high-z star forming galaxies

– the violent ISM of starburst galaxies

– nucleosynthesis in ejecta-dominated supernova remnants

• From Leitherer (1997)

N132Din the LMC

• From Morse et al. (1996)

Page 41: Cosmic Origins Spectrograph Hubble Space Telescope James C. Green, COS Principal Investigator University of Colorado Hubble 4 th -generation instrument

Cosmic Origins SpectrographHubble Space Telescope

James C. Green, COS Principal InvestigatorUniversity of Colorado

3. Stellar and planetary origins and the cold interstellar medium

• Cold gas in the interstellar medium– physics and chemistry of translucent

clouds– measure gas-phase atomic and

molecular abundances in the regime where gas is predominantly molecular, dust grains accrete icy mantles, and the first steps in the condensation process, ultimately leading to star formation

– determine ubiquity of PAHs in the ISM and molecular clouds

– measure UV extinction toward highly reddened stars

– Measure diagnostics of accretion shocks in YSOs

• From Snow (1997)