11
Cosmic Variance from Superhorizon Mode Coupling Elliot Nelson Institute for Gravitation and the Cosmos The Pennsylvania State University EN & S. Shandera, 1212.4550 (PRL) M. LoVerde, EN, & S. Shandera, 1303.3549 (JCAP) J. Bramante, J. Kumar, EN, & S. Shandera, 1307.3549 (JCAP) EN, S. Park, S. Shandera, work in progress. Related work: Nurmi, Byrnes, & Tasinato, 1301.3128 Nurmi, Byrnes, Tasinato, & Wands, 1306.2370 LoVerde, 1310.5739 Monday, January 13, 2014 Elliot Nelson, Penn State

Cosmic Variance from Superhorizon Mode Coupling - …bccp.berkeley.edu/beach_program/presentations14/Nels… ·  · 2014-01-19Cosmic Variance from Superhorizon Mode Coupling Elliot

Embed Size (px)

Citation preview

Cosmic Variance from Superhorizon Mode Coupling

Elliot Nelson Institute for Gravitation and the Cosmos

The Pennsylvania State University !EN & S. Shandera, 1212.4550 (PRL) M. LoVerde, EN, & S. Shandera, 1303.3549 (JCAP) J. Bramante, J. Kumar, EN, & S. Shandera, 1307.3549 (JCAP) EN, S. Park, S. Shandera, work in progress. !!Related work: Nurmi, Byrnes, & Tasinato, 1301.3128 Nurmi, Byrnes, Tasinato, & Wands, 1306.2370 LoVerde, 1310.5739

Monday, January 13, 2014 Elliot Nelson, Penn State

Observable universe = finite subvolume of the larger universe

Finite sample: volume, range of scales, number of galaxies, etc.

Is Our Universe a Biased Sample?

Monday, January 13, 2014 Elliot Nelson, Penn State

Statistics Question: Is our Hubble volume a representative or biased sample? How limited is our access to global statistics?

1/8

Is Our Universe a Biased Sample?

average over observable universe global statisticssingle roll of the dice

c

H0

correlated modes

L

⇣obs.

h⇣k1 ⇥ · · · ⇣kN i|⇣L 6= h⇣k1 ⇥ · · · ⇣kN i|0

M ⇠

...Local statistics biased:

Observable modes coupled to superhorizon modes...

= haiM (1 + ⇣

obs

(x)) , x 2 VolM

haiL(1 + ⇣l)=

a(x) = haiL(1 + ⇣(x)) , x 2 VolL

Monday, January 13, 2014 Elliot Nelson, Penn State

⇣Consider the primordial curvature perturbation on a fixed spatial slice (at end of inflation):

2/8

⇣(x) = ⇣G(x) +3

5fNL(⇣

2G(x)� h⇣2Gi) +

9

25gNL⇣

3G(x) + · · ·

fobs

NL

= fNL

� 12

5f2

NL

⇣Gl +9

5gNL

⇣Gl + . . .

P obs

⇣ (k) =

1 +

12

5fNL⇣Gl + . . .

�PG(k)

Case Study: Local Non-Gaussianity

Perturbations in subvolume:

Local statistics modulated by the local background:

⇣obs(x) = ⇣obsG (x) +3

5fobs

NL

[⇣obsG (x)2 � h⇣obsG (x)2i] + 9

25gobsNL

⇣obsG (x)3 + . . .

(1 +6

5fNL⇣Gl)⇣Gs + · · ·

=

Z M�1

L�1

d3k

(2⇡)3⇣G(k)e

ik·x +

Z kmax

M�1

d3k

(2⇡)3⇣G(k)e

ik·x

k < M�1

Long-short wavelength split:

⇣G ⌘ ⇣Gs + ⇣Gl

⇣Gl > 0

⇣Gl < 0

Nearly Gaussian:

[M. LoVerde, EN, & S. Shandera, 1303.3549] [Nurmi, Byrnes, & Tasinato, 1301.3128]

L

k < M�1

k < M�1

Monday, January 13, 2014 Elliot Nelson, Penn State3/8

⇣(x) = ⇣G(x) +3

5fNL(⇣

2G(x)� h⇣2Gi) +

9

25gNL⇣

3G(x) + · · ·

fobs

NL

= fNL

� 12

5f2

NL

⇣Gl +9

5gNL

⇣Gl + . . .

P obs

⇣ (k) =

1 +

12

5fNL⇣Gl + . . .

�PG(k)

Case Study: Local Non-Gaussianity

Perturbations in subvolume:

Local statistics modulated by the local background:

⇣obs(x) = ⇣obsG (x) +3

5fobs

NL

[⇣obsG (x)2 � h⇣obsG (x)2i] + 9

25gobsNL

⇣obsG (x)3 + . . .

(1 +6

5fNL⇣Gl)⇣Gs + · · ·

=

Z M�1

L�1

d3k

(2⇡)3⇣G(k)e

ik·x +

Z kmax

M�1

d3k

(2⇡)3⇣G(k)e

ik·x

k < M�1

Long-short wavelength split:

⇣G ⌘ ⇣Gs + ⇣Gl

⇣Gl > 0

⇣Gl < 0

Nearly Gaussian:

[M. LoVerde, EN, & S. Shandera, 1303.3549] [Nurmi, Byrnes, & Tasinato, 1301.3128]

L

k < M�1

k < M�1

Monday, January 13, 2014 Elliot Nelson, Penn State3/8

Planck satellite measurements:

Planck CMB Measurements

f local

NL

= 2.7± 5.8[Red tilt]ns = 0.9603± 0.0073

[Nearly Gaussian perturbations]

Monday, January 13, 2014 Elliot Nelson, Penn State4/8

Gaussian Patches in an NG Universe

Strongly NG field can appear nearly Gaussian:

⇣(x) = ⇣pG(x)� h⇣pGi

⇣obs(x) = p⇣p�1

Gl ⇣Gs(x) +p!

2!(p� 2)!⇣p�2

Gl (⇣2Gs(x)� h⇣2Gsi) + ...

3

5fobs

NL

⇡ p� 1

2p⇣pGl

⇠ 1

⇣l

Constrain superhorizon cosmic variance

by tightening boundsfobs

NL

Recover statistically natural, nearly Gaussian series, in typical subvolumes; series controlled by

[EN, S. Shandera, 1212.4550; LoVerde et. al., 1303.3549]

!

Minimum level of NG in subvolumes:

!

h⇣2Gsi1/2/⇣Gl

⇣Gl �q

h⇣2Gsi $L

M� k

max

M $ Nsuperhorizon

� Nsubhorizon

Monday, January 13, 2014 Elliot Nelson, Penn State5/8

⇣ = ⇣pG � h⇣pGi

Numerical Realizations: Suppression of : :

Gaussian Patches in an NG Universe

Monday, January 13, 2014 Elliot Nelson, Penn State6/8

Biased Scale Dependence:

fNL(k) = fNL(kp)

✓k

kp

◆nf

Weak scale-dependence:

Biased power spectrum:

Generalized Local Ansatz:

P obs

⇣ (k) = P⇣(k)

1 +

12

5⇠m(k)

fNL

(k)�Gl +3

5

f2

NL

(k)(�2

Gl � h�2

Gli)1 + 36

25

f2

NL

(k)h�2

Gli

⇣(k) = �G(k) + �G(k) +3

5fNL(k)[�

2G](k) +

9

25gNL(k)[�

3G](k) + ...

nobs.

s 6= ns

�ns(k) ⇡12

5⇠m(k)fNL(k)�Gl(nf + n(m)

f ),6

5fNL(k)�Gl ⌧ 1

Running in global bispectrum leaks into observed power spectrum

Monday, January 13, 2014 Elliot Nelson, Penn State7/8

Summary

Local statistics can be biased by background modes Constraints on global statistics ( ) are probabilistic

Parameters from models need only render our observations typical among Hubble volumes

Bias grows with size of universe ~ length of inflation

Local and global statistics can be qualitatively different

Nearly Gaussian Hubble volumes in a NG universe Statistical naturalness of weakly NG local ansatz

Observations could tell us if this uncertainty is relevant to our interpretation of data

Ongoing work: bias from models of inflation, subsampling with nonlocal NG

P⇣ , fNL, ns, nt, nsq.

Monday, January 13, 2014 Elliot Nelson, Penn State8/8